FUNZIONI CONVESSE

Sia I un intervallo aperto di \mathbb{R} (limitato o illimitato) e sia f(x) una funzione definita in I. Dato $x_0 \in I$, la retta r passante per il punto $P_0(x_0, f(x_0))$ di equazione $y = f(x_0) + m(x - x_0)$ è detta retta di supporto per f(x) nel punto x_0 su I se

$$f(x) > f(x_0) + m(x - x_0) \quad \forall x \in I.$$

In altre parole, r è retta di supporto per f(x) nel punto x_0 su I se il grafico della funzione si svolge al di sopra della retta r nell'intervallo I.

DEF. Una funzione f(x) definita sull'intervallo aperto $I \subset \mathbb{R}$ si dice convessa in I se ammette rette di supporto in ogni punto $x_0 \in I$, ovvero se per ogni $x_0 \in I$ esiste $m(x_0) \in \mathbb{R}$ tale che

$$f(x) \ge f(x_0) + m(x_0)(x - x_0) \quad \forall x \in I.$$

La funzione f(x) si dice concava in I se -f(x) è convessa in I, ovvero se per ogni $x_0 \in I$ esiste $m(x_0) \in \mathbb{R}$ tale che

$$f(x) \le f(x_0) + m(x_0)(x - x_0) \quad \forall x \in I.$$

ESEMPI

• La funzione $f(x) = x^2$ è convessa in tutto \mathbb{R} . Infatti, per ogni $x_0 \in \mathbb{R}$ si ha

$$0 \le (x - x_0)^2 = x^2 - 2xx_0 + x_0^2 = x^2 - 2xx_0 + 2x_0^2 - x_0^2 = x^2 - 2x_0(x - x_0) + x_0^2$$

e dunque $x^2 \ge x_0^2 + 2x_0(x - x_0)$ per ogni $x \in \mathbb{R}$, cioè $f(x) \ge f(x_0) + 2x_0(x - x_0)$ per ogni $x \in \mathbb{R}$. Quindi per ogni $x_0 \in \mathbb{R}$, la retta $y = f(x_0) + 2x_0(x - x_0)$ è di supporto per f(x) in \mathbb{R} e dalla definizione segue che f(x) è funzione convessa in \mathbb{R} . Si noti che la retta è la retta tangente al grafico di f nel punto x_0 , essendo $f'(x_0) = 2x_0$.

• La funzione $f(x) = e^x$ è convessa in tutto \mathbb{R} . Infatti, preso comunque $x_0 \in \mathbb{R}$, proviamo che la retta tangente al grafico di f nel punto x_0 è di supporto per f(x) su \mathbb{R} . Dobbiamo provare che

$$e^x \ge e^{x_0} + e^{x_0}(x - x_0) \quad \forall x \in \mathbb{R}$$

A tale scopo consideriamo la funzione $g(x) = e^x - e^{x_0} + e^{x_0}(x - x_0)$ e proviamo che $g(x) \ge 0$ per ogni $x \in \mathbb{R}$. Osserviamo allora che g(x) è funzione derivabile su tutto \mathbb{R} con $g'(x) = e^x - e^{x_0}$. Allora g'(x) > 0 se e solo se $x > x_0$. Ne segue che g(x) è strettamente decrescente in $(-\infty, x_0)$, è strettamente crescente in $(x_0, +\infty)$ e che x_0 è punto di minimo assoluto per g(x) su \mathbb{R} con $g(x_0) = 0$. In particolare si ha che $g(x) \ge 0$ per ogni $x \in \mathbb{R}$.

• La funzione f(x) = |x| è convessa in tutto \mathbb{R} . Infatti, se $x_0 \ge 0$, dalle proprietà del valore assoluto risulta

$$|x| - |x_0| = |x| - x_0 > x - x_0 \quad \forall x \in \mathbb{R}$$

mentre se $x_0 < 0$ si ha

$$|x| - |x_0| = |x| + x_0 \ge -x + x_0 \quad \forall x \in \mathbb{R}$$

Quindi, posto

$$m(x_0) = \begin{cases} 1 & \text{se } x_0 \ge 0 \\ -1 & \text{se } x_0 < 0 \end{cases}$$

per ogni $x_0 \in \mathbb{R}$, la retta $y = |x_0| + m(x_0)(x - x_0)$ risulta di supporto per f(x) su \mathbb{R} , dunque f(x) risulta convessa in \mathbb{R} . Si osservi che nel punto $x_0 = 0$, ogni $m \in [-1, 1]$ è coefficiente angolare di una retta di supporto, infatti si ha $f(x) - f(x_0) \ge m(x - x_0)$ in $x_0 = 0$ per ogni $x \in \mathbb{R}$ se e solo se $|x| \ge mx$ per ogni $x \in \mathbb{R}$ e quindi se e solo se $-1 \le m \le 1$.

- La funzione $f(x) = x^3$ non è ne' concava ne' convessa in \mathbb{R} in quanto non ammette rette di supporto in $x_0 = 0$. Infatti si ha $f(x) f(x_0) \ge m(x x_0)$ in $x_0 = 0$ per ogni $x \in \mathbb{R}$ se e solo se $x^3 \ge mx$ per ogni $x \in \mathbb{R}$ da cui $x^2 \ge m$ se x > 0 mentre $x^2 \le m$ se x < 0, impossibile.
- Ogni funzione lineare f(x) = ax + b è sia concava che convessa in \mathbb{R} . Infatti come retta di supporto per f e per -f si può prendere la retta y = ax + b. Viceversa, è immediato che ogni funzione sia concava che convessa in un intervallo aperto I è funzione lineare su I.

Vediamo ora di determinare dei criteri per stabilire se una funzione è convessa o meno. Un primo criterio lega il concetto di convessità con la monotonia del rapporto incrementale. Precisamente, data f(x) definita in un intervallo aperto $I \subset \mathbb{R}$ e dato $x_0 \in I$, sia $R_{x_0}(x)$ la funzione rapporto incrementale di f(x) nel punto x_0 definita da

$$R_{x_0}(x) = \frac{f(x) - f(x_0)}{x - x_0}, \quad \forall x \in I \setminus \{x_0\}.$$

Si può allora provare il seguente risultato

PROPOSIZIONE 1. Una funzione f(x) definita nell'intervallo aperto $I \subset \mathbb{R}$ è convessa su I se e solo se per ogni $x_0 \in I$ la funzione $R_{x_0}(x)$ è crescente su $I \setminus \{x_0\}$.

DIM.(non richiesta all'esame). Proviamo innanzitutto che se f(x) è convessa in I allora $R_{x_0}(x)$ è crescente su $I \setminus \{x_0\}$. Siano allora $x_1, x_2 \in I \setminus \{x_0\}$ tali che $x_1 < x_2$ e proviamo che $R_{x_0}(x_1) \leq R_{x_0}(x_2)$.

Se $x_1 < x_0 < x_2$, essendo $f(x) \ge f(x_0) + m(x_0)(x - x_0)$ per ogni $x \in I$, otteniamo

$$\frac{f(x_1) - f(x_0)}{x_1 - x_0} \le m(x_0) \le \frac{f(x_2) - f(x_0)}{x_2 - x_0}$$

e quindi che $R_{x_0}(x_1) \leq R_{x_0}(x_2)$.

Se $x_0 < x_1 < x_2$, osserviamo innanzitutto che

$$R_{x_0}(x_1) \le R_{x_0}(x_2) \iff f(x_2) \ge f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x_2 - x_0)$$

Osservato che, come sopra, essendo $f(x) \ge f(x_1) + m(x_1)(x - x_1)$ per ogni $x \in I$, risulta

$$\frac{f(x_0) - f(x_1)}{x_0 - x_1} \le m(x_1) \le \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

otteniamo

$$f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x_2 - x_0) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} [(x_2 - x_1) + (x_1 - x_0)]$$

$$= f(x_1) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x_2 - x_1) \le f(x_1) + m(x_1)(x_2 - x_1) \le f(x_2)$$

Analogalmente si ragiona se $x_1 < x_2 < x_0$.

Viceversa, proviamo che se $R_{x_0}(x)$ è crescente in $I \setminus \{x_0\}$ per ogni $x_0 \in I$ allora f(x) è convessa in I. Osserviamo innanzitutto che essendo $R_{x_0}(x)$ crescente in $I \setminus \{x_0\}$, esiste $m \in \mathbb{R}$ tale che

$$\sup\{R_{x_0}(x) \mid x \in I, \ x < x_0\} \le m \le \inf\{R_{x_0}(x) \mid x \in I, \ x_0 < x\}$$

Allora per ogni $x \in I \setminus \{x_0\}$, se $x < x_0$ si ha

$$\frac{f(x) - f(x_0)}{x - x_0} \le m \implies f(x) \ge f(x_0) + m(x - x_0)$$

mentre se $x > x_0$ si ha

$$\frac{f(x) - f(x_0)}{x - x_0} \ge m \implies f(x) \ge f(x_0) + m(x - x_0)$$

e quindi che $y = f(x_0) + m(x - x_0)$ è retta di supporto per f(x) in x_0 su I.

Dal precedente criterio segue in particolare che ogni funzione f(x) convessa su un intervallo aperto I ammette derivata destra e sinistra in ogni punto di I:

COROLLARIO 2. Sia f(x) funzione convessa nell'intervallo aperto I. Allora per ogni $x_0 \in I$ esistono $f'_{+}(x_0)$ e $f'_{-}(x_0)$.

DIM. Poichè f(x) è convessa in I, dalla precedente proposizione sappiamo che per ogni $x_0 \in I$ il rapporto incrementale di f in x_0 è crescente. Fissato $\delta > 0$ tale che $x_0 \pm \delta \in I$, abbiamo allora che $R_{x_0}(x_0 - \delta) \leq R_{x_0}(y) \leq R_{x_0}(x_0 + \delta)$ per ogni $y \in (x_0 - \delta, x_0 + \delta) \setminus \{x_0\}$, e quindi che $R_{x_0}(x)$ risulta limitata in $(x_0 - \delta, x_0 + \delta) \setminus \{x_0\}$. Dai risultati sulle funzioni monotone otteniamo allora che esistono finiti i limiti

$$\lim_{x \to x_0^-} R_{x_0}(x) = \sup \{ R_{x_0}(y) \mid x_0 - \delta \le y < x, \ y \ne x_0 \}$$

 \mathbf{e}

$$\lim_{x \to x_0^+} R_{x_0}(x) = \inf\{R_{x_0}(y) \mid x < y \le x_0 + \delta, \ y \ne x_0\}$$

e quindi la tesi.

OSSERVAZIONE. Dal precedente corollario si ha che se f(x) è funzione convessa nell'intervallo aperto $I \subset \mathbb{R}$, $x_0 \in I$ e la retta $y = f(x_0) + m(x - x_0)$ è retta di supporto per f(x) in x_0 su I, allora

$$f'_{-}(x_0) \le m \le f'_{+}(x_0).$$

Infatti se $x < x_0$ si ha

$$f(x) \ge f(x_0) + m(x - x_0) \implies \frac{f(x) - f(x_0)}{x - x_0} \le m$$

da cui segue che $f'_{-}(x_0) \leq m$. Analogalmente, se $x > x_0$ si ha

$$f(x) \ge f(x_0) + m(x - x_0) \implies \frac{f(x) - f(x_0)}{x - x_0} \ge m$$

da cui segue che $f'_{+}(x_0) \geq m$.

Abbiamo inoltre

COROLLARIO 3. Ogni funzione f(x) convessa in un intervallo aperto $I \subset \mathbb{R}$ è continua in I.

DIM. Preso comunque $x_0 \in I$, dal precedente corollario abbiamo che

$$\lim_{x \to x_0^{\pm}} f(x) - f(x_0) = \lim_{x \to x_0^{\pm}} \frac{f(x) - f(x_0)}{x - x_0} (x - x_0) = f'_{\pm}(x_0) \lim_{x \to x_0^{\pm}} (x - x_0) = 0$$

e quindi che $\lim_{x\to x_0} f(x) = f(x_0)$.

Nel caso di funzioni derivabili abbiamo il seguente criterio

PROPOSIZIONE 4. Sia f(x) funzione derivabile sull'intervallo aperto $I \subset \mathbb{R}$. Allora f(x) è convessa in I se e solo se f'(x) è crescente in I.

DIM. Supponiamo f(x) convessa in I e proviamo che f'(x) risulta crescente in I. Presi comunque $x_1, x_2 \in I$ con $x_1 < x_2$ dobbiamo provare che $f'(x_1) \leq f'(x_2)$. Si osservi allora che essendo f convessa in I, dalla Proposizione 1 sappiamo che il rapporto incrementale in ogni $x_0 \in I$ è crescente. Dai risultati sulle funzioni monotone, essendo f derivabile in x_1 e x_2 , otteniamo allora che

$$f'(x_1) = \lim_{x \to x_1^+} R_{x_1}(x) = \inf\{R_{x_1}(x) \mid x > x_1, \ x \in I\} \le R_{x_1}(x_2)$$

e analogalmente

$$f'(x_2) = \lim_{x \to x_2^-} R_{x_2}(x) = \sup\{R_{x_2}(x) \mid x < x_2, \ x \in I\} \ge R_{x_2}(x_1).$$

Essendo $R_{x_2}(x_1) = R_{x_1}(x_2)$ le disegualglianze sopra provano che $f'(x_1) \leq f'(x_2)$.

Supponiamo ora f'(x) crescente in I e proviamo che f(x) è convessa in I mostrando che per ogni x_0 la retta tangente al grafico di f in x_0 è retta di supporto, ovvero che vale

$$f(x) \ge f(x_0) + f'(x_0)(x - x_0) \quad \forall x \in I.$$

Infatti, per ogni $x \in I$ con $x < x_0$ dal Teorema di Lagrange esiste $\xi \in (x, x_0)$ tale che

$$\frac{f(x) - f(x_0)}{x - x_0} = f'(\xi)$$

ed essendo f'(x) crescente ne segue che

$$\frac{f(x) - f(x_0)}{x - x_0} = f'(\xi) \le f'(x_0)$$

e quindi, essendo $x < x_0$, $f(x) \ge f(x_0) + f'(x_0)(x - x_0)$. Analogalmente, per ogni $x \in I$ con $x > x_0$ dal Teorema di Lagrange esiste $\eta \in (x_0, x)$ tale che

$$\frac{f(x) - f(x_0)}{x - x_0} = f'(\xi)$$

ed essendo f'(x) crescente ne segue che

$$\frac{f(x) - f(x_0)}{x - x_0} = f'(\eta) \ge f'(x_0)$$

e quindi, essendo $x > x_0, f(x) \ge f(x_0) + f'(x_0)(x - x_0).$

Nella precedente dimostrazione risulta provato in particolare che per una funzione derivabile convessa la retta tangente è retta di supporto in ogni punto. Precisamente vale il seguente risultato

COROLLARIO 5. Sia f(x) funzione derivabile sull'intervallo aperto $I \subset \mathbb{R}$. Allora f(x) è convessa in I se e solo se per ogni $x_0 \in I$ risulta $f(x) \geq f(x_0) + f'(x_0)(x - x_0)$, $x \in I$.

OSSERVAZIONE. Il precedente risultato afferma che se f(x) è funzione convessa nell'intervallo aperto $I \subset \mathbb{R}$, dato $x_0 \in I$, la retta tangente al grafico di f(x) in x_0 è retta di supporto per f(x) su I. Tale retta risulta essere l'unica retta di supporto per f(x) su I. Infatti, abbiamo già provato che se $y = f(x_0) + m(x - x_0)$ è retta di supporto in x_0 per f(x) su I, allora $f'_{-}(x_0) \leq m \leq f'_{+}(x_0)$, essendo f(x) derivabile in x_0 , ne deduciamo che $m = f'(x_0)$.

Dai criteri di monotonia per le funzioni derivabili, nel caso la funzione risulti derivabile due volte in I si ottiene immediatamente il seguente risultato

COROLLARIO 6. Sia f(x) funzione derivabile due volte sull'intervallo aperto $I \subset \mathbb{R}$. Allora f(x) è convessa in I se e solo se $f''(x) \geq 0$ per ogni $x \in I$.

Infine, un punto $x_0 \in I$ tale che esiste $\delta > 0$ per cui f(x) risulta convessa in $(x_0 - \delta, x_0) \cap I$ e concava in $(x_0, x_0 + \delta) \cap I$ o viceversa, viene detto *punto di flesso* per f(x). Si osservi che dal precedente criterio, se f(x) è derivabile due volte in I allora $f''(x_0) = 0$.

ESEMPI

- La funzione $f(x) = e^x$ abbiamo già provato essere funzione convessa in \mathbb{R} . Difatti risulta $f'(x) = e^x$ funzione crescente in \mathbb{R} ed anche $f''(x) = e^x > 0$ per ogni $x \in \mathbb{R}$.
- La funzione $f(x) = \arctan x$ è funzione convessa in $(-\infty, 0)$ e concava in $(0, +\infty)$. Infatti, abbiamo

 $f'(x) = \frac{1}{1+x^2}$ e $f''(x) = \frac{-2x}{(1+x^2)^2}$

quindi f''(x) > 0 per x < 0 e f''(x) < 0 per x > 0. Il punto x = 0 è un punto di flesso per f(x) con f'(0) = 1, dunque a tangente obliqua.

- La funzione $f(x) = x^3$ è funzione convessa in $(0, +\infty)$ e concava in $(-\infty, 0)$, in quanto f''(x) = 6x e quindi f''(x) > 0 se x > 0 e f''(x) < 0 se x < 0. Il punto x = 0 è punto di flesso con f'(0) = 0, dunque a tangente orizzontale.
- La funzione $f(x) = \sqrt[3]{x}$ è funzione concava in $(0, +\infty)$ e convessa in $(-\infty, 0)$, in quanto

$$f'(x) = \frac{1}{3}x^{-\frac{2}{3}}$$
 e $f''(x) = -\frac{2}{9}x^{-\frac{5}{3}}$

e quindi f''(x) < 0 se x > 0 e f''(x) > 0 se x < 0. Il punto x = 0 è punto di flesso. In tale punto la funzione non è derivabile, difatti x = 0 è un punto di flesso a tangente verticale.