Corso di Laurea in Ingegneria Informatica Anno Accademico 2021/2022 Calcolo delle Probabilità e Statistica Matematica

Nome		
N. Matricola		Ancona, 9 febbraio 2022

- 1. Siano $X_1, X_2, ..., X_n$ variabili aleatorie indipendenti. Siano σ_j^2 e μ_j le loro varianze e le loro medie e siano ψ_j i loro momenti centrati del terz'ordine. Sia $Y = X_1 + X_2 + ... + X_n$ la loro somma e indichiamo con μ e σ^2 la media e la varianza di Y. Sia inoltre ψ il momento centrato del terz'ordine di Y.
 - Dimostrare che $\psi = \psi_1 + \psi_2 + \dots + \psi_n$;
 - dimostrare che la proprietà additiva non vale per i momenti centrati del quart'ordine e superiori.

(è sufficiente fare la dimostrazione per n=2).

Soluzione.
$$Y_{j} = \mathbb{E}[(X_{j} - \mu_{j})^{3}]$$

$$Y = \mathbb{E}[(Y - \mu_{Y})^{3}] \qquad \mu_{Y} = \overline{Z} \mu_{0}$$

$$Y - \mu_{Y} = \overline{Z}(X_{j} - \mu_{j}) = (X_{1} - \mu_{1}) + (X_{2} - \mu_{2}) + \cdots$$

$$Y = \mathbb{E}[(Y - \mu_{Y})^{3}] = \mathbb{E}[(X_{1} - \mu_{1})^{3} + \cdots + (X_{m} - \mu_{m})^{3} + \cdots$$

$$\overline{Z}(X_{j} - \mu_{0}) \overline{\Pi}(X_{k} - \mu_{n}) (X_{k} - \mu_{k})] = \overline{Z}(X_{j} - \mu_{0}) \overline{\Pi}(X_{k} - \mu_{k}) = 0$$

$$= Y_1 + Y_2 + \cdots + Y_n +$$

$$+ \sum_{j=1}^{n} E(x_j - y_j) \prod_{j=1}^{n} E((x_n - y_n)(x_n y_n))$$

$$= \sum_{j=1}^{n} Y_j + 2ens$$

$$= E[(Y - y_n)^n] \qquad n \ge 4$$

• E[(Y-MY)ⁿ] n> 4

= \[\left[(\times, -\mu_j)^n \right] \quad \text{plane} \]

temsons categors \[\left[\times, -\mu_j \right] \]

Cheen rest

2. Si estrae un numero X a caso nell'intervallo (0,1) ed un secondo numero Y nell'intervallo (0,X]. Si sa che la distribuzione congiunta di X e Y è data da

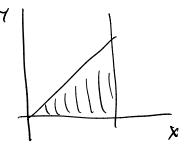
$$f_{XY} = \frac{1}{x}$$
 se $0 < x < 1, 0 < y < x$
= 0 altrimenti.

(a) Dimostrare che

$$E[X^r Y^s] = \frac{1}{(s+1)(r+s+1)}, \quad r,s \in \mathbb{N};$$

- (b) verificare la formula in (a) per r=2 ed s=0, calcolando direttamente $E[X^2]$;
- (c) usando la formula in (a), calcolare il coefficiente di correlazione di X e Y.

Soluzione.



Verifice:
$$\int_0^1 dx \int_0^{x} dy = \int_0^1 dx = 1$$

$$(o) \in [x^{n} Y^{s}] = \int_{0}^{1} dx \int_{0}^{x} dy = \int_{0}^{x} dx \int_{0}^{x} dy = \int_{0}^{x} dx \int_$$

$$= \int_{0}^{1} dx \times \frac{1}{x^{S+1}} = \frac{1}{S+1} \int_{0}^{1} dx \times \frac{1}{x^{S+1}}$$

$$= \frac{1}{S+1} = \frac{1}{R+S+1} = \frac{1}{(S+1)(R+S+1)}$$

$$= \frac{1}{S+1} = \frac{1}{R+S+1} = \frac{1}{S+1} = \frac{1}{(S+1)(R+S+1)}$$

$$= \frac{1}{S+1} = \frac{1}{R+S+1} = \frac{1}{S+1} = \frac{1}{S+1}$$

(b)
$$E[x^2] = \int_0^1 dx \int_0^{x} dy \frac{1}{x} x^2 =$$

$$= \int_{0}^{1} dx \times^{2} = \frac{1}{3}$$

$$= \frac{1}{S+1} = \frac{1}{R+S+1} = \frac{1}{(S+1)(R+S+1)}$$

$$= \frac{1}{(S+1)(R+S+1)} = \frac{1}{(S+1)(R+S+1)}$$

$$Cor(x, y) = E[xy] - E(x) E[y] = R = S = 1$$

$$R = S = 1$$

$$S = 0$$

$$S = 0$$

$$= \frac{1}{2.3} - \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{6} - \frac{1}{8} = \frac{1}{24}$$

$$V_{a}(x) = E[x^{2}] - E[x]^{2} = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}$$

$$S = 0$$

$$S = 0$$

$$2n(Y) = E[Y^2] - E[Y]^2 = \frac{1}{9} - \frac{1}{16} = \frac{7}{144}$$

$$16 = 144$$

$$16 = 144$$

$$16 = 144$$

3. Si vuole determinare l'intervallo di confidenza per la densità dei portatori di carica in un campione di silicio. Si fanno due misurazioni che danno luogo ai campioni di rango n = 10: (in unità di $10^{10} \ cm^{-3}$):

$$I: 1.34, 1.47, 1.48, 1.41, 1.38, 1.35, 1.39, 1.47, 1.42, 1.48$$

 $II: 1.44, 1.48, 1.47, 1.50, 1.46, 1.54, 1.46, 1.48, 1.48, 1.43$

Determinare, per entrambi i campioni, gli intervalli di fiducia al 90%, 95% e 99%. In quali casi gli intervalli provenienti dai due campioni si sovrappongono?

Soluzione. Abbiamo

$$\overline{X}_n = 1.42$$
 $S^2 = 0.0054$ I campione $\overline{X}_n = 1.47$ $S^2 = 0.0031$ I campione

mentre per il quantile di Student usiamo

$$t_{0.05}(9) = 1.833$$
 $t_{0.025}(9) = 2.262$ $t_{0.005}(9) = 3.250$

Gli intervalli sono

$$(1.39, 1.45)$$
 per il I campione e $(1.46, 1.50)$ per il II campione al 90 % $(1.38, 1.46)$ per il I campione e $(1.45, 1.50)$ per il II campione al 95 % $(1.36, 1.47)$ per il I campione e $(1.44, 1.51)$ per il II campione al 99 %

Gli intervalli al 90% non si sovrappongono.

- 4. Il consumo giornaliero di gas per riscaldamento (per famiglia) in una città di latitudine media è una variabile casuale X distribuita secondo una legge normale di media $\mu=2$ metri cubi standard (Smc) e deviazione standard $\sigma=0.5$ Smc (numeri consistenti con i dati ISTAT). Qual è la probabilità che
 - (i) in esattamente 2 giorni nel mese il consumo superi i 3 Smc giornalieri?
 - (ii) che in tutto il mese di gennaio si consumino almeno 70 Smc di gas?

Soluzione.
$$\times \sim \mathcal{N}(2, 0.5)$$

(i) $p = P(\times > 3) = P(2 > \frac{3-\mu}{5}) = P(2 > 2) =$
 $= 1 - P(2 \le 2) = 1 - \Phi(2) = 1 - 0.9772 = 0.0228$
 $Y = \# dx \text{ grams in cas } X > 3$
 $Y \sim \mathcal{B}(30, p)$
 $P(Y = 2) = {30 \choose 2} p^2 (1-p)^{28} = \frac{30!}{2! 28!} p^2 (1-p)^{28} =$
 $= \frac{30.29}{2} p^2 (1-p)^{25} = 15.28 p^2 (1-p)^{28} = 0.12$

$$\begin{array}{c} \left(\hat{s} \, \hat{n}^{\prime}\right) \times_{le} \quad \text{Common oul young } h \\ \left(\hat{z}^{\prime} \times_{le} \times_{le} \times_{le} \right) = \\ \left(\hat{z}^{\prime} \times_{le} \times_{le} \times_{le} \times_{le} \times_{le} \right) = \\ \left(\hat{z}^{\prime} \times_{le} \times_{le}$$

$$= P(2 > 7.87) = 1 - \Phi(2.87) =$$