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ABSTRACT

In this paper we study the quantum corrections to the Bernstein-Greene-Kruskal equilibria

of plasma physics by using perturbation methods near the classical solution. We obtain

the solution for the Wigner function and for the self-consistent potential to �rst order in

the smallness parameter, which is the square of Planck's constant (in dimensionless form),

and investigate the structure of the quantum phase space.

1 Introduction

The steady-state solutions of the Vlasov-Poisson system [1] with periodic boundary conditions,

also called BGK modes or BGK equilibria [2], have been studied extensively over the years

and their importance in the theory of plasma waves is well established [3]. In 1996, Lange,

Toomire and Zweifel [4] introduced a quantum generalization of BGK equilibria, by proving

the existence and uniqueness of the steady-state solutions of the Wigner-Poisson system

with periodic boundary conditions, and called these solutions Quantum BGK (QBGK)

modes. In solid-state physics, the Wigner-Poisson system is usually equipped with in
ow

boundary conditions and periodic boundary conditions are of little importance in the

applications to real systems. The motivation for studying QBGK modes lies mainly in

their theoretical interest and in the fact that they possess a well-known classical limit.

The Wigner-Poisson system is the quantum analogue of the Vlasov-Poisson system

[5, 6]; the Wigner equation is the governing equation for the Wigner function, and has the

important property that its solutions tend to the solutions of the Vlasov equation in the
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classical limit [7]. A full characterization of QBGK modes requires the numerical solution

of the steady-state Wigner-Poisson system, which is a diÆcult task and we leave it for a

second paper. In this paper, we take a simpler approach, by using a perturbative expansion

of the Wigner function and of the self-consistent potential about the classical solution, by

introducing a smallness parameter proportional to the square of Planck's constant. This

methodology is often used in the literature (see, for example, [8, 9]) in order to investigate

the behaviour of quantum systems near the classical limit; it mainly has two shortcomings:

it cannot be used very far into the quantum regime (since it is a perturbative approach),

and it also bypasses the delicate question of the classical limit of Quantum Mechanics.

Therefore, it can only provide a glimpse of the quantum behaviour of the physical system.

The advantage of using the perturbative approach lies in its simplicity and in the possibility

of obtaining analytical expressions. In particular, the results of the perturbative approach

can be interpreted in the language of phase space; the quantum phase-space orbits are

often intrpreted as classical orbits with a quantum correction. As we shall see with our

kinetic model, however, non-classical features appear in the phase-space orbits also when

the smallness parameter is very close to zero.

2 The Vlasov-Poisson and the Wigner-Poisson systems

In this work, we study the quantum corrections to the Bernstein-Greene-Kruskal equilibria

(BGK modes) that arise in the nonlinear theory of collisionless plasma waves. These

phenomena are usually described by the Vlasov-Poisson system [1]

@f

@t
+ p

@f

@x
� E

@f

@p
= 0 (1)

@E

@x
= 1�

Z
fdp; (2)

which governs the time evolution of the electron distribution function f(x; p; t) and of

the self-consistent electric �eld E(x; t) generated by the space-charge separation due to

the motion of the electrons with respect to the �xed background of the ions. Equations

(1)-(2) are written in dimensionless form: the space variable x, the momentum variable p
and the time variable t are measured in units of the Debye length �D =

p
T=(4�ne2), the

thermal momentummvth, with vth =
p
T=m the thermal speed, and of the inverse plasma

frequency !�1p = �D=vth, respectively. Also, f is measured in units of n=(mvth) and E in

units of 4�ne�D (m is the electron mass, e the electron charge, T the plasma temperature

and n the plasma density). When the Vlasov-Poisson system (1)-(2) is used to describe

plasma waves, periodic conditions in space are imposed, f(x; p; t) = f(x + L; p; t) and
E(x; t) = E(x + L; t), where L is the periodicity length. The boundary conditions in

momentum follow from the assumption that all the moments of the distribution function,

Mn(x; t) =
R
pnf(x; p; t) dp, exist. The solutions of the steady-state Vlasov-Poisson system

p
@f

@x
�E

@f

@p
= 0 (3)
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@E

@x
= 1�

Z
fdp; (4)

are called BGK equilibria. They can be lifted to solutions of the time-dependent Vlasov-

Poisson system (1)-(2) by Galilean transformations with arbitrary phase speed.

The Wigner-Poisson system is the quantum analogue of the Vlasov-Poisson system

(1)-(2). The solutions of the steady-state Wigner-Poisson system with periodic boundary

conditions, which we investigate here, are called Quantum BGK modes and have been

introduced by Lange, Toomire and Zweifel [4].

In order to set up theWigner-Poisson system and to introduce consistently the dimensionless

variables, we begin with the Schr�odinger equation for a single electron of mass m

i�h
@ 

@t
= �

�h2

2m

@2 

@x2
+ V  ;

where V (x) is the electrostatic potential energy, and then de�ne the density matrix in

the space representation. For a mixture of states  m, with weights �m, m = 0; 1; : : :, the
density matrix � is given by

�(x; y) =
X
m

�m m(x) 
�

m(y): (5)

By using the dimensionless variables introduced above, we write the Schr�odinger equation

in dimensionless form

i~"
@ 

@t
= �

~"2

2

@2 

@x2
+ V  ; (6)

where the potential energy is now measured in units of mv2th and ~" = �h=(mvth�D) is

the dimensionless Planck constant. This de�nition for the dimensionless Planck constant
is merely a consequence of our choice of the dimensionless variables and is not to be

considered a universal parameter that describes the importance of quantum e�ects in a

quantum plasma in general; in the modelling of quantum plasmas [10], other parameters

are frequently used, often involving the Fermi energy. Typical values of the parameter ~"
are ~" � 10�6 for fusion plasmas, ~" � 10�12 for space plasmas and ~" � 1 in semiconductors.

We introduce the Wigner function of the mixture by

fW (x; p) =
1

2��h

Z
d��

�
x+

�

2
; x�

�

2

�
e�ip�=�h

which, in our dimensionless units, becomes

fW (x; p) =
1

2�

Z
d��

�
x+

~"�

2
; x�

~"�

2

�
e�ip� ; (7)

where p is the dimensionless Wigner momentum variable measured in units of mvth. In

dimensionless units, the Fourier transform of the Wigner function is

bfW (x; �) =

Z
dpfW (x; p)eip� = �

�
x+

~"�

2
; x�

~"�

2

�
: (8)
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Note that Z
fW (x; p)dp= n(x) (9)

gives the number density:Z
fW (x; p)dp =

1

2�

Z
d��

�
x +

~"�

2
; x�

~"�

2

�
2�Æ(�) =

= �(x; x) =
X
m

�mj m(x)j2 = n(x):

The evolution equation for the Wigner function in dimensionless units is

@fW

@t
+ p

@fW

@x
+
i

~"
�(ÆV )fW = 0 (10)

where the pseudodi�erential operator �, in dimensionless units, is given by

(�(ÆV )fW )(x; p) =
1

2�

Z
d�ÆV (x; �) bfW (x; �)e�ip� ; (11)

with symbol ÆV (x; �) = V (x+ ~"�=2)� V (x� ~"�=2). If we use the electrostatic potential
� instead of the potential energy V , equation (10) becomes

@fW

@t
+ p

@fW

@x
�
i

~"
�(Æ�)fW = 0; (12)

since in our dimensionless units we simply have �(x) = �V (x).

We now turn to Poisson's equation,

@E

@x
= 4�e(n0 � �(x; x));

where E(x) = �d�=dx is the electric �eld. In dimensionless units this becomes

@E

@x
= 1� �(x; x);

where the electric �eld is measured in units of 4�n0e�D and the density matrix � in units

of the ion density n0. With these dimensional normalizations, the Wigner function fW is

measured in units of n0=(mvth). The Wigner-Poisson system in the dimensionless units is

then

@fW

@t
+ p

@fW

@x
�
i

~"
�(Æ�)fW = 0 (13)

@E

@x
= 1�

Z
fWdp; (14)

which is the quantum analogue of the Vlasov-Poisson system (1)-(2). We impose periodic

boundary conditions, fW (x; p; t) = fW (x + L; p; t) and E(x; t) = E(x + L; t), where L
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is the periodicity length. Like in the case of the Vlasov-Poisson system, the boundary

conditions in momentum follow from the assumption that all the moments of the Wigner

function, Mn(x; t) =
R
pnfW (x; p; t) dp, exist. The QBGK equilibria introduced in [4] are

the steady-state solutions of the Wigner-Poisson system (13)-(14) with periodic boundary

conditions.

Before illustrating the perturbative solution, we would like to mention some important

properties of the Wigner-Poisson system.

Both the Vlasov-Poisson and the Wigner-Poisson systems are invariant under Galilean

transformations with arbitrary phase velocity. Thus, steady-state solutions (equilibria) of

either (VP) or (WP) can be lifted to travelling waves (modes), that is solutions of the

corresponding time-dependent systems. In this paper, we are only concerned with BGK

and QBGK equilibria.

In the presence of a periodic potential, Bloch's theorem holds and the Hamiltonian

corresponding to QBGK equilibria has a complete set of Bloch eigenfunctions 	mk(x)
and energy bands �m(k) (k is the quasi-momentum). Also, in a steady state, the density

operator commutes with the Hamiltonian and is therefore diagonal in the Bloch functions'

basis. It is easy to see that, as a consequence, the Wigner function automatically becomes

an L�periodic function of x.

When the problem is studied at the Schr�odinger level, the periodicity of the wave

function  (x) in space is often imposed. This condition, which is not necessary to

ensure the periodicity of the Wigner function, bears the consequence that both the quasi-

momentum k and the phase-space momentum variable p are quantized, i.e. they can only

take discrete sets of values. The Wigner function is then de�ned by a Fourier series in

momentum rather than the usual Fourier transform.

3 The perturbative solution

The steady-state Wigner-Poisson system is the quantum analogue of the steady-state

Vlasov-Poisson system and is given by

p
@fW
@x

�
i

~�
�(Æ�)fW = 0 (15)

@E

@x
= 1�

Z
fW dp; (16)

where all the symbols have already been de�ned. We shall study the solutions of the

system (15)-(16) with periodic boundary conditions for small ~" by using a perturbation

expansion about the classical solution. To this aim, we begin by introducing the Moyal

expansion for the pseudodi�erential operator �:

�
i

~�
�(Æ�)fW (x; p) = �E(x)

@fW

@p
+

~�2

24

@2E

@x2
@3fW

@p3
+ O(~�4): (17)
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By setting " = ~"2=24, the steady-state Wigner-Poisson system (15)-(16) becomes:

p
@fW
@x

�E(x)
@fW

@p
+ "

@2E

@x2
@3fW

@p3
+ O("2) = 0 (18)

@E

@x
= 1�

Z
fWdp: (19)

Equation (18) is the asymptotic form of the Wigner equation for � ! 0. It clearly has

the form of the classical equation with a �rst-order quantum correction. The quantum

correction is proportional to the third derivative of the Wigner function with respect to p
and, most importantly, is proportional to the second derivative of the electric �eld, that is

the second derivative of the force acting on the single particle. This is related to the well

known fact that, in the governing equation for the Wigner function in presence of linear

or quadratic potentials, quantum e�ects are absent.

We now introduce a perturbative expansion of fW and � in powers of ":

fW (x; p) = f0(x; p) + "f1(x; p) + O("2) (20)

�(x) = �0(x) + "�1(x) + O("2): (21)

The expansion of the potential (21) induces an analogous expansion of E(x) = ��0(x):
E(x) = E0(x) + "E1(x) + O("2), where En(x) = ��0n(x), n = 0; 1; : : :.

By substituting into (18)-(19), to order "0 we have:

p
@f0
@x

� E0
@f0
@p

= 0 (22)

@E0

@x
= 1�

Z
f0dp; (23)

which is the classical steady-state Vlasov-Poisson system and, to order ", we have:

p
@f1
@x

� E0

@f1
@p

�E1

@f0
@p

+
@2E0

@x2
@3f0
@p3

= 0 (24)

@E1

@x
= �

Z
f1dp: (25)

The zero-order solution (f0(x; p); E0(x)) is therefore a classical BGK equilibrium. The

�rst-order system (24)-(25) needs to be equipped with boundary conditions. We choose

to impose the boundary conditions so that the total quantum solution, to �rst order in

", coincides with classical solution at x = 0 and x = L, and therefore has the same

periodicity length of the classical solution. Of course, one can think of a di�erent set

of boundary conditions and obtain a di�erent QBGK equilibrium, which will have the

same classical limit. For example, we could impose �1(0) = �01(0) = 0, which would lead

to a QBGK equilibrium with a slightly di�erent periodicity length from the one of the

zero-order classical solution [11]. Therefore, in the neighbourhood of a classical BGK

equilibrium, there exist many QBGK equilibria all having the same classical limit.
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3.1 Zero-order solution: Classical BGK modes

The solution of the zero-order system (22)-(23) is a classical BGK equilibrium, which we

construct by following the methodology outlined in [12] and in [13], and which we recall

here for clarity. The solution is obtained by �rst assigning the distribution over the whole

phase space as a functional of the potential, and then by solving Poisson's equation for

the potential.

A large class of solutions of the steady-state Vlasov-Poisson system (22)-(23) is obtained

by considering functions f0(x; p) = F0(E), where E � p2=2 � �0(x) is the single-particle

energy, with �0(x) = �
R xE0(x

0) dx0 the electrostatic potential. Any such function F0(E)
satis�es the steady-state Vlasov equation (22) identically. The electrostatic potential

�0(x) partitions the electron population into three groups of particles: trapped particles,

untrapped particles with positive momentum and untrapped particles with negative momentum.

The curves that divide the trapped and untrapped populations of the phase space are

separatrices of a given energy �s. Then, one can think of a problem with four components:

the three groups of particles and the electrostatic potential. In general, three of these
components can be �xed with some arbitrariness and the fourth one is then found by

solving the equations. In our approach, we assign the distribution function over the entire

phase space; Poisson's equation then becomes a di�erential equation for the electrostatic

potential �0(x). The distribution function is �rst assigned at one boundary, x = 0, by

f0(0; p) = m(p)(1+�), for a given function m(p) and � arbitrary. In general, �s and � are

positive numbers, with � << 1. As they vary, a family of BGK equilibria is obtained, which

we call the BGK equilibria generated by the function m(p). The electrostatic potential is
subject to the boundary conditions �0(0) = ��s and �00(0) = 0. These boundary conditions

and the numerical generation of BGK modes are discussed in more detail in [13]. If �0(x)
is the unknown electrostatic potential, the equations of the separatrices are given by

p(x) = �
q
2(�0(x) + �s) = �p0(x):

Then for�p0(x) < p < p0(x) (trapped particles) the distribution is left arbitrary, f0(x; p) =
Ft(E), and for p < �p0(x) or p > p0(x) (untrapped particles) we take f0(x; p) = f0(0; �p),
where �p is the momentum obtained by considering the constant energy curve passing

through the point (x; p) of the phase space and tracing it back to x = 0. The value of �p
is determined by p2=2� �0(x) = �p2=2 + �s. Summarizing, f0(x; p) = F0(E) where

F0(E) =

8>><>>:
F
�
(E) = f0

�
0;�

p
2(E � �s)

�
; E > �s and p < �p0(x)

Ft(E); ��MAX < E < �s

F+(E) = f0
�
x;
p
2(E � �s)

�
; E > �s and p > p0(x)

(26)

where �MAX is the maximum value of the potential �0. The distribution function thus

constructed is a functional of the electrostatic potential �0(x). Therefore, Poisson's

equation can be written as:

�
d2�0

dx2
= 1�R(�0) (27)
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withR(�0) =
R
f0(x; p)dp =

R
jjJ jj�0F0(E)dE , where jjJ jj is the Jacobian of the transformation

from the momentum variable to the energy variable for �xed x and a general electrostatic

potantial  . For an arbitrary function w(x; p) = W (E), we haveZ +1

�1

w(x; p)dp=

Z
jjJ jj W (E)dE =

Z
1

�s

(W
�
(E) +W+(E))dEp
2(E +  (x))

+

+ 2

Z �s

� (x)

Wt(E)dEp
2(E +  (x))

(28)

where W+, W�
and Wt correspond to the untrapped (with p > 0 and p < 0) and trapped

particles, respectively. Then,

R(�0) =
Z
1

�s

(F
�
(E) + F+(E))dEp
2(E � �0)

+ 2

Z �s

��0(x)

Ft(E)dEp
2(E � �0)

: (29)

With this expression, eq. (27) becomes a second order di�erential equation for the

potential �0(x), equipped with the boundary conditions �0(0) = ��s and �00(0) = 0.

In our numerical approach, the integrals appearing in (29) are calculated by standard

Laguerre and Chebychev collocation rules and the di�erential equation for the potential

is solved by using a standard marching technique from the boundary at x = 0. The

periodicity length L is then extracted from the solution of the di�erential equation by

using the condition �0(L) = �0(0). In our former calculations of classical BGK modes

[13], the computed period was consistent with the periodicity length determined by using

the potential theory for BGK modes (see [2] and [3]). The amplitude of the potential is

governed by the parameter �. For � = 0 we have f(0; p) = m(p) and the only solution is

the one with zero �eld and a uniform distribution. As � becomes positive, a BGK mode

with nonzero �eld amplitude is generated.

In this work we use the BGK equilibrium generated by the two-stream distribution,

f0(0; p) = (1 + �)m(p) (30)

where

m(p) �
1

2
p
2�

h
e�(p�ps)

2=2 + e�(p+ps)
2=2
i

(31)

with ps = 2 and � = 0:1. The trapped particle distribution must be chosen so that the

existence conditions for the classical BGK equilibrium that gives the zero-order solution

are satis�ed [3]. We take

Ft(E) = f0(0; 0)e
�1(E�Es)+�2(E�Es)

2+�3(E�Es)
3+�4(E�Es)

4

; (32)

with �i, i = 1; : : :4, determined by continuity of the function and of the �rst three

derivatives at the separatrices. The reason for this choice is because the �rst-order solution

for the Wigner function, f1(x; p), which will be derived in the next subsection, contains

the derivatives of F0, supposed continuous, up to third order. This BGK distribution is

shown in Figures 1A (level curves) and 1B (3D plot).
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Figure 1: Phase-space orbits and distribution function of the BGK mode corresponding to the

boundary condition (30)-(31) and trapped particle distribution given by (32).

3.2 First-order solution: Quantum BGK modes

The �rst-order solution is obtained by solving the system (24)-(25) with the boundary

conditions f1(0; p) = 0, �1(0) = �1(L) = 0. With this choice for the boundary conditions,

the Wigner function and the potential at the x = 0 boundary, as well as the periodicity
length L are those of the classical solution.

In order to proceed, it is convenient to adopt the transformation from the phase-space

variables x and p to the variables x and E . While the lowest order Wigner distribution is a

function of E alone (that is f0(x; p) = F0(E)), the �rst order correction gives the variation

of the Wigner function along the curves of constant E , and so f1(x; p) = F1(x; E). The

partial derivatives of f0 and f1 in the new variables x and E then become:

@f0
@p

= p(x)F 0

0(E)

@3f0

@p3
= p(x)

h
p(x)2F 000

0 (E) + 3F 00

0 (E)
i

@f1

@x
=
@F1

@x
� �0(x)

@F1

@E
@f1

@p
= p(x)

@F1

@E
;

where p(x) = �
p
2[E + �0(x)]. The di�erential equation (24) for f1 then becomes

p(x)

"
@F1

@x
�E1F

0

0(E) +
@2E0

@x2

�
p(x)2F 000

0 (E) + 3F 00

0 (E)
�#

= 0; (33)

whose solution is

F1(x; E) = C(E) � F 0

0(E)�1(x) + 3�000(x)F
00

0 (E) +
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�
h
�00(x)

2 � 2�000(x)(E + �0(x))
i
F 000

0 (E):

The integration constant C(E) can be determined from the boundary conditions. Since

f1(0; p) = 0, we have F1(0; E) = 0, and by using that �000(0) = �� and �1(0) = 0, we

obtain

C(E) = ��
�
3F 00

0 (E) + 2(E � �s)F
000

0 (E)
�

and thus

F1(x; E) = �F 0

0(E)�1(x) +
�
3(�000(x)� �)

�
F 00

0 (E) +

+ 2

"
E(�000(x)� �) + �000(x)�0(x) + ��s �

�00(x)
2

2

#
F 000

0 (E): (34)

The function �1 is still unknown and must be obtained from equation (25), which involves

an integration of f1 over the momentum space. By using (28) to perform the integration

in the variable E , equation (25) becomes:

d2�1
@x2

(x) + �2(x)�1(x) = g(x); (35)

where �(x) and g(x) are periodic functions of period L and are given by

�2(x) =

Z
jjJ jj�0F

0

0(E)dE

g(x) =
�
�000(x)� �

�
[3Æ(x) + 2�(x)] + 2

"
�000(x)�0(x) + ��s �

�00(x)
2

2

#

(x);

where

Æ(x) =

Z
jjJ jj�0F

00

0 (E)dE

�(x) =

Z
jjJ jj�0EF

000

0 (E)dE


(x) =

Z
jjJ jj�0F

000

0 (E)dE

are L�periodic functions of x. With our choice of the boundary conditions and of the zero

order BGK equilibrium, we have �2(x) > 0 and therefore �(x) is real (and chosen positive).
Equation (35) for �1 is solved together with the boundary conditions �1(0) = �1(L) = 0,

by using standard numerical methods. Substituting for �1 in (34) gives the �rst-order

correction f1 to the Wigner function.

In Figures 2A and 2B we show the quantum (solid line) and the classical (dashed line)

BGK potentials for our reference BGK equilibrium for " = 0:1 (Figure 2A) and " = 0:4
(Figure 2B) and in Figures 3A and 3B we show the classical (Figure 3A) and the quantum

(Figure 3B) distributions in the trapped particle region and near the classical separatrices,

where the most important quantum corrections appear to occur. The electrostatic potential

is clearly 
attened by the quantum e�ects.
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(A) (B)

Figure 2: Classical (dashed line) and Quantum (solid line) BGK potentials for (A) � = 0:1 and

(B) � = 0:4.
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Figure 3: Classical (3A) and Quantum (3B) distributions for � = 0:1.

4 Classical and quantum phase-space orbits

While in classical mechanics phase-space orbits can be easily de�ned and a phase space can

be introduced in a unique way, in quantum mechanics a di�erent situation is encountered.

The uncertainty principle makes it impossible to de�ne the phase-space trajectories in

the same way as they are de�ned classically, since position and momentum cannot be

speci�ed simultaneously and a quantum phase space with the same properties of the
classical phase space cannot be introduced. The problem can be overcome in many

di�erent ways, and the Wigner function provides one possibility of generating a quantum

phase space; other methodologies exist, such as the Husimi functions and other kind of

distributions, the coherent-state reduction, the hydrodynamical approach based on the

Madelung formulation of Quantum Mechanics, etc. A comparison of the advantages and

disadvantages of all these di�erent methods is out of the scope of this paper, which only

uses the Wigner-function approach. Within this framework, the families of phase-space

trajectories can be de�ned as the isolines of the Wigner function, i.e. the phase-space

curves along which the Wigner function preserves its value. Here, there appears a crucial
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di�erence with respect to the classical case: while the Vlasov equation (1) is a �rst-order

di�erential equation with the associated characteristic system,

_x = p (36)

_p = �E(x); (37)

no such system exists for the quantum case, because the Wigner equation has a pseudodi�erential

structure in p. However, by introducing an e�ective �eld Eeff de�ned by

i

~"
�(Æ�)fW = Eeff(x)

@fW

@p
;

a characteristic system can be introduced,

_x = p

_p = �Eeff(x);

where the e�ective �eld is explicitely given by

Eeff (x) =
i

~"

�(Æ�)fW

@fW =@p
:

By using the perturbation expansion (17), the e�ective �eld becomes

Eeff (x) = E(x)� "E00(x)
@3fW =@p

3

@fW =@p
+O("2): (38)

This expression for the e�ective �eld depends upon the Wigner function itself, and this

shows an important di�erence with the classical case. While the classical phase-space

structure depends only upon the shape of the potential (at least for a steady-state) and

the phase-space distribution is introduced upon it, the structure of the quantum phase

space depends crucially also upon the distribution. We shall see this point in more detail in

the case of our model. Also, we see that the de�nition (38) of the e�ective �eld introduces

a singularity along the lines on which @fW =@p = 0. For this reason, instead of calculating

the quantum phase-space orbits by using the e�ective �eld, we use our �rst-order analytical

expression for fW (x; p), given by equation (20) together with (34), to calculate the phase-

space gradient and obtain the lines of constant fW by following, point by point, the

direction orthogonal to the gradient. If the curves of constant fW (x; p) are parametrized

by

x = x(�)

p = p(�);

the unit vector bT tangent to the curves is then given by

bTx = �@fW
@p

"�
@fW
@p

�2

+

�
@fW
@x

�2
#
�1=2

bTp = �@fW
@x

"�
@fW

@p

�2

+

�
@fW

@x

�2
#
�1=2

:
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Table 1: Critical points for " = 0:1

Crit. pt. 1 2 3 4 5 6 7 8 9 10 11 12

x 0.6 0.6 2.9 2.9 5.3 5.3 5.5 5.5 8.1 8.1 11.0 11.0

p 1.8 -1.8 2.0 -2.0 2.1 -2.1 0.5 -0.5 2.0 -2.0 1.8 -1.8

and, if the parameter � is chosen correctly, the curves are the solutions of the characteristic
system

dx

d�
= bTx (39)

dp

d�
= bTp (40)

and the sign is chosen in order to obtain the correct orientation of the curve. With our

perturbative approach we have:

@fW

@p
= p

�
F 0

0(E) + �
@F1

@E
(x; E)

�
+O("2) (41)

@fW

@x
= E0(x)F

0

0(E) + �

�
@F1

@x
+ p

@F1

@E
(x; E)

�
+ O("2) (42)

Note that, while all the critical points of the classical characteristic system (36)-(37) lie

on the p = 0 axis, the quantum chracteristic system (39)-(40) has also other critical

points, which we have calculated numerically by using the Newton-Raphson method on

our analytical solution. The critical points are shown in Table I for " = 0:1. The linear

analysis of the critical points, carried out by the numerical evaluation of the eigenvalues

of each critical point, shows that the critical points number 3,4,9 and 10 are saddle points,

the critical points number 1, 5 and 11 are stable nodes, while the critical points number

2, 6 and 12 are unstable nodes; critical points number 7 and 8 are centers. The critical

points of Table I are shown in Figure 4, together with a family of phase-space orbits which

we will illustrate later. On the graph, also, the two thick solid lines represent the lines

along which we have @f0=@p = 0. These are the lines along which the e�ective electric

�eld (38) becomes singular, and are also the lines along which the relationship F 0

0(E) = 0

holds. We shall call them critical lines. Because of the way in which we have constructed
our zero-order classical BGK equilibrium, these critical lines correspond to the classical

phase-space trajectories along which the maxima of the two-stream distribution given by

(31) are carried into the phase space for x > 0. It is evident that there are two subsets of

critical points which lie close to the critical lines: points number 1,3,5,9 and 11 lie close to

the critical line at p > 0, while points number 2,4,6,10 and 12 lie close to the critical line

at p < 0. The location of these critical points near the critical lines can be understood

with the following simple heuristic argument.
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Suppose that we calculate the classical phase-space orbits in the same way as we

calculate the quantum orbits, namely by using the gradient of the classical BGK distribution.

Instead of the characteristic system (36)-(37) we would have the characteristis system

dx

d�
= �

1

N0

@f0

@p

dp

d�
= �

1

N0

@f0
@x

;

with

N0 =

s�
@f0

@p

�2

+

�
@f0

@p

�2

the normalization factor. The critical points, since f0(x; p) = F0(E), are given by

@f0
@p

= pF 0

0(E) = 0

@f0

@x
= E0(x)F

0

0(E) = 0:

This system, in addition to the usual critical points at p = 0, is also solved by the critical

lines along which F 0

0(E) = 0. However, since F 0

0(E) appears as a common factor in both

equations, these critical lines do not a�ect the structure of the classical phase-space orbits

(i.e., the contour lines of the distribution function) in their vicinity. In fact, they are phase-

space orbits themselves. As the quantum characteristic system (39)-(40) is considered, the

�rst-order perturbation terms break the critical lines into a discrete set of critical points,

all lying near the critical lines. With the help of asymptotic analysis, these critical points
could be obtained to �rst order in ". The two critical points lying in the region of classically
trapped particles (number 7 and 8), instead, are entirely due to the quantum e�ects and

would be missed by the asymptotic analysis.

These considerations are con�rmed as we looked at the behaviour of the critical points

as " ! 0. The critical points number 7 and 8 didn't move signi�cantly, while the other

critical points moved closer and closer to the critical lines. None of the critical points,

however, disappears in the " ! 0 limit. This is a subtle point, most probably related

to the transition from the quantum to the classical behaviour, and to the validity of the

semiclassical limit.

We would also like to note that the presence and the location of these additional critical

points is directly related to our choice of the zero-order classical BGK equilibrium or, more

precisely, to the boundary condition (30)-(31) that we have imposed on the distribution

function at x = 0. If, as a boundary distribution, we had chosen a function with a

monotone behaviour with respect to the energy (such as a Maxwellian), the equation

F 0

0(E) = 0 would be satis�ed only on the line p = 0, and the two sets of critical points

that we have illustrated earlier would be absent. As we shall see, the additional critical

points of Table I strongly a�ect the topology of the phase-space orbits in their vicinity.
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Figure 4: Classical and quantum phase-space orbits for " = 0:1.

This shows how the structure of the quantum phase-space orbits is determined not only

by the potential, as in classical systems, but also by the distribution which is introduced

on it.

We now examine di�erent families of quantum phase-space orbits and compare them

with their classical counterparts. We �rst look at those orbits which never get close to

the new critical points. These orbits, shown in Figure 4 for " = 0:1, appear as \natural"
quantum corrections to the classical ones. On the graph, the critical points reported in

Table I are also shown. These phase-space orbits are clearly grouped into open and closed

orbits, divided by two separatrices, very close to the classical separatrices. On the graph,

each quantum orbit (red line) is shown together with the classical orbit (green line) that

passes through the same point, at x = L=2. In general, the classical orbits tend to be

broader, but the di�erence is very small.

Next, we examine the quantum orbits which pass close to the critical points at p > 0,

near the critical lines. For this family of orbits, various situations are possible. The orbit

in Figure 5(A) starts far from the critical point and behaves like the open orbits of Figure

4. In Figure 5(B), instead, two di�erent orbits are shown: one spirals around the critical

point number 5, the other spirals alternatively around the critical point number 1 and the

critical point number 11, which are to be identi�ed because of periodicity. The orbits of

Figures 5(C) and 5(D) start just above the critical point number 5, but eventually enter

the basin of attraction of the critical points number 1 and number 11, though with a

di�erent path.

Finally, in Figure 6, we show a quantum orbit which loops about critical point number
7, together with its classical counterpart. This orbit seems to behave like a truly closed

orbit.

The phase-space orbits near the quantum critical points exhibit strong non-classical

behaviour. This may be due to the nature of our perturbation approach, which destroys
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Figure 5: Classical (green lines) and quantum (red lines) phase-space orbits for critical points

1,3,5,9 and 11 for " = 0:1.

the Hamiltonian structure of full quantum kinetic equations, or simply to the persistence

of the quantum nature of the solutions at small values of ". At this stage, we leave the

question open, hoping that an answer will be found by analyzing the full quantum system.

5 Conclusions and Outlook

We have studied the steady-state solutions of the Wigner-Poisson system (QBGK equilibria)

by a perturbative approach near a classical solution. We have obtained expressions for

the �rst-order Wigner function and electrostatic potential which are almost analytical.

We have also introduced a phase-space description through the isolines of the Wigner

function. Some of the quantum phase-space orbits appear as natural corrections to the

classical orbits while others exhibit strong non-classical behaviour also for very small values

of ".

As a next step, the study of the full quantum system will be performed, which requires

the numerical solution of the nonlinear set of discretized equations. An investigation of the

quantum e�ects on periodic travelling structures (BGK and QBGK modes, with non-zero

phase velocity) should also be performed
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Figure 6: Classical (green line) and quantum (red line) phase-space orbits for critical point 7 for

" = 0:1. Figure 6B is a blow-up of Figure 6A.
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