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Abstract

First-order quantum corrections to the classical Bernstein-Greene-

Kruskal equilibria with zero phase velocity are considered. TheWigner-

Poisson system with periodic boundary conditions is solved by using

a perturbative approach about the classical solution. The numerical

results indicate that the most important quantum corrections to the

classical BGK solution occur near the phase-space separatrices between

classically trapped and untrapped particles.

1 Classical and quantum BGK modes

In this contribution, we study the quantum analogue of the classical steady-

state solutions of the Vlasov-Poisson system (BGK modes), introduced by

Bernstein, Greene and Kruskal in 1957 [1] and describing the spatially in-

homogeneous equilibria of a collisionless unmagnetized plasma with immo-

bile ions. The classical system is characterized by the electron distribu-

tion function f(x; p) and by the self-consistent electric �eld E(x), which are

the unknown quantities and obey the nonlinear, stationary, one-dimensional

Vlasov-Poisson system [2]
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with x and p the space and momentum variables. In equations (1)-(2) above,

we have used the momentum variable p instead of the usual velocity variable

v, since the quantum formulation uses p as a phase-space variable together

with x. In the classical case, we simply have p = mv. Here, all quantities are

dimensionless; x is measured in units of the Debye length �D =
q
T=(4�ne2),

p in units ofmvth, with vth =
q
T=m the thermal speed, f in units of n=(mvth)

and E in units of 4�ne�D (m is the electron mass, e the electron charge,

T the plasma temperature and n the plasma density). Furthermore, we

impose periodic boundary conditions in space, of the type f(0; p) = f(L; p).
However, instead of prescribing the period L at the outset, the distribution

function f(x; p) is assigned at x = 0 and the period L is then determined from

the equations. We recall that, due to the Galilean invariance of the equations,

any solution (f(x; v); E(x)) of (1)-(2) can be transformed into a solution of

the time-dependent Vlasov-Poisson system with an arbitrary phase velocity

V . These are BGK modes with non-zero phase velocity. Here, however,

we consider only steady-state solutions, that is BGK modes with zero phase

speed. The solutions of (1)-(2) can be characterized in the following way.

First, note that the single-particle energy E � p2=2 � �(x) is a constant

of motion, therefore f(x; p) = F (E) satis�es the Vlasov equation identically.

The electrostatic potential �(x) partitions the electron population into three

groups of particles: trapped particles, untrapped particles with positive mo-

mentum and untrapped particles with negative momentum. The curves that

divide the trapped and untrapped populations of the phase space are sepa-

ratrices of a given energy �s. Then, one can think of a problem with four

components: the three groups of particles and the electrostatic potential.

In general, three of these components can be �xed with some arbitrariness

and the fourth one is then found by solving the equations. In our approach,

we assign the distribution function over the entire phase space; Poisson's

equation then becomes a di�erential equation for the electrostatic poten-

tial �(x). The distribution function is assigned at one boundary, x = 0,
by f(0; p) = m(p)(1 + �), for a given function m(p) and � arbitrary. In

general, �s and � are small positive numbers. As they vary, a family of

BGK equilibria is obtained, which we identify as BGK equilibria generated

by the function m(p). The electrostatic potential is subject to the boundary
conditions �(0) = ��s and �0(0) = 0. These boundary conditions and the

numerical generation of BGK modes are discussed in more detail in [3]. If

�(x) is the unknown electrostatic potential, the equations of the separatrices

are given by

p(x) = �
q
2(�(x) + �s) = �p0(x):

Then for �p0(x) < p < p0(x) (trapped particles) the distribution is left



arbitrary, f(x; p) = Ft(E) and for p < �p0(x) or p > p0(x) (untrapped

particles) we take f(x; p) = f(0; �p), where �p is the momentum obtained by

considering the constant energy curve passing through the point (x; p) of

the phase space and tracing it back to x = 0. The value of �p is given by

p2=2 � �(x) = �p2=2 + �s. Summarizing, f(x; p) = F (E) where

F (E) =

8>><>>:
F�(E) = f

�
0;�

q
2(E � �s)

�
; E > �s and p < �p0(x)

Ft(E); ��MAX < E < �s

F+(E) = f
�
x;
q
2(E � �s)

�
; E > �s and p > p0(x)

(3)

where �MAX is the maximum value of the potential. The distribution func-

tion thus constructed is a functional of the electrostatic potential �(x).
Therefore, Poisson's equation can be written as:

�
d2�

dx2
= 1 �R(�) (4)

with R(�) =
R
f(x; p)dp =

R
jjJ jj�F (E)dE, where jjJ jj� is the Jacobian of

the transformation from the momentum variable to the energy variable for

�xed x. For an arbitrary function w(x; p) = W (E), we have
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where W+, W� and Wt correspond to the untrapped (with p > 0 and p < 0)
and trapped particles, respectively. Then,

R(�) =
Z
1

�s

(F�(E) + F+(E))dEq
2(E � �)

+ 2
Z �s

��(x)

Ft(E)dEq
2(E � �)

: (6)

With this expression, eq. (4) becomes a second order di�erential equation

for the potential �(x), equipped with the boundary conditions �(0) = ��s
and �0(0) = 0. In our numerical approach, the integrals appearing in (6) are

calculated by standard Laguerre and Chebychev collocation rules and the

di�erential equation for the potential is solved by using a standard marching

technique from the boundary at x = 0. The periodicity length L is then ex-

tracted from the solution of the di�erential equation by using the condition

�(L) = �(0). In our former calculations of classical BGK modes [3], the com-

puted period was consistent with the periodicity length determined by using



the potential theory for BGK modes (see [1] and [4]). The amplitude of the

potential is governed by the parameter �. For � = 0 we have f(0; p) = m(p)
and the only solution is the one with zero �eld and a uniform distribution. As

� becomes positive, a BGK mode with nonzero �eld amplitude is generated.

The quantum version of the Vlasov-Poisson system is the Wigner-Poisson

system [5, 6], in which the Wigner distribution fW takes the place of the clas-

sical distribution function and obeys an evolution equation where the accel-

eration term is given by a pseudo-di�erential operator, in place of the usual

di�erential operator of the Boltzmann equation. The steady-state Wigner-

Poisson system is:
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where fW (x; p) is the Wigner function, ~� = �h=(mvth�D) and the pseudodif-

ferential operator � is de�ned by

�(fW )(x; p) =
Z
d�Æ�(x; �) bfW (x; �)eip�=~�; (9)

with bfW (x; �) =
1

2�~�

Z
dpfW (x; p)eip�=~� (10)

the Fourier transform of the Wigner function and Æ�(x; �) = �(x + �=2) �
�(x��=2) the symbol of the pseudodi�erential operator. On the system (7)-

(8) we impose the same boundary conditions used for the classical Vlasov-

Poisson system (1)-(2), that is f0(0; p) = m(p)(1 + �), �0(0) = ��s and

�0(0) = 0. The steady-state Wigner-Poisson system (7)-(8) admits spatially

periodic solutions, as was proved by Lange, Toomire and Zweifel [7]. Fur-

thermore, it is well known that the Wigner-Poisson system reduces to the

classical Vlasov-Poisson system as ~� ! 0 [6, 8]. It is therefore natural to

look for small quantum corrections to the classical BGK equilibria by using

perturbation methods. In this work, we shall develop only a �rst-order the-

ory and produce numerical results showing the quantum corrections to the

classical BGK equilibria generated by a two-stream distribution.



2 First-Order perturbation theory and quan-

tum correction

As a �rst step, we consider the asymptotic expansion of the pseudodi�erential

operator in powers of ~�. It can be shown that

�
i

~�
�(fW )(x; p) = �E(x)

@fW

@p
+

~�2

24

@2E

@x2
@3fW

@p3
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By setting � = ~�2=24, the steady-state Wigner-Poisson system (7)-(8) be-

comes:
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We now introduce a perturbative expansion of fW and � in powers of �:

fW (x; p) = f0(x; p) + �f1(x; p) +O(�2) (14)

�(x) = �0(x) + ��1(x) +O(�2): (15)

The expansion of the potential (15) induces an analogous expansion of E(x) =
��0(x): E(x) = E0(x)+�E1(x)+O(�2), where En(x) = ��0n(x), n = 0; 1; : : :.
To order �0 we have:
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which is the classical steady-state Vlasov-Poisson system. If we impose the

boundary conditions f0(0; p) = m(p)(1 + �), �0(0) = ��s and �00(0) = 0, the
solution to order �0 is simply the family of classical BGK equilibria generated

by m(p), that is f0(x; p) = F (E), with E � p2=2 � �0(x) and F (E) given by

(3). To order � we have:

p
@f1

@x
� E0

@f1

@p
� E1

@f0

@p
+
@2E0

@x2
@3f0

@p3
= 0 (18)

@E1

@x
= �

Z
f1dp; (19)

subject to the boundary conditions f1(0; p) = 0, �1(0) = 0 and �01(0) = 0. In
order to solve equations (18)-(19), it is convenient to adopt the transforma-

tion from the variables x and p to the variables x and E. While the lowest



order Wigner distribution is a function of E alone (that is f0(x; p) = F (E)),
the �rst order correction gives the variation of the Wigner function along the

curves of constant E, and so f1(x; p) = F1(x; E). The partial derivatives of

f0 and f1 in the new variables x and E then become:
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where p(x) = �
q
2[E + �0(x)]. The di�erential equation (18) for f1 then

becomes

p(x)
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�E1F

0(E) +
@2E0

@x2

�
p(x)2F 000(E) + 3F 00(E)

�#
= 0; (20)

whose solution is

F1(x; E) = C(E) � F 0(E)�1(x) + 3�000(x)F
00(E) +

�
h
�00(x)

2 � 2�000(x)(E + �0(x))
i
F 000(E):

The integration constant C(E) can be determined from the boundary condi-

tions. Since f1(0; p) = 0 we have F1(0; E) = 0, and by using that �000(0) = ��
and �1(0) = 0, we obtain

C(E) = �� [3F 00(E) + 2(E � �s)F
000(E)]

and thus

F1(x; E) = �F 0(E)�1(x) + [3(�000(x)� �)]F 00(E) +

+ 2

"
E(�000(x)� �) + �000(x)�0(x) + ��s �

�00(x)
2

2

#
F 000(E): (21)

The function �1 is still unknown and must be obtained from equation (19),

which involves an integration of f1 over the momentum space. By using (5)

to perform the integration in the variable E, equation (19) becomes:

d2�1

@x2
(x) + �2(x)�1(x) = g(x); (22)



where �(x) and g(x) are periodic functions of period L (the period of the

zero order solution) and are given by

�2(x) =
Z
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0(E)dE

g(x) = [�000(x)� �] [3Æ(x) + 2�(x)] + 2
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where

Æ(x) =
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00(E)dE

�(x) =
Z
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(x) =
Z
jjJ jj�0F
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are periodic functions of period L. We shall choose the boundary conditions,

and thus the zero order BGK equilibrium, so that �2(x) > 0 and therefore

�(x) is real (and chosen positive). Equation (22) for �1 has to be solved sub-

ject to the boundary conditions �1(0) = �01(0) = 0. To obtain the numerical

solution of equation (22), we use the same techniques used for the classical

BGK modes. Substituting for �1 in (21) gives the �rst-order correction f1 to

the Wigner function.

3 Numerical results

In this Section, we consider BGK equilibria generated by a two-stream dis-

tribution,

m(p) =
1

2
p
2�

h
e�(p�ps)

2=2 + e�(p+ps)
2=2
i

(23)

with ps = 2. The trapped particle distribution must be chosen so that the

existence conditions for the classical BGK equilibrium that gives the zero-

order solution are satis�ed [4]. Following our previous calculations of BGK

modes [3], the trapped particle distribution of equation (3) is taken constant,

that is Ft(E) = f(0; 0). Of course, other choices are possible, but then the

existence of the zero-order solution would also have to be addressed.

In Figure 1 we show the classical BGK equilibrium, generated by the

function (23) with �s = 0:5 and � = 0:05, in the phase-space region around

the separatrices. The period of this solution is L � 17. Figures 2, 3 and 4

show the �rst-order quantum solution for � = 0:004. Figure 2 shows the BGK
quantum equilibrium Wigner distribution in the phase-space region around



the separatrices, while Figure 3 shows the quantum correction �1(x) to the

self-consistent potential over the interval 0 � x � 2L. Figure 4 shows the

self-consistent Quantum BGK potential �0(x)+��1(x) (dashed line) together

with the classical BGK potential (solid line), over the interval 0 � x � 2L.
We �rst note that �1 is not periodic; if we look at �1 over several periods of

length L, it shows secular behaviour. Therefore, the straightforward expan-

sion introduced in (14)-(15) is nonuniform, and it is meaningful only over a

spatial scale of one period. This suggests that the problem should be studied

by other perturbative techniques, such as the multiple-scale analysis, which

are better designed to approach the secular behaviour. From these results, we

see that the quantum correction to the BGK potential amounts to a decrease

of the amplitude and a shortening of the period. We also see that, for small

�, the di�erences between the classical distribution function and the Wigner

function as determined by our straightforward perturbative expansion, are

most evident near the separatrices.
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Figure 1: Classical BGK equilibrium distribution f(x; p) as a function of x and p

around the trapped particle region. Here, 0 � x � L and �3 � p � 3.
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Figure 2: Quantum BGK equilibrium Wigner distribution fW (x; p) � f0(x; p) +
�f1(x; p) as a function of x and p around the trapped particle region. Here, 0 �
x � L and �3 � p � 3.
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Figure 3: Quantum correction, �1(x), to the classical BGK potential as a function

of x, 0 � x � 2L.
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Figure 4: Classical BGK potential �(x) (solid line) and quantum BGK potantial

�0(x) + ��1(x) (dashed line) as a function of x, 0 � x � 2L.
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