Corso di Laurea Specialistica in Ingegneria Informatica Anno Accademico 2010/2011 Teoria delle Decisioni

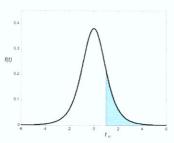
Nome	
N. Matricola	Ancona, 19 febbraio 2011

- 1. Una ditta produce circuiti elettrici utilizzando due diverse macchine, M_1 ed M_2 , che producono pezzi difettosi con probabilità $p_1 = 0.01$ e $p_2 = 0.05$. La macchina M_1 , inoltre, è responsabile per il 70% della produzione totale.
 - (i) Qual'è la probabilità che un pezzo prodotto dalla fabbrica sia difettoso?
 - (ii) Qual'è la probabilità che un pezzo difettoso sia prodotto dalla macchina M_2 ?
- 2. Una variabile aleatoria X ha densità di probabilità

$$f(x) = \begin{cases} 10 e^{-10x} & x \ge 0 \\ 0 & x < 0. \end{cases}$$

Calcolarne la media μ e la varianza σ^2 . Calcolare quindi la probabiltà $P(|X - \mu| \ge 1)$ e confrontarla con la stima fornita dalla disuguaglianza di Chebyshev.

3. La polizia stradale misura la velocità delle automobili che transitano in un determinato punto della strada, dove il limite di velocità è di $50 \ km/h$. Un gruppo di venti misurazioni fornisce i seguenti risultati:


Determinare gli intervalli di confidenza al 95% ed al 99% per la velocità media.

4. Con riferimento ai dati del problema precedente, qualè la probabilità che, su 100 automobili che transitano, 16 superino il limite di velocità? Si confronti il risultato esatto con l'approssimazione (distribuzione) di Poisson. (Suggerimento: si identifichi la probabilità che una macchina superi il limite di velocità con la proporzione corrispondente nella tabella precedente; quindi, trattare il fenomeno con lo schema successo-insuccesso)

M. Garetto – Statistica A-15

Tavola 5 – Distribuzione t di Student

La tavola fornisce i valori di t_{α} per i quali $P(t > t_{\alpha}) = \alpha$, per alcuni valori notevoli di α e per il grado di libertà v.

ν	$\alpha = 0.10$	$\alpha = 0.05$	$\alpha = 0.025$	$\alpha = 0.01$	$\alpha = 0.005$	ν
-	0.070	0.044	40.00	04.004		
1 2	3.078	6.314	12.706	31.821	63.657	1
3	1.886 1.638	2.920 2.353	4.303	6.965	9.925	2 3 4
4	1.533	2.333	3.182 2.776	4.541 3.747	5.841 4.604	3
5	1.476	2.015		3.365		5
3	1.470	2.013	2.571	3.305	4.032	5
6	1.440	1.943	2.447	3.143	3.707	6
7	1.415	1.895	2.365	2.998	3.499	7
8	1.397	1.860	2.306	2.896	3.355	8
9	1.383	1.833	2.262	2.821	3.250	9
10	1.372	1.812	2.228	2.764	3.169	10
	80000 (6.00°)					
11	1.363	1.796	2.201	2.718	3.106	11
12	1.356	1.782	2.179	2.681	3.055	12
13	1.350	1.771	2.160	2.650	3.012	13
14	1.345	1.761	2.145	2.624	2.977	14
15	1.341	1.753	2.131	2.602	2.947	15
40	4.00=					
16	1.337	1.746	2.120	2.583	2.921	16
17	1.333	1.740	2.110	2.567	2.898	17
18 19	1.330 1.328	1.734	2.101	2.552	2.878	18
20		1.729	2.093	2.539	2.861	19
20	1.325	1.725	2.086	2.528	2.845	20
21	1.323	1.721	2.080	2.518	2.831	21
22	1.321	1.717	2.074	2.508	2.819	22
23	1.319	1.714	2.069	2.500	2.807	23
24	1.318	1.711	2.064	2.492	2.797	24
25	1.316	1.708	2.060	2.485	2.787	25
			2.000	2.100	2.707	20
26	1.315	1.706	2.056	2.479	2.779	26
27	1.314	1.703	2.052	2.473	2.771	27
28	1.313	1.701	2.048	2.467	2.763	28
29	1.311	1.699	2.045	2.462	2.756	29
∞	1.282	1.645	1.960	2.326	2.576	∞