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Abstract. A multiband transport model for electron transport in semiconductors, based on the
Wigner-function approach and allowing for energy bands of arbitrary shape, is presented and applied

to two simple examples: a comparison of exact and free streaming solutions of the Wigner equation in

non-parabolic regime and an interband transition in an in�nite homogeneous medium.

INTRODUCTION

Signi�cant progress in understanding the transport properties of electronic devices, such as the Resonant
Tunneling Diode (RTD) and others, has been made by introducing the use of phase space concepts. The most
important model, based on a phase-space description, is the Wigner-function approach [1], which has been
applied, in particular, to the calculation of the I-V curves of the RTD [2]. This model, however, considers only
conduction band electrons together with the parabolic band approximation, so that the evolution equation
for the Wigner function becomes the evolution equation for semiclassical particles with an e�ective mass.

For the description of those devices in which interband transitions or non-parabolicity e�ects are impor-
tant, the single-band, e�ective mass approximation is no longer satisfactory. A correctly de�ned Wigner
function for these phenomena should include the populations of all bands involved in the transport processes
and the evolution equation that governs the time dependence of the Wigner function should take into account
possible non-parabolicity e�ects.

The formulation of a general multi-band transport model, allowing for energy bands of any shape, is
underway and some preliminary results have recently been presented [3, 4]. In this model, a multi-band
Wigner function f has been introduced by using the Bloch-state representation of the density matrix. As a
result, f can be written as a sum,

f(x; p) =
X
mn

fmn(x; p); (1)

where the functions fmn are obtained from the Wigner function f by the action of the integral operators
Pmn,

fmn(x; p) = Pmnf(x; p) =
1

2��h

Z Z
dx0dp0Wmn(x; p; x

0; p0)f (x0; p0) ; (2)

with Wmn(x; p; x
0; p0) an integral kernel de�ned entirely in terms of Bloch states. The operators Pmn are

projection operators, and the fmn's are the projections of the Wigner function onto the Floquet subspaces
of the energy bands. The evolution equations that govern the time dependence of the Wigner function and
of its band projections in time, with or without external �elds, have also been derived.

In this work, after recalling the main results of the multi-band transport model, we present two simple
applications: (i) we investigate non-parabolicity corrections to the free-streaming transport properties, by



comparing the results of the exact model with those obtained with the parabolic band approximation in
absence of external �elds; (ii) we illustrate the time evolution of the Wigner function during an elementary
interband transition in a homogeneous in�nite medium, induced by the action of a constant external �eld
(a simpli�ed situation is considered, with only two energy bands, each of them treated within the e�ective
mass approximation).

MULTI-BAND WIGNER FUNCTION AND EVOLUTION EQUATIONS

Equations (1) and (2), which show the partition of the Wigner function into the Floquet spaces of the
energy bands, can be derived by using the Bloch-state representation of the density matrix. If � is the
single particle density operator, the corresponding density matrix in the space representation is given by
�(r; s) =< rj�js > and the Wigner function is de�ned by

f(x; p) =

Z
d� < x+

�

2
j�jx� �

2
> e�ip�=�h: (3)

The evolution equation for the Wigner function, called the Wigner equation, follows from the Liouville-von
Neumann evolution equation for the density matrix and di�ers from the classical Boltzmann equation in
the form of the acceleration term, which is given by a pseudodi�erential operator in place of the standard
di�erential operator of the Boltzmann equation:

@f

@t
+

p

m

@f

@x
� i

�h
�(ÆV )f = 0; (4)

where the pseudodi�erential operator �(ÆV ) is de�ned by

(�(ÆV )f)(x; p) =

Z
d�ÆV (x; �) bf (x; �)e�ip�=�h; (5)

with symbol ÆV (x; �) = V (x + �=2)� V (x� �=2), and

bf (x; �) = 1

2��h

Z
dpf(x; p)eip�=�h

is the Fourier transform of the Wigner function with respect to the momentum variable.

Let fjmk >g be the Bloch states and

< xjmk >� 	m(x; k) = eikxumk(x) (6)

the Bloch functions of an in�nite homogeneous semiconductor crystal with lattice period a. Here, m 2 N

is the band index, k 2 B is the crystal momentum and B is the Brillouin zone. Also, let �1(k), �2(k), . . . ,
�m�1(k), �m(k), . . . , be the energy bands. The energy bands are real periodic functions of k, with period
2�=a, and as such they can be expanded in Fourier series,

�m(k) =
X
�2L

b�m(�)eik�; (7)

where L is the crystal lattice and b��m(�) = b�m(��) from the reality condition.

By introducing the elements of the density operator in the Bloch-state representation,
�mn(k; k

0) =< mkj�jnk0 >, and the coeÆcients

�mn(k; k
0; x; p) =

Z
d� < x+

�

2
jmk >< nk0jx� �

2
> e�ip�=�h; (8)

the integral kernel Wmn that appears in (2) can be written as

Wmn(x; p; x
0; p0) =

Z
B2

dkdk0�mn(k; k
0; x; p)��

mn(k; k
0; x0; p0); (9)



The coeÆcients �mn are similar to the ones introduced in [5, 6].

The macroscopic quantities such as particle density, current and energy, are likewise expressed as a sum
of Floquet terms. It can be shown that only the diagonal terms contribute to the total number of particles,
that is Z Z

dxdpf(x; p) =
X
m

Z Z
dxdpfmm(x; p):

The time evolution of the Wigner function is determined by the periodic potential of the crystal and by
the possible presence of an external potential V (x). The evolution equation is given by

i�h
@f

@t
(x; p; t) =

X
mn

i�h
@fmn

@t
(x; p; t) =

X
mn

i�h

�
@fmn

@t

�
0

(x; p; t) +
X
mn

i�h

�
@fmn

@t

�
V

(x; p; t);

where (@=@t)
0
denotes the time evolution due to the periodic potential and (@=@t)

V
the time evolution due

to the external potential. By using the Liouville-von Neumann equation for the time evolution of the density
matrix, it can be shown that [3, 4]

i�h

�
@fmn

@t

�
0

(x; p; t) =
X
�2L

hb�m(�)fmn(x+ �

2
; p; t)� b�n(�)fmn(x� �

2
; p; t)

i
eip�=�h (10)

and that

i�h

�
@fmn

@t

�
V

(x; p; t) =

Z Z
dx0d�cWmn(x; p; x

0;��)ÆV (x0; �) bf (x0; �; t); (11)

where cWmn(x; p; x
0; �) =

1

2��h

Z
dp0Wmn(x; p; x

0; p0)eip
0
�=�h

is the Fourier transform of Wmn(x; p; x
0; p0) with respect to p0. It is well known that, in the parabolic-band

approximation, equation (10) reduces to the freestreaming transport equation. For a parabolic band �(k)
having a minimum at k = k�, the evolution equation for the Wigner function f in absence of external �elds
is

@f

@t
+
p� �hk�
m�

@f

@x
= 0; (12)

where m� = �h2
�
@2�=@k2

��1

k=k�
is the e�ective mass.

The full time evolution of the Floquet projection fmn of the Wigner function, due both to the periodic
potential of the crystal lattice and to the external potential, is obtained by adding the two contributions of
equation (10) and equation (11):

i�h
@fmn

@t
=

=
X
�2L

hb�m(�)fmn(x+ �

2
; p; t)� b�n(�)fmn(x� �

2
; p; t)

i
eip�=�h +

+

Z Z
dx0d�cWmn(x; p; x

0;��)ÆV (x0; �)f̂(x0; �; t): (13)

Equation (13) gives the full time evolution of each component of the Wigner function, in presence of an
external �eld and in the absence of collisions.



EXAMPLES AND APPLICATIONS

Freestreaming evolution
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Figure 1: Band pro�le �(k) = 1� cos k + 0:4 cos 2k, �� � k � � (dimensionless units).

In this section, we shall discuss the parabolic band approximation by comparing the solution of equation
(10) with the solution of the corresponding free-streaming equation (12) in a simple case. For the comparison,
we use dimensionless variables: the space variable x is measured in units of a, the momentum p in units of
�h=a, time t in units of ma2=�h and the crystal momentum k in units of 1=a. In the dimensionless variables,
equation (10) for a single band becomes

i�h
@f

@t
(x; p; t) =

X
�2L

b�(�) hf(x+ �

2
; p; t)� f(x� �

2
; p; t)

i
eip�=�h (14)

and the free-streaming equation (12) becomes

@f

@t
+ p

@f

@x
= 0:

Also, we have chosen �(k) = 1 � cos k + 0:4 cos 2k, �� � k � � (thus k� = 0), for the band pro�le, which
is shown in Figure 1, and which has a parabolicity region that covers about one half of the Brillouin zone.
Note that, with these dimensionless quantities, the phase-space momentum p and the crystal momentum
k, though di�erent variables, are measured in the same units. We have followed the time evolution of an
initial Gaussian shaped Wigner function in phase space, according to the exact equation and according to
the free-streaming approximation. The initial Wigner function corresponds to a pure state characterized by
the wave function

	(x) = e��(x�x0)
2

e�ik0(x�x0);

where x0 is the initial average position, k0 the initial average momentumand � the initial momentum spread.
The density matrix is given by �(x; x0) = 	(x)	�(x0) and the Wigner function that results is

f(x; p; 0) =

r
2�

�
e�2�(x�x0)

2
�(p�k0)

2
=(2�):

We have performed the comparison for two di�erent values of the momentum spread, � = 0:02 and � = 0:2.
The former corresponds to a narrow (in momentum) wave packet, whose time evolution is not a�ected by
the states near the edges of the band, where non-parabolicity e�ects are important. The latter, instead,



corresponds to a broad wave packet, for which we expect that non-parabolicity e�ects are important from
the very early evolution. Equation (14) can be solved explicitely by using Fourier Transforms in space. Ifbfk is the k�th Fourier component of f with respect to x, it is easy to see that

bfk(p; t) = bfk(p; 0)eik(p)t (15)

where

k(p) = 2i
X
�

b�(�) sin k�
2
eip�=�h:

The main features of the comparison are shown in Figures 2, 3 and 4. Figure 2 refers to the case with
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Figure 2: f(x;p) as a function of x, 0 � x � 20 for p = 0:5 (A) and f(x; p) as a function of p, �� � p � �, for

x = 0 (B), for � = 0:02 and t = 20; exact solution from equation (15) (dashed line), free-streaming approximation

from equation (12) (solid line). Dimensionless variables as de�ned in the text.

� = 0:02, Figures 3 and 4 to the case with � = 0:2. Figures 2 and 4 show f(x; p) as a function of x for
p = 0:5 (A) and as a function of p for x = 0 (B) at t = 20 (in our dimensionless units). The dashed lines
represent the exact solution and the solid lines represent the free-streaming approximation. Figure 3 shows
f(x; p) as a function of x and p at t = 20.

These �gures con�rm that the free-streaming approximation gives an accurate description of the evolution

of a wave packet having a narrow momentum spread, such that only momentum states belonging to the
parabolicity region of the band contribute to the Wigner function. The e�ects of non-parabolicity become
important for the evolution of a wave packet having a wide momentum spread, and they result in oscillations
and bending of the Wigner function in phase space (see Figure 3), that cannot be properly described by the
free-streaming approximation.

A homogeneous two-band model with external �eld

As a second example, we consider a simple, space-homogeneous, two-bandmodel whith a constant external
�eld. In a two-band model the Wigner function and its evolution equation are given by equations (1) and
(13) respectively, where now m = 0; 1 and n = 0; 1. It can be seen easily from equation (2) that f01 = f�10,
while f00 and f11 are real. In the absence of spatial gradients, the time evolution of the Wigner function
is determined by the external �eld only (see equation (10) or equation (12)). Also, in the presence of a
constant external �eld, the pseudodi�erential operator (5) reduces to the classical di�erential operator of
the Boltzmann equation, so that the evolution equation for the Wigner function (4) is given by

@f

@t
(p; t)�E

@f

@p
(p; t) = 0; (16)
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Figure 3: f(x; p) for � = 0:2 at t = 20, 0 � x � 20, �� � p � �.

which shows that the Wigner function evolves according to a streaming law in momentum space and is given
by f(p; t) = f(p + Et; 0) with f(p; 0) the initial condition. Here, all the variables are dimensionless and
measured in the units indicated in the previous Section, and E is the electric �eld measured in units of
�h2=(ma3).

In this homogeneous example, the energy bands are irrelevant to the dynamics of the Wigner function,
whose evolution is determined entirely by the external �eld. Once the Wigner function is given as a function of
time, however, we can calculate the Floquet projections and see how the total Wigner function is partitioned
among the Floquet subspaces.

The projections fmn of the Wigner function on the Floquet subspaces are obtained from equation (2)
by using the de�nitions (8) and (9). In order to calculate the functions fmn(p), the explicit expressions of
the Bloch functions are needed. In this simple two-band model, we approximate the Bloch functions with
lattice-periodic plane waves:

	0k(x) = < xj0k >= 1p
2�

eikx (17)

	1k(x) = < xj1k >= 1p
2�

(H(k)e�iKx +H(�k)eiKx)eikx: (18)

with H the Heavyside function and K = 2� (in dimensionless units). After some calculations, it can be
shown that, for a homogeneous Wigner function f(x; p) = f(p), the band projections fmn(p) are given by:

f00(p) = H

�
K

2
� jpj

�
f(p) (19)

Re(f01)(p) = 0 (20)

f11(p) =

�
H (p+K)H

�
�p� K

2

�
+H

�
p+

K

2

�
H (K � p)

�
f(p): (21)

These expressions show that, according to the model developed here, the projection f00 of the Wigner
function onto the m = 0, n = 0 Floquet subspace is non-zero only inside the �rst Brillouin zone and is zero
outside, while the projection f11 onto the m = 1, n = 1 subspace is zero in the �rst zone and non-zero in
the second zone. We study an electron population initially characterized by a wave function belonging to
the band m = 0. In the representation in which the density matrix is diagonal, we have

�(x; x0) =

Z
	0k(x)	

�

0k(x
0)w(k)dk (22)
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Figure 4: f(x; p) as a function of x, 0 � x � 20 for p = 0:5 (A) and f(x;p) as a function of p, �� � p � �, for x = 0

(B), for � = 0:2 and t = 20; exact solution from (15) (dashed line), free-streaming approximation from equation (12)

(solid line). Dimensionless variables as de�ned in the text.

with w(k) a statistical distribution. We have chosen w(k) = exp[�(k=�k)2] with �k = 0:1. The correspond-
ing Wigner function f is spatially homogeneous and is given by

f(p; t = 0) = H

�
K

2
� jpj

�
w (p) :

At the initial time t = 0 we then have f(p; 0) = f00(p), which is shown in Figure 5A. Figures 5B, 5C and 5D
show the time evolution of the Wigner function for an electric �eld E = 0:4 at t = 1, t = 1:2 and t = 1:4,
respectively. The sequence shows how the Wigner function, which initially occupies only the lower band,
moves towards higher energies and occupies the higher band. As the distribution moves rigidly towards
higher momenta, it starts crossing the boundary of the Brillouin zone in momentum space. The portion of
the Wigner function which has exited the Brillouin zone is taken up by the projection of f onto the next
energy band subspace. While the Wigner momentum variable p ranges over the whole real line, the di�erent
portions of the p space correspond to the Floquet projections of f onto the band subspaces. We emphasize,
however, that this behaviour is a consequence of using the lattice-periodic plane waves (17)-(18) for our
Bloch functions and is to be regarded only as a tool for clarifying the concepts; the application of this model
to a real situation will modify the general picture described above.
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