1. Spiegare con l'uso dei quantificatori questa scrittura
\[\lim_{x \to 1^+} f(x) = -\infty \]

2. Dare la definizione di successione regolare e monotona. Enunciare i teoremi che legano questi due concetti, fornendo la dimostrazione nel caso della convergenza e fornendo almeno un controesempio.

3. Enunciare e dimostrare il teorema di Rolle.

4. Sia \(I \) un intervallo ed \(f : I \to \mathbb{R} \) una funzione definita e crescente. Provare di ciascuna delle seguenti affermazioni se sia vera o falsa.

 \[
 \begin{array}{cl}
 A. & \text{Se } I = [a, b] \text{ allora } f \text{ e' limitata} \quad \text{Vero } \checkmark \quad \text{Falso } \square \\
 B. & \text{Se } I = [a, +\infty[\text{ allora } f \text{ e' limitata} \quad \text{Vero } \square \quad \text{Falso } \checkmark \\
 C. & \text{Se } f'(x_0) \text{ esiste per un } x_0 \in \mathbb{R} \text{ allora } f \text{ e' continua in } x_0 \text{ e } f'(x_0) \geq 0 \quad \text{Vero } \checkmark \quad \text{Falso } \square
 \end{array}
 \]

5. Sia \(f : \mathbb{R} \to \mathbb{R} \) una funzione continua in ogni punto e sia \(F(x) = \int_0^x f(t)dt \). Si assuma che \(f(x) > 0 \) per ogni \(x \in \mathbb{R} \). Provare di ciascuna delle seguenti affermazioni se sia vera o falsa.

 \[
 \begin{array}{cl}
 A. & \text{F(x) > 0 per ogni } x \neq 0 \quad \text{Vero } \square \quad \text{Falso } \checkmark \\
 B. & \lim_{x \to +\infty} F(x) = +\infty \quad \text{Vero } \square \quad \text{Falso } \checkmark \\
 C. & \text{Sia } f \text{ derivabile } \forall x \in \mathbb{R}, \text{ se } x_0 \in \mathbb{R} \text{ e' un punto di flesso per } F \text{ allora } f(x_0) \text{ e' un minimo o un massimo locale per } f \quad \text{Vero } \checkmark \quad \text{Falso } \square
 \end{array}
 \]

\textbf{Esercizio 1}

\[\forall n > 0 \quad \exists \delta = \delta(n) > 0 \quad \text{t.c.} \quad \forall \epsilon > 0 \quad \exists \eta < 1 + \delta \text{ allora } f(\eta) < -n \]
Esercizio 4

A) Se \(I = [a, b] \) \(f \) è limitata \(\text{VERO} \)

Poiché \(f \) è crescente \(f(a) \leq f(x) \leq f(b) \) \(\forall x \in [a, b] \)
quindi \(f \) è limitata da \(f(a) \) e \(f(b) \).

B) Se \(I = [a, +\infty[\) \(f \) è limitata \(\text{FALSO} \)

Ad esempio \(g : [0, +\infty[\rightarrow \mathbb{R} \) \(g(x) = e^x \) è crescente
perché \(g'(x) = e^x > 0 \) e \(\lim_{x \to +\infty} g(x) = +\infty \) quindi
\(f \) è inferiormente limitata ma non superiormente.

C) \(\text{VERO} \)

Se \(f \) è derivabile in \(x_0 \) allora \(f \) è continua in \(x_0 \). Inoltre
se \(f'(x_0) \) esiste \(f'(x_0) = \lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} \)
e \(f(x_0 + h) - f(x_0) > 0 \) e \(h > 0 \) quindi \(f'(x_0) > 0 \) per il
teor'affermazione. Oppure per il criterio di monotonia
\(f'(x) > 0 \Leftrightarrow f \) crescente (ma richiede \(f \) derivabile nell'intervallo a cui è vero).

Esercizio 5

A) \(\text{Falso} \)

\(F(x) < 0 \) per \(x < 0 \) infatti

\[F(x) = \int_0^x g(t) \, dt = - \int_x^0 g(t) \, dt < 0 \]
perché \(\int_0^x g(t) \, dt > 0 \)

Ad esempio \(g(x) = 1 \), \(F(x) = x \) è negativa per \(x < 0 \)
FALSO

Ad esempio \(g(x) = \frac{1}{1+x^2} > 0 \quad \forall x \)

\[F(x) = \int_0^x \frac{1}{1+t^2} \, dt = \left[\arctg t \right]_0^x = \arctg x \to \frac{\pi}{2} \quad \text{per } x \to +\infty. \]

Basta ricordare che \(g(x) \leq \frac{1}{x^p} \quad \text{con } p > 1 \) e

\[\lim_{x \to +\infty} F(x) \text{ converge}. \]

VERO

Poiché \(g \) è derivabile, \(F \) ammette derivata seconda.

Se \(x_0 \) è un punto di glieso \(F \) cambia concavità quindi \(F''(x) \) cambia segno in \(x_0 \) e \(F''(x_0) = 0 \). Quindi

\(F''(x) = g''(x) \quad \text{in } x_0 \) \quad \(F''(x_0) = g''(x_0) = 0 \) (per criterio di convenienza)

Ne segue che \(\exists \) \(\delta > 0 \) tale che

\[g'(x) < 0 \quad \text{per } x \in \left(x_0 - \delta, x_0 \right] \quad \Rightarrow g \text{ decrescente} \]

\[g'(x) > 0 \quad \text{per } x \in \left(x_0, x_0 + \delta \right] \quad \Rightarrow g \text{ crescente} \]

\[g''(x) = \frac{2}{x_0^2} \quad \Rightarrow g \text{ ha un minimo locale in } g(x_0) \]

Oppure

\[g''(x) > 0 \quad \text{per } x \in \left(x_0 - \delta, x_0 \right] \quad \Rightarrow g \text{ crescente} \]

\[g''(x) < 0 \quad \text{per } x \in \left(x_0, x_0 + \delta \right] \quad \Rightarrow g \text{ decrescente} \]

\[g'(x) = \frac{1}{x_0^2} \quad \Rightarrow g \text{ ha un max in } g(x_0) \quad \text{locale} \]