
Proceedings of the Royal Society of Edinburgh, 144A, 455–489, 2014

Linear stability analysis for periodic travelling
waves of the Boussinesq equation and the
Klein–Gordon–Zakharov system

Sevdzhan Hakkaev∗

Faculty of Mathematics and Informatics, Shumen University,
9712 Shumen, Bulgaria

Milena Stanislavova and Atanas Stefanov
Department of Mathematics, University of Kansas,
1460 Jayhawk Boulevard, Lawrence, KS 66045–7523, USA
(stanis@math.ku.edu; stefanov@math.ku.edu)

(MS received 27 April 2012; accepted 13 March 2013)

The question of the linear stability of spatially periodic waves for the Boussinesq
equation (in the cases p = 2, 3) and the Klein–Gordon–Zakharov system is
considered. For a wide class of solutions, we completely and explicitly characterize
their linear stability (instability) when the perturbations are taken with the same
period T . In particular, our results allow us to completely recover the linear stability
results, in the limit T → ∞, for the whole-line case.

1. Introduction

In this paper we are interested in the stability of spatially periodic waves for certain
models, which involve the second-order derivative in time. Our interest is mainly in
two partial differential equations, the Boussinesq equation and the Klein–Gordon–
Zakharov (KGZ) system, although the methods that we develop here will certainly
find applications in other related models.

The Cauchy problem for the Boussinesq equation, with periodic boundary con-
ditions, is

utt + uxxxx − uxx + (f(u))xx = 0, (t, x) ∈ R
1
+ × [0, T ], (1.1)

where f(u) is, for the most part, f(u) = up, p > 1. This is a model that was derived
by Boussinesq [7] for p = 2, but was subsequently studied by many authors, in both
the periodic and whole-line contexts. We now review the current results regarding
the well-posedness properties of the Boussinesq equation. While we have a very
satisfactory theory for the local solutions (see below), the global well-posedness
does not hold. More precisely, even if one requires smooth compactly supported
data, the solutions may develop singularities in finite time [6]. This makes the
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stability question, which is the main subject of this paper, even more relevant and
interesting.

In the whole-line scenario, local well-posedness was established by Bona and
Sachs [6] in the Sobolev spaces H(5/2)+(R1) × H(3/2)+(R1). Further contributions
were made by Tsutsumi and Mathashi [25] and Linares [19] (who also showed global
existence for small data). Farah [11] showed well-posedness in Hs(R1) × H̃s−2(R1)
when s > −1/4 and the space H̃α is defined via H̃α = {u : ux ∈ Hα−1(R1)}. Kishi-
moto and Tsugava [18] finally showed well-posedness for all s > −1/2, which is
likely to be sharp.

Regarding the case of periodic boundary conditions, we refer the reader to Fang
and Grillakis [10], who established local well-posedness in Hs(T) × Hs−2(T), s > 0
(when 1 < p < 3 in (1.1)). This result was improved for p = 2 to s > −1/4 by
Farah and Scialom [12]. Oh and Stefanov [21] recently showed local well-posedness
in Hs(T) × Hs−2(T), s > −3/8.

Our other main object of investigation is the Klein–Gordon–Zakharov system,
which is given by1

utt − uxx + u + uv = 0, (t, x) ∈ R
1 × R

1 or (t, x) ∈ R
1 × [0, T ],

ntt − nxx = 1
2 (|u|2)xx.

}
(1.2)

This system describes the interaction of a Langmuir wave and an ion sound wave in
plasma. More precisely, u is the fast-scale component of the electric field, whereas
n denotes the deviation in ion density [26]. The system (1.2) is locally well posed
in various function spaces (see [13,22]). In our previous paper [17], we showed that
the Cauchy problem (1.2) is locally well posed (in both periodic and whole-line
contexts) in Hα × Hα−1 × Hα−1 × Hα−2 whenever α > 1/2. In [22, 23], Ozawa
et al . showed that small initial data values produce solutions that persist globally,
whereas large solutions are generally expected to blow up in finite time.

The stability of periodic travelling waves has been studied extensively in the last
decade. The nonlinear stability of periodic waves for the Korteweg–de Vries equation
based on the Jacobi elliptic functions of cnoidal type was considered in [2], and for
modified Korteweg–de Vries and nonlinear Schrodinger equations of dnoidal type
in [1]. In [15], Hakkaev et al . considered the nonlinear stability of periodic waves for
the generalized Benjamin–Bona–Mahony equation. Recently, Arruda [3] considered
the nonlinear stability of periodic travelling waves for the Boussinesq equation with
p = 2. The approach is based on the theory developed in [4, 5, 14] for the stability
of solitary waves. It should be noted that his results are only about stability of
the waves (which happens when the Grillakis–Shatah–Strauss (GSS) functional d
is strictly convex), while the cases of instability are left open. This is due to the
well-known limitations of the GSS approach for proving instability, namely, that it
is required that the skew-symmetric operator J in the linearization must be onto.
This condition is not met in Arruda’s analysis, so one cannot say anything about
instability based on the classical GSS theory.

In this paper, we completely characterize the linearized stability of periodic trav-
elling waves for the Boussinesq model (the cases p = 2, 3) and the Klein–Gordon–

1The coefficient 1
2 in front of the nonlinear term (|u|2)xx is non-standard, but rather adopted

for convenience of presentation. In particular, it helps create a self-adjoint linearized operator,
which otherwise can be achieved via a simple change of the time variable.
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Zakharov system. These are the cases of second-order-in-time models, for which
we can explicitly write the solutions in elliptic functions (and, moreover, we can
explicitly compute the relevant portion of the spectrum of the linearized opera-
tors). While this certainly helps in the analysis, we believe that our results should
be generalizable to all values of p > 1. The main tool is the theory for linearized
stability for such models, recently developed by the second and third authors [24].
In particular, the theory in [24] captures both the stability and instability regions
up to and including the turning points (in which there is linear stability, but it may
be nonlinearly secularly unstable). We note that, while there are nonlinear stability
results available for the KGZ system in the whole-line case (see [8]), theorem 3.4
seems to be the first result to deal with the periodic case. Indeed, we completely
characterize the linearly stable and unstable periodic waves. In addition, we believe
that, while it is possible to generalize the nonlinear stability results to the periodic
cases, the same difficulties with the instabilities will persist within the framework
of the standard GSS theory, due to the non-invertibility of the skew-symmetric
operator J .

The paper has the following structure. In § 2 we present the construction of
our main object of study: periodic travelling waves. This is not new material by
any means, but we present it in order to single out the solutions of interest (note
that there are solutions, which are not considered herein), and to introduce some
notation. In § 3 we set up the linear stability problem, after which we present
the main results. In § 4 we outline the theory for linearized stability for second-
order partial differential equations from [24], and point out the relevant spectral
theoretic results for their linearized operators. In § 5 we prove the main results,
theorems 3.2, 3.3 for the Boussinesq model, while in § 6 we prove theorem 3.4 for
the KGZ system.

2. Construction of the periodic travelling waves

In this section, we show a glimpse of the construction of the periodic waves: in § 2.1
for the Boussinesq equation (when p = 2, 3), and in § 2.2 for the KGZ system.

2.1. Construction of the travelling wave solutions for the Boussinesq
equation

Applying the travelling wave ansatz, one sees that there is a one-parameter family
of travelling waves of the form ϕ(x − ct), |c| ∈ (−1, 1), that obey the equation
∂xx[c2ϕ + ϕ′′ − ϕ + f(ϕ)] = 0, 0 � x � T , whence there exist a, C such that

c2ϕ + ϕ′′ − ϕ + f(ϕ) = Cx + a, 0 � x � T.

By the periodicity of ϕ, we conclude that C = 0, and thus we have a family of
waves satisfying

ϕ′′ − (1 − c2)ϕ + f(ϕ) = a, 0 � x � T. (2.1)

We now construct solutions of (2.1) in various cases of interest, most notably p = 2
and p = 3. This material is not new, but in order to introduce the particular
parametrization that is convenient for us we include a sketch of the construction
for completeness.
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2.1.1. The case p = 2

We consider only the symmetric case a = 0 and define w = 1 − c2. For the
nonlinearity, f(u) = u2/2, we have that

−wϕ + 1
2ϕ2 + ϕ′′ = 0. (2.2)

Therefore,
ϕ′2 − wϕ2 + 1

3ϕ3 = b. (2.3)

Hence, the periodic solutions are given by the trajectories H(ϕ, ϕ′) = b of the
Hamiltonian

H(x, y) = y2 + 1
3x3 − wx2.

The level set H(x, y) = b contains two periodic trajectories if w > 0, b ∈ (− 2
3w3, 0),

and a unique periodic trajectory if b > 0. We consider here the cases where b < 0
and ϕc > 0. To express ϕc through elliptic functions, we denote by ϕ1 > ϕ0 > 0
the positive solutions of 1

3ρ3 − wρ2 − b = 0. Then ϕ0 � ϕc � ϕ1, and one can
rewrite (2.3) as

ϕ′2
c = 1

3 (ϕc − ϕ0)(ϕ1 − ϕc)(ϕc + ϕ0 + ϕ1 − 3w). (2.4)

Introducing a new variable s ∈ (0, 1) via ϕc = ϕ0 +(ϕ1 −ϕ0)s2, we transform (2.4)
into

s′2 = α2(1 − s2)(k′2 + k2s2),

where α, k, k′ are positive constants (k2 + k′2 = 1) given by

α2 =
2ϕ1 + ϕ0 − 3w

12
, k2 =

ϕ1 − ϕ0

2ϕ1 + ϕ0 − 3w
.

Therefore,
ϕc(x) = ϕ0 + (ϕ1 − ϕ0) cn2(αx; k). (2.5)

By the above formulae,

ϕ1 − ϕ0 = 12α2κ2,

ϕ1 = 4α2(1 + κ2) + w,

ϕ0 = 4α2(1 − 2κ2) + w,

w2 = 16α4(1 − κ2 + κ4).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.6)

The fundamental period of the cnoidal wave ϕc in (2.5) is

T =
2K(κ)

α
=

4K(κ) 4
√

1 − κ2 + κ4
√

w
, T ∈

(
2π√
w

,∞
)

. (2.7)

Here and below, K(κ) and E(κ) denote the elliptic integrals of the first and second
kind in a Legendre form. Furthermore, we use the following relations:

K ′(κ) =
E(κ) − (1 − κ2)K(κ)

κ(1 − κ2)
, E′(κ) =

E(κ) − K(κ)
κ

.
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Lemma 2.1. For any w > 0 and T ∈ (2π/
√

w,∞), there exists a constant b = b(w)
such that the periodic travelling solution (2.5) has period T . The function b(w) is
differentiable.

Proof. It is easily seen that the period T is a strictly increasing function of k:

d
dk

( 4
√

1 − κ2 + κ4K(κ)) =
κ(2κ2 − 1)K(κ) + 2(1 − κ2 + κ4)K ′(κ)

4 4
√

1 − κ2 + κ43

=
2(1 − κ2 + κ4)E(κ) + (1 − κ2)(κ2 − 2)K(κ)

4κ(1 − κ2) 4
√

1 − κ2 + κ43

> 0.

Given w and b in their range, consider the functions ϕ0(w, b), ϕ1(w, c), k(w, b) and
T (w, b) given by (2.7) and (2.6). We obtain

∂T

∂b
=

dT

dk

dk

db
=

1
2k

dT

dk

d(k2)
db

.

Furthermore, using that 1
3ϕ3

0 − wϕ2
0 = 1

3ϕ3
1 − wϕ2

1, we have

d(k2)
db

=
3(ϕ0 − w)(∂ϕ1/∂b) − 3(ϕ1 − w)(∂ϕ0/∂c)

(2ϕ1 + ϕ0 − 3w)2

=
3w2(ϕ0 − ϕ1)

(ϕ2
0 − 2wϕ0)(ϕ2

1 − 2wϕ1)(2ϕ1 + ϕ0 − 3w)2
.

We see that ∂T (w, b)/∂b �= 0, whence the implicit function theorem implies the
result.

2.1.2. The case p = 3

We consider the ‘symmetric’ case a = 0 only, with f(u) = u3. Define w = 1−c2 ∈
(0, 1). Multiplying by ϕ′ and integrating implies that

ϕ′2 = b + wϕ2 − 1
2ϕ4. (2.8)

Hence, the periodic solutions are given by the periodic trajectories H(ϕ, ϕ′) = b of
the Hamiltonian

H(x, y) = y2 + 1
4x4 − 1

2wx2.

There are then two possibilities.

• (Outer case.) For any b > 0 the orbit defined by H(ϕ, ϕ′) = b is periodic and
oscillates around the eight-shaped loop H(ϕ, ϕ′) = 0 through the saddle at
the origin.

• (Left and right cases.) For any b ∈ (− 1
2w2, 0) there exist two periodic orbits

defined by H(ϕ, ϕ′) = b (the left and right ones). These are located inside the
eight-shaped loop and oscillate around the centres at (∓

√
w, 0), respectively.
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We consider the left and right cases of the Duffing oscillator only. In these cases,
denote by ϕ1 > ϕ0 > 0 the positive roots of the quartic equation 1

2z4 −wz2 −b = 0.
Then, up to a translation, we obtain the respective explicit formulae

ϕ(z) = ∓ϕ1 dn(αz; k), k2 =
ϕ2

1 − ϕ2
0

ϕ2
1

=
2ϕ2

1 − 2w

ϕ2
1

, α =
ϕ1√

2
, T =

2K(k)
α

.

(2.9)
Note that the fundamental period T may be written as

T =
2K(κ)

α
=

2K(κ)
√

2 − κ2
√

w
, T ∈

(√
2π√
w

,∞
)

. (2.10)

Note that this is a two-parameter family of solutions, parametrized explicitly in
this case by ϕ0, ϕ1, although we shall need a different parametrization. In fact, we
like to think of this family as being parametrized (implicitly) in terms of T and w,
where these two are independent of each other. We have the following lemma.

Lemma 2.2. For T >
√

2π/
√

w, there exists a constant b = b(w) such that the peri-
odic travelling wave solution (2.9) determined by H(ϕ, ϕ′) = b(w) has a period T .
In addition, the function b(w) is differentiable.

For the proof, see [16, lemma 3.1].

2.2. Construction of the travelling wave solutions for the KGZ system

We are looking for T -periodic travelling solutions of the Klein–Gordon–Zakharov
system (1.2). Thus, we take the ansatz u(t, x) = ϕc(x − ct), n(t, x) = ψc(x − ct),
where we take the speed c ∈ (−1, 1). Putting this into (1.2), we obtain the following
relation between ψ and ϕ:

(c2 − 1)ψ′′ = 1
2 (ϕ2)′′, 0 � x � T.

Two integrations in x imply that

(c2 − 1)ψ(x) = 1
2ϕ2(x) + bx + a

for some constants a, b. By the periodicity we have that b = 0, whence

ψ(x) = −ϕ2(x) + a

2(1 − c2)
.

For simplicity, we only consider the case a = 0. That is,

ψc = − ϕ2
c

2(1 − c2)
. (2.11)

Returning to the other equation in (1.2) and using (2.11), we obtain the following
equation for ϕc:

−(1 − c2)ϕ′′
c + ϕc − ϕ3

c

2(1 − c2)
= 0, 0 � x � T. (2.12)
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Thus, as in § 2.1.2, after multiplying by ϕc and integrating we get that

ϕ′2
c = b +

ϕ2
c

w
− ϕ4

c

4w2 =
1

4w2 (4w2b + 4wϕ2
c − ϕ4

c). (2.13)

Denote by ϕ1 > ϕ0 > 0 the positive roots of the polynomial

P (z) = z4 − 4wz2 − 4w2b.

Then (2.13) can be written in the form

ϕ′2
c =

1
4w2 (ϕ2

c − ϕ2
0)(ϕ

2
1 − ϕ2

c), (2.14)

and the solution of (2.13) is given by

ϕc(x) = ϕ1 dn(αx, κ), (2.15)

where

ϕ2
1 + ϕ2

0 = 4w, α =
ϕ1

2w
, κ2 =

ϕ2
1 − ϕ2

0

ϕ2
1

. (2.16)

Moreover,

(2 − κ2)ϕ2
1 = 4w, α =

1√
w(2 − κ2)

, 4w2b = 4wϕ2
1 − ϕ4

1. (2.17)

Since dn has fundamental period 2K(κ), the solution ϕc has fundamental period
T = 2K(κ)/α. In terms of κ, w, this is given by

T = 2K(κ)
√

2 − κ2
√

w, T ∈ I = (
√

2π
√

w,∞). (2.18)

Lemma 2.3. For any w > 0 and T >
√

2π
√

w, there exists a constant b = b(w)
such that the periodic travelling solution (2.15) has period T .

Proof. The period T is a strictly increasing function of κ:

d
dκ

[
√

2 − κ2K(κ)] =
K ′(κ) + E′(κ)√

2 − κ2
> 0.

From (2.16) and (2.17), we have that

dT

db
=

dT

dκ

dκ

db
=

1
2κ

dT

dκ

dκ2

db
,

dκ2

db
=

dκ2

dϕ2
1

dϕ2
1

db
=

16w2

ϕ4
1(4w − 2ϕ2

1)
.

The implicit function theorem then implies the result.

3. Results

3.1. Setting the linear stability problem for the Boussinesq equation

We now set up the linear stability/instability problem for (1.1). Set the ansatz
u = ϕc(x + ct) + v(t, x + ct) and ignore all terms O(v2). We get vtt+2cvtx+Mv = 0,
where

Mv = ∂4
xv − (1 − c2)∂2

xv + (f ′(ϕc)v)xx.
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Note that this operator M is not self-adjoint. However, if we introduce the variable
z : zx = v, we get the following linearized equation in terms of z:

zttx + 2cztxx + M [zx] = 0. (3.1)

Note that M [zx] = ∂x[H[z]], where

Hcz = ∂4
xz − (1 − c2)∂2

xz + (f ′(ϕc)zx)x. (3.2)

Thus, the linearized equation becomes ∂x[ztt + 2cztx + Hz] = 0. In our consid-
erations we say that the wave ϕc is spectrally unstable, exactly when there is an
exponentially growing mode, that is, a pair λ ∈ C : Re λ > 0 and a T -periodic
function ψ ∈ H4

per(0, T ) such that ∂x[λ2ψ+2cλψ′ +Hψ] = 0. This of course implies
upon integration that, for some constant a,

λ2ψ + 2cλψ′ + Hψ = a.

Integrating in [0, T ] and taking into account that both ψ′ and Hψ are exact deriva-
tives implies that a = λ2

∫ T

0 ψ(x) dx/T . Thus, letting ψ̃ := ψ − a/λ2 implies that∫ T

0 ψ̃(x) dx = 0 and

λ2ψ̃ + 2cλψ̃ + Hψ̃ = 0.

These arguments motivate the following definition.

Definition 3.1. We say that the travelling wave ϕc is spectrally/linearly unstable
if there exists a T -periodic mean value zero function ψ ∈ D(Hc) and λ : Re λ > 0
such that

λ2ψ + 2cλψ′ + Hcψ = 0. (3.3)

The question of linear stability of equations in the form

ztt + 2ωztx + Hz = 0, (3.4)

or what is equivalent (at least in this case) to the solvability of

λ2ψ + 2ωλψ′ + Hψ = 0 in L2
0(0, T ) =

{
f ∈ L2

per(0, T ) :
∫ T

0
f(x) dx = 0

}
, (3.5)

was addressed in a recent paper by the second and third authors [24]. Note that
the self-adjoint operator H that appears in (3.2) is in the form

H = −∂xL∂x, L = −∂2
x + (1 − c2) − f ′(ϕc).

Here, L is the ubiquitous standard second-order Schrödinger operator, which ap-
pears in the linearization of the generalized Korteweg–de Vries equation around its
travelling wave solution ϕc. This observation is crucial for the spectral properties
of the operator H, as the properties of L are generally well known, at least for the
cases under consideration, p = 2, 3.
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3.2. Setting the linear stability problem for the KGZ system

We linearize the KGZ system as follows. We take u(t, x) = ϕc(x−ct)+v(t, x−ct)
and n(t, x) = ψc(x−ct)+h(t, x−ct) and ignore the contributions of all quadratic and
higher-order terms. We obtain the following linear system for the corrections v, h:

vtt − 2cvtx − (1 − c2)vxx + v + ψcv + ϕch = 0,

htt − 2chtx − (1 − c2)hxx − (ϕcv)xx = 0.

}
(3.6)

Furthermore, we introduce a new mean value zero function z such that h = zx and
w = 1 − c2. The second equation in (3.6) becomes

∂x[ztt − 2cztx − (1 − c2)zxx − (ϕczx)x] = 0,

whence integrating in x yields

ztt − 2cztx − (1 − c2)zxx − (ϕczx)x = a(t)

for some function a(t). Observe, however, that in our choice of z we have required
that

∫ T

0 z(t, x) dx = 0. Thus, integrating the last equation in [0, T ] yields that all
integrals on the left-hand side are 0 (each term is either an exact derivative or ztt,
which is mean value zero), a(t) = 0, whence ztt − 2cztx − (1− c2)zxx − (ϕczx)x = 0.
We have shown that one can rewrite the linear stability problem (3.6) as

Φtt − 2cΦtx + HΦ = 0, (3.7)

where Φ =
(
v
z

)
and

H =
(

H1 A

A∗ H2

)
, (3.8)

where

H1 = −(1 − c2)∂2
x + 1 + ψc = −w∂2

x + 1 − ϕ2
c

2w
, H2 = −w∂2

x,

Az = ϕczx, A∗z = −(ϕcz)x.

Clearly, the operator H is self-adjoint and, when considered over the domain

D(H) = H2[0, T ] × H2
0 [0, T ] ⊂ L2[0, T ] × L2

0[0, T ],

is such that D(H) → L2[0, T ] × L2
0[0, T ]. Note that, when considering this spec-

tral problem, our basic Hilbertian space is L2[0, T ] × L2
0[0, T ], instead of the usual

L2[0, T ] × L2[0, T ].

3.3. Precise formulation of the main results

Our main results are described in the following theorems. Note that, in all the-
orems, the issue is linear stability for the stated families of spatially periodic solu-
tions, when the perturbation is taken to be periodic with the same period as the
underlying solution.

The issue of stability/instability, when perturbations are taken to have a period of
the form nT (where n is integer) is a more complicated one. Clearly, the instability
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Figure 1. Graph of the positive function
√

M(κ)/4 + M(κ), together with
its terminal value

√
2/2 as a reference.

results continue to apply in this case, but it may very well be that some previously
stable waves (in the context of the same period perturbations) become unstable
when perturbed by nT -periodic functions.

Theorem 3.2. Let the nonlinearity in (1.1) have the form f(u) = u3. The two-
parameter family of dnoidal solutions, described in (2.9), is then linearly stable, if
and only if

|c| �
√

M(κ)
4 + M(κ)

, κ ∈ (0, 1),

where

M(κ) :=
[4E(κ) − π2/K(κ)][(2 − κ2)E(κ) − 2(1 − κ2)K(κ)]

(2 − κ2)(E2(κ) − (1 − κ2)K(κ))
, κ ∈ (0, 1),

where E(κ), K(κ) are elliptic integrals of the first and second kind in a Legendre
form.

We now give a different formulation of the main result. Let T >
√

2π. The waves
described in (2.9) are then a one-parameter family of waves, having a fundamental
period T , which can be parametrized by c : |c| <

√
1 − 2π2/T 2 (note that c, κ are in

a one-to-one relationship given by (2.10)). Now, theorem 3.2 asserts that the stable
waves in this family are exactly those with |c| � cT , where cT ∈ (0,

√
1 − 2π2/T 2)

is determined as follows. Let κT be the unique solution of

K(κ)
√

2 − κ2
√

4 + M(κ) = T.

Then cT =
√

M(κT )/(4 + M(κT )).
Our next theorem concerns the quadratic case.
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Figure 2. The solid line is the graph of the increasing function
K(κ)

√
2 − κ2

√
4 + M(κ) : (0, 1) → R

1. The dashed line is
√

2π.
Note that the range of this function is (

√
2π, ∞).

Theorem 3.3. Let the nonlinearity in (1.1) have the form f(u) = u2/2. The peri-
odic solutions (2.5) are then linearly stable if and only if

|c| �
√

F̃ (κ)
4 + F̃ (κ)

, κ ∈ (0, 1),

where

F̃ (κ) =
[
2F (κ) − F 2(κ)

16
√

1 − κ2 + κ4K2(κ)

]

×
(

F (κ) + 256K4(κ)F ′(κ)G(κ)(1 − κ2 + κ4)

+
4096K6(κ)(1 − κ2 + κ4)3/2(F ′(κ)G(κ))2

1 − 16
√

1 − κ2 + κ4K2(κ)F ′(κ)G(κ)

)−1

and

F (κ) = 16K(κ)[3E(κ) + (κ2 − 2 +
√

1 − κ2 + κ4)K(κ)],

G(κ) =
1

128 d[K4(κ)(1 − κ2 + κ4)]/dκ
.

An alternative formulation is the following. Fix T > 2π and consider the family
of cnoidal solutions, described in (2.5). This is a one-parameter family of solutions
(where κ and c are related by (2.7)), having fundamental period T and indexed
by c, say, where c : c <

√
1 − 4π2/T 2. The linearly stable waves with period T are

then exactly those for which √
1 − 4π2

T 2 > |c| � cT ,
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Figure 3. Graph of the positive function
√

F̃ (κ)/(4 + F̃ (κ)),
together with its terminal value 1

2 .

where cT ∈ (0,
√

1 − 4π2/T 2) is determined as follows. Take κT to be the unique
solution of the algebraic equation

2K(κ) 4
√

1 − κ2 + κ4
√

4 + F̃ (κ) = T.

Then cT =
√

F̃ (κT )/(4 + F̃ (κT )).

Remark. Using the results of theorems 3.2 and 3.3, one can reconstruct the results
on linear stability of the whole-line waves [24]:

ϕc(ξ) =
[(

p + 1
2

)
(1 − c2)

]1/(p−1)

sech2/(p−1)
(√

1 − c2(p − 1)
2

ξ

)
. (3.9)

Recall that the results of [24] predict linear stability if and only if |c| � √
p − 1/2.

Take p = 3. The periodic waves described in (2.9) in the limit κ → 1− then corre-
spond to the whole-line waves described in (3.9). Note that, since limκ→1− E(κ) = 1,
limκ→1− K(κ) = ∞ and limκ→1−(1 − k2)K(κ) = 0, we can easily conclude that
limκ→1− M(κ) = 4, whence

lim
κ→1−

√
M(κ)

4 + M(κ)
=

√
2

2
.

Similarly, one can check that, for p = 2 (more precisely if f(u) = u2/2), we have
that

lim
κ→1−

√
F̃ (κ)

4 + F̃ (κ)
=

1
2
.

Thus, we obtain the results in [24] for p = 2, 3 as a corollary.
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Figure 4. The solid line is the graph of the function

2K(κ) 4
√

1 − κ2 + κ4
√

4 + F̃ (κ) : (0, 1) → R
1. The dashed line is 2π.

Note that the range of this function is (2π, ∞).

Our next result concerns the KGZ system (1.2).

Theorem 3.4. The KGZ system (1.2) has a two-parameter family of travelling
wave solutions (ϕc, ψc), described in (2.11) and (2.15). These waves are stable if
and only if κ ∈ (κ0, 1) and

1 > |c| � 1√
1 + 4N(κ)

,

where κ0 and the function N are defined later.

If we take a limit as κ → 1, we have that

lim
κ→1

1√
1 + 4N(κ)

=
√

2
2

.

Since κ → 1 corresponds to the case T = ∞ or the case of the whole line, this allows
us to conclude that the corresponding whole-line solitons are stable, provided that
|c| �

√
2/2. This was the conclusion in [24], so we are able to deduce this result, as

a consequence of theorem 3.4.
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Figure 5. The dashed line is the graph of the function 1/
√

1 + 4N(κ) in (κ0, 1).
The dotted line is the terminal value of

√
2/2.

Once again, we provide an alternative interpretation of theorem 3.4. Let T > 0
be a fixed period. There then exists a one-parameter family of periodic waves with
period T , described in (2.11), (2.15). This family may be parametrized by c with
the following restrictions on c: if T <

√
2π, then 1 > |c| >

√
1 − T 2/2π2; otherwise,

if T �
√

2π, c ∈ (−1, 1). The parameters κ and c are related by (2.18). The
stable waves in this family are then given by |c| � cT = 1/

√
1 + 4N(κT ), where

κT ∈ (κ0, 1) is found as the unique solution (see figure 6) of the algebraic equation

4K(κ)
√

2 − κ2
√

N(κ)√
1 + 4N(κ)

= T.

4. Preliminaries

4.1. Linear stability theory for second-order equations

In this section, we give a precise statement of the results of [24], concerning the
linear stability of (3.4) or what is equivalent to the solvability of (3.5). We assume
the following about the self-adjoint operator H:

σ(H) = {−δ2} ∪ {0} ∪ σ+(H), σ+(H) ⊂ (σ2,∞), σ > 0,

Hφ = −δ2φ, dim[Ker(H + δ2)] = 1,

Hψ0 = 0, dim[Ker(H)] = 1,

‖ψ0‖ = 1.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.1)

Note that, since ψ′
0 ⊥ ψ0 and Ker[H] = span[ψ0], we may uniquely define

H−1 : Ker[H]⊥ → Ker[H]⊥

and, in particular, the vector H−1[ψ′
0].
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Figure 6. Graph of the increasing function
4K(κ)

√
2 − κ2

√
N(κ)/

√
1 + 4N(κ) : (κ0, 1) → R

1
+. Note that its range is (0, ∞).

We next require that, for all τ � 1 (note that H + τ > 0 is invertible),

(H + τ)−1/2∂x(H + τ)−1/2, (H + τ)−1∂x ∈ B(L2). (4.2)

Finally, we require that
Hh = Hh̄. (4.3)

Note that the last identity ensures that H maps real-valued functions into real-
valued functions. The following theorem, in a more general form, appears as [24,
theorem 1].

Theorem 4.1. Let H be a self-adjoint operator on a Hilbert space H. Assume that
it satisfies the structural assumptions (4.1), (4.2) as well as the reality assump-
tion (4.3).

If 〈H−1[ψ′
0], ψ

′
0〉 � 0, one then has a solution to (3.5) for all values of ω ∈ R

1,
that is, one has instability in the sense of definition 3.1. Otherwise, supposing that
〈H−1[ψ′

0], ψ
′
0〉 < 0,

• the problem (3.5) has solutions if ω satisfies the inequality

0 � |ω| <
1

2
√

〈−H−1[ψ′
0], ψ

′
0〉

=: ω∗(H), (4.4)

• the problem (3.5) does not have solutions (i.e. stability) if ω satisfies the
reverse inequality

|ω| � ω∗(H). (4.5)



470 S. Hakkaev, M. Stanislavova and A. Stefanov

Remark.

(i) Theorem 4.1 appears in [24] as a result about the stability of (3.4), but we
state it in its equivalent form for solvability of (3.5).

(ii) In the applications that we consider, we restrict our attention to the Hilbert
space H = L2

0[0, T ] or H = L2[0, T ] × L2
0[0, T ], depending on the situation

that we are in.

4.2. Spectral theory for the Schrödinger operators of Boussinesq waves

We review and state the main results regarding the spectral theory for the second-
order Schrödinger operators, arising in the linearization around Boussinesq waves.
We consider the cases p = 2 and p = 3 again separately.

4.2.1. The case p = 2

In this section, we present some spectral results for L that will be useful in the
following. The first is a technical lemma that is used to establish the simplicity of
the zero eigenvalue for H = −∂xL∂x.

Lemma 4.2. We have that 〈L−11, 1〉 �= 0.

Proof. In this case L = −∂2
x +w −ϕc and KerL = spanϕ′

c. The spectral properties
of the operator Λ = −d2/dy2 − 4(1 + k2) + 12k2 sn2(y; k) in [0, 2K(k)] are well
known [15]. The first three (simple) eigenvalues and corresponding eigenfunctions
of Λ are

µ0 = κ2 − 2 − 2
√

1 − κ2 + 4κ4 < 0,

ψ0(x) = dn(x; κ)[1 − (1 + 2κ2 −
√

1 − κ2 + 4κ4) sn2(x; κ)] > 0,

µ1 = 0,

ψ1(x) = dn(x; κ) sn(y; κ) cn(αx; κ) =
1
2

d
dy

cn2(y; κ),

µ2 = κ2 − 2 + 2
√

1 − κ2 + 4κ4 > 0,

ψ2(x) = dn(x; κ)[1 − (1 + 2κ2 +
√

1 − κ2 + 4κ4) sn2(y; κ)].

Since the eigenvalues of L and Λ are related by λn = α2µn, it follows that the first
three eigenvalues of the operator L, equipped with periodic boundary condition on
[0, 2K(k)], are simple and λ0 < 0, λ1 = 0, λ2 > 0. The corresponding eigenfunctions
are ψ0(αx), ψ1(αx) = const.ϕ′ and ψ2(αx). Note that 1, ϕc ⊥ Ker L and

L(1) = w − ϕc, (4.6)

and hence we can take the inverse in (4.6),

1 = wL−11 − L−1ϕc. (4.7)

Taking the dot product with 1 yields the relation

〈L−11, 1〉 =
1
w

〈1, 1〉 +
1
w

〈L−1ϕc, 1〉.
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Differentiating (2.2) with respect to c, we get that L[dϕc/dc] = 2cϕc, whence

L−1ϕc =
1
2c

dϕc

dc
. (4.8)

Entering this last formula into the expression for 〈L−11, 1〉, we obtain

〈L−11, 1〉 =
1
w

T +
1

2cw

(
∂c

∫ T

0
ϕc dx

)
. (4.9)

Using (2.6) and

∫ 2K(κ)

0
cn2(y; κ) dy =

2
κ2 [E(κ) − (1 − κ2)K(κ)],

we get∫ T

0
ϕc dx = 8α[3E(κ) + (κ2 − 2 +

√
1 − κ2 + κ4)K(κ)] =

1
T

F (κ), (4.10)

where
F (κ) = 16K(κ)[3E(κ) + (κ2 − 2 +

√
1 − κ2 + κ4)K(κ)].

We now need to compute

∂cF (κ) = F ′(κ)
dκ

dw

dw

dc
= −2cF ′(κ)

dκ

dw
.

Thus, to compute dκ/dw, we differentiate with respect to w the relation

w2 = 16α4(1 − κ2 + κ4) = 256
K4(κ)(1 − κ2 + κ4)

T 4 , (4.11)

obtained from (2.6) and (2.7). We obtain

dκ

dw
= wT 4G(κ), (4.12)

where

G(κ) =
1

128 d[K4(κ)(1 − κ2 + κ4)]/dκ
.

From the above relations, (2.7) and (4.11), we have that

〈L−11, 1〉 =
T

w
− T 3F ′(κ)G(κ)

=
T

w
[1 − 16

√
1 − κ2 + κ4K2(κ)F ′(κ)G(κ)]. (4.13)

The expression in the brackets above is strictly positive, as seen in figure 7, which
verifies the lemma.
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Figure 7. Graph of the positive function [1 − 16
√

1 − κ2 + κ4K2(κ)F ′(κ)G(κ)].

4.2.2. The case p = 3

Consider
L = −∂2

x + w − 3ϕ2. (4.14)

We use (2.9) to rewrite the operator L in an appropriate form. From the expression
for ϕ(x) from (2.9) and the relations between the elliptic functions sn(x), cn(x) and
dn(x), we obtain that

L = α2[−∂2
y + 6k2 sn2(y) − 4 − k2],

where y = αx.
It is well known [15] that the first five eigenvalues of Λ = −∂2

y + 6k2 sn2(y, k),
with periodic boundary conditions on [0, 4K(k)], where K(k) is the complete elliptic
integral of the first kind, are simple. These eigenvalues, with their corresponding
eigenfunctions, are

ν0 = 2 + 2k2 − 2
√

1 − k2 + k4, ψ0(y) = 1 − (1 + k2 −
√

1 − k2 + k4) sn2(y, k),

ν1 = 1 + k2, ψ1(y) = cn(y, k) dn(y, k) = sn′(y, k),

ν2 = 1 + 4k2, ψ2(y) = sn(y, k) dn(y, k) = − cn′(y, k),

ν3 = 4 + k2, ψ3(y) = sn(y, k) cn(y, k) = −k−2dn′(y, k),

ν4 = 2 + 2k2 + 2
√

1 − k2 + k4, ψ4(y) = 1 − (1 + k2 +
√

1 − k2 + k4) sn2(y, k).

It follows that the first three eigenvalues of the operator L, equipped with periodic
boundary condition on [0, 2K(k)] (that is, in the case of the left and right families),
are simple and λ0 = α2(ν0 − ν3) < 0, λ1 = α2(ν3 − ν3) = 0, λ2 = α2(ν4 − ν3) > 0.
The corresponding eigenfunctions are χ0 = ψ0(αx), χ1 = ϕ′(x), χ2 = ψ4(αx).
Thus, we have proved the following.

Proposition 4.3. The linear operator L defined by (4.14) has the following spectral
properties.

(i) The first three eigenvalues of L are simple.

(ii) The second eigenvalue of L is λ1 = 0, which is simple.
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(iii) The rest of the spectrum consists of a discrete set of eigenvalues, which are
strictly positive.

We next verify the following technical result.

Lemma 4.4. The operator L verifies that 〈L−11, 1〉 �= 0.

Proof. This statement was needed and proved in [9], but we repeat the short argu-
ment for completeness. First we prove that, for i �= 0, 4, 〈ψi, 1〉 = 0.

Using the expressions for Λ and ψ4, we get that

νi〈ψi, 1〉 = 6κ2〈sn2(y; κ), ψi〉 =
12κ2

ν4
〈1 − ψ4, ψi〉.

It follows that, for i �= 4,

0 = 〈ψ4, ψi〉 =
(

1 − νiν4

12κ2

)
〈ψi, 1〉. (4.15)

Observe, however, that ν0ν4 = 12κ2, which means that (1 − νiν4/12κ2) �= 0 when-
ever i �= 0 (since νi �= ν0). By (4.15), this implies that 〈ψi, 1〉 = 0, i �= 0, 4.

From [20, theorem 2.15], the eigenfunctions of the operator L form an orthonor-
mal basis of L2[0, T ], and hence we compute 〈L−11, 1〉 by expanding 1 in the eigen-
function expansion. Note that all terms corresponding to mean value zero eigen-
functions disappear (since 〈ψi, 1〉 = 0, i �= 0, 4). Hence, the expansion for 〈L−11, 1〉
has only two non-zero terms. More precisely, we have that

〈L−11, 1〉 =
〈1, χ0〉2

α2(ν0 − ν3)‖χ0‖2 +
〈1, χ2〉2

α2(ν4 − ν3)‖χ2‖2

=
2
α3

[
B1(κ)

(κ2 − 2 − 2
√

1 − κ2 + κ4)B3(κ)

+
B2(κ)

(κ2 − 2 + 2
√

1 − κ2 + κ4)B4(κ)

]
, (4.16)

where we have used the formulae∫ 2K(κ)

0
sn2(y) dy =

2
κ2 [K(κ) − E(κ)],

∫ 2K(κ)

0
sn4(y) dy =

2
3κ4 [(2 + κ2)K(κ) − 2(1 + κ2)E(κ)]

and

B1(κ) =
(√

1 − κ2 + κ4 − 1
κ2 K(κ) +

1 + κ2 −
√

1 − κ2 + κ4

κ2 E(κ)
)2

,

B2(κ) =
(

−
√

1 − κ2 + κ4 + 1
κ2 K(κ) +

1 + κ2 +
√

1 − κ2 + κ4

κ2 E(κ)
)2

,

B3(κ) = K(κ) − 2(1 + κ2 −
√

1 − κ2 + κ4)
κ2 [K(κ) − E(κ)]

+
(1 + κ2 −

√
1 − κ2 + κ4)2

3κ4 [(2 + κ2)K(κ) − 2(1 + κ2)E(κ)],
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Figure 8. Graph of the positive function
B1(κ)/(κ2 − 2 − 2

√
1 − κ2 + κ4)B3(κ) + B2(κ)/(κ2 − 2 + 2

√
1 − κ2 + κ4)B4(κ).

B4(κ) = K(κ) − 2(1 + κ2 +
√

1 − κ2 + κ4)
κ2 [K(κ) − E(κ)]

+
(1 + κ2 +

√
1 − κ2 + κ4)2

3κ4 [(2 + κ2)K(κ) − 2(1 + κ2)E(κ)].

From the graph of the function

B1(κ)
(κ2 − 2 − 2

√
1 − κ2 + κ4)B3(κ)

+
B2(κ)

(κ2 − 2 + 2
√

1 − κ2 + κ4)B4(κ)

in figure 8, we realize that 〈L−11, 1〉 > 0, and hence lemma 4.4 is established.

Lemmas 4.2 and 4.4 allow us to verify an important property about the simplicity
of the zero eigenvalue for the operator Hc.

Corollary 4.5. Let p = 2 or p = 3. The operator Hc = −∂xL∂x (corresponding
to f(z) = z3, z2/2) defined in (3.2) then has 0 as a simple eigenvalue in L2

0[0, T ],
with an eigenfunction ψ0 = ϕc − (1/T )

∫ T

0 ϕc.

Proof. First, ϕc − (1/T )
∫

ϕc(x) dx is easily seen to be an eigenfunction, since

Hc

[
ϕc − 1

T

∫
ϕc(x) dx

]
= −∂xL[ϕ′

c] = 0,

since ϕ′
c is an eigenfunction for L.

Regarding uniqueness, let f ∈ L2
0[0, T ], so Hcf = 0. It follows that

L[f ′] = c = const.

Since Ker(L) = span{ϕ′
c} and 1 ⊥ ϕ′

c, we can resolve the last equation as f ′ =
cL−11. Thus,

0 = 〈1, f ′〉 = c〈1,L−11〉,
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whence c = 0, since 〈1,L−11〉 �= 0 by lemma 4.4. It follows that f ′ is an eigenvector
for L. Thus, f ′ = µϕ′

c, by proposition 4.3. But, then, f = µ[ϕc − (1/T )
∫

ϕc(x) dx],
since we are in the space L2

0(0, T ) and the uniqueness is established.

4.3. Spectral theory for the Schrödinger operator H of the KGZ system

First, as in the Boussinesq case, we show that the operator H has a simple
eigenvalue at 0. In addition, we identify the unique (up to a multiplicative con-
stant) eigenfunction of H. Recall that in our considerations we work with the space
L2

0[0, T ], that is, the second component contains only functions with mean value 0.
This proposition closely mirrors the corresponding statement of [24, proposition 8],
with a few notable differences.

Proposition 4.6. The self-adjoint operator H introduced in (3.8) has an eigen-
value at 0, which is simple. In addition, the unique (up to a multiplicative constant)
eigenfunction is given by

ψ0 =

⎛
⎜⎝

ϕ′
c

− 1
2w

(
ϕ2

c − T−1
∫ T

0
ϕ2

c

)
⎞
⎟⎠ .

Proof. Let
(
f
g

)
be an eigenvector corresponding to a zero eigenvalue, that is, let

H
(
f
g

)
= 0. In other words,

−wf ′′ + f − ϕ2

2w
f + ϕg′ = 0,

−(ϕf)′ − wg′′ = 0.

⎫⎬
⎭ (4.17)

Integrating the second equation in x implies that, for some constant c0, we have

g′ = −ϕf

w
+ c0,

whence the equation for f becomes

−wf ′′ + f − 3ϕ2

2w
f + c0ϕ = 0. (4.18)

We show that c0 = 0, and then f = dϕ′
c for some constant d. To that end, recall

the defining equation for ϕc, namely, (2.12), and differentiate it with respect to x.
We get that

−wϕ′′
c + ϕ′

c − 3ϕ2

2w
ϕ′

c = 0. (4.19)

Following the usual analogy with the Korteweg–de Vries equation, we introduce the
second-order differential operator

L = −w∂2
x + 1 − 3ϕ2

2w
.
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Using that dn2 + κ2 sn2 = 1 and wα2 = 1/(2 − κ2), we get

L = −w∂2
x + 1 − 3ϕ2

1

2w
(1 − κ2 sn2(αx, κ))

= −w∂2
x + 1 − 6wα2 + 6wα2κ2 sn2(αx, κ)

= wα2(−∂2
y + 6 sn2(y, κ) − κ2 − 4),

where y = αx. It follows that the first three eigenvalues of the operator L, equipped
with periodic boundary condition on [0, 2K(k)], are simple, and

λ0 = wα2(ν0 − ν3) < 0, λ1 = wα2(ν3 − ν3) = 0, λ2 = wα2(ν4 − ν3) > 0.

The corresponding eigenfunctions are χ0 = ψ0(αx), χ1 = ϕ′(x), χ2 = ψ4(αx),
where νi and ψi are given in § 4.2.2.

In particular, the kernel of L is spanned by ϕ′
c, i.e. Ker(L) = span[ϕ′

c]. Going
back to (4.18), we can rewrite it as

L[f ] + c0ϕc = 0.

Note that all solutions to this last equation are given by

f = dϕ′ − c0L−1[ϕc],

where d is an arbitrary scalar, since ϕc ⊥ span[ϕ′
c] = Ker(L). Putting this last

formula into the equation for g yields

g′ = −ϕf

w
+ c0 = −ϕ

w
(dϕ′ − c0L−1[ϕ]) + c0 = − d

w
ϕϕ′ + c0

(
ϕL−1[ϕ]

w
+ 1

)
.

Integrating the last expression in [0, T ] and using the periodicity yields

c0

(
〈ϕ, L−1[ϕ]〉

w
+ T

)
= 0. (4.20)

Thus, if we verify that 〈ϕ, L−1[ϕ]〉 �= −Tw, we can conclude from (4.20) that c0 = 0,
whence f = dϕ′. Furthermore, g′ = −(d/w)ϕϕ′, whence

g = −d
ϕ2

2w
+ const.

Recall, however, that the constant in the formula above is uniquely determined by
the fact that g has mean value 0 (i.e. g ∈ L2

0[0, T ]), whence

g = d

(
− ϕ2

2w
+

∫ T

0 ϕ2

2Tw

)
.

Thus, proposition 4.6 is established modulo the following.

Fact. We have that 〈ϕc,L−1[ϕc]〉 > −Tw/3, so, in particular, 〈ϕ, L−1[ϕ]〉 > −Tw.

From (2.12), we have that ϕ3
c = −2w2ϕ′′

c + 2wϕc, and thus

Lϕ = −wϕ′′
c + ϕc − 3

2w
ϕ3

c = 2wϕ′′
c − 2ϕc. (4.21)
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On the other hand, differentiating −w2ϕ′′
c +wϕc −ϕ3

c/2 = 0 with respect to w (and
dividing by w) and using (4.21) to express ϕ′′

c results in

L
[
dϕc

dw

]
= 2ϕ′′ − 1

w
ϕc =

1
w

ϕc +
1
w

Lϕc.

Taking L−1 in the last identity yields

L−1ϕc = w
dϕc

dw
− ϕc.

Since
∫ K(κ)
0 dn2(y, κ) dy = E(κ), we compute that

∫ T

0 ϕ2 dx = (16w2/T )E(κ)K(κ).
Therefore,

〈L−1ϕc, ϕc〉 = w

〈
ϕc,

dϕc

dw

〉
− 〈ϕc, ϕc〉

=
w

2
∂w[‖ϕc‖2] − ‖ϕc‖2

=
w

2
∂w

[
16w2

T
E(κ)K(κ)

]
− 16w2

T
E(κ)K(κ)

=
8w3

T

d
dκ

[K(κ)E(κ)]
dκ

dw
.

To compute dκ/dw, note that, from (2.16), we have that 2wα = ϕ1, whence

4w(2 − κ2)K2(κ) = T 2. (4.22)

Differentiating (4.22) with respect to w, we get that

dκ

dw
= − (2 − κ2)K2(κ)

wd[(2 − κ2)K2(κ)]/dκ
. (4.23)

Thus, using (4.22),

〈L−1ϕc, ϕc〉 = −8w2

T

d
dκ

[K(κ)E(κ)]
(2 − κ2)K2(κ)

d[(2 − κ2)K2(κ)]/dκ

= −wT

[
2

d[K(κ)E(κ)]/dκ

d[(2 − κ2)K2(κ)]/dκ

]
.

Looking at figure 9, we realize that, since

1
3

= lim
κ→0

2
d[K(κ)E(κ)]/dκ

d[(2 − κ2)K2(κ)]/dκ
� 2

d[K(κ)E(κ)]/dκ

d[(2 − κ2)K2(κ)]/dκ
,

we have that
〈L−1ϕc, ϕc〉 � − 1

3wT,

which establishes the claim.

The next thing one needs to establish, in order to apply theorem 4.1, is that the
operator H for the KGZ system (defined in (3.8)) has a simple negative eigenvalue.
This result should be compared with the corresponding statement in [24, proposi-
tion 9] for the whole-line case.
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Figure 9. Graph of the function 2(d[K(κ)E(κ)]/dκ)/(d[(2 − κ2)K2(κ)]/dκ).

Proposition 4.7. The operator H, defined in (3.8), has a simple negative eigen-
value.

Proof. Consider the eigenvalue problem in the form

H
(

f

g

)
= −a2

(
f

g

)

for some a ∈ (0,∞). As in proposition 4.6, this can be rewritten as2

−wf ′′ + f − ϕ2

2w
f + ϕg′ = −a2f,

−(ϕf)′ − wg′′ = −a2g.

⎫⎬
⎭ (4.24)

From the second equation, we may resolve for g that

g = (a2 − w∂2
x)−1∂x[ϕcf ]. (4.25)

This last formula requires a bit of justification, but, basically, since ∂x[ϕf ] is guar-
anteed to have mean value 0, it suffices to define (a2 − w∂2

x)−1 (where a2 > 0,
w > 0) on L2[0, T ] by

(a2 − w∂2
x)−1

[ ∞∑
n=−∞

aneinx

]
:=

∞∑
n=−∞

an

a2 + 4π2wn2/T 2 e2πinx/T ,

whence the formula for g in (4.25) makes sense. In fact, L2
0[0, T ] is invariant under

the action of (a2 − w∂2
x)−1 and, hence, g ∈ L2[0, T ]. Furthermore, we use (4.25) to

deduce the following formula for g′:

g′ = ∂2
x(a2 − w∂2

x)−1[ϕcf ] = −ϕf

w
+

a2

w
(a2 − w∂2

x)−1[ϕcf ].
2Note that the second equation requires that

∫ T
0 g(x) dx = 0. This means, in particular, that

the statement for existence of a negative eigenvalue is invalid, unless the second component of the
Hilbert space is L2

0[0, T ].
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We put this into the first equation of (4.24) to obtain the following equation for f :

−wf ′′ + (1 + a2)f − 3ϕ2
c

w
f +

a2

w
[ϕc(a2 − w∂2

x)−1ϕcf ] = 0. (4.26)

Introduce a one-parameter family of self-adjoint operators:

Ma := −w∂2
x + (1 + a2) − 3ϕ2

2w
+

a2

w
[ϕc(a2 − w∂2

x)−1(ϕc·)].

In order to finish the proof of proposition 4.7, we need to establish that there is
a unique a0 > 0 such that the operator Ma0 has an eigenvalue 0 and such an
eigenvalue is simple. We first show that there exists a0 > 0 such that Ma0 has an
eigenvalue at 0, and we then show that this eigenvalue 0 is simple for Ma0 .

To that end, we establish the following.

Claim. For a � b � 0, we have Ma � Mb + (a2 − b2) Id � Mb.

Assuming the validity of the claim, we complete the proof of proposition 4.7.
Define λ(a) to be the minimal eigenvalue for Ma, that is,

λ(a) := inf{λ : λ ∈ σ(Ma)} = inf
‖f‖=1

〈Maf, f〉.

Clearly, the function a → λ(a) is continuous (in fact, more generally, a → Ma is
continuous as a function from R

1 → B(L2[0, T ])). Moreover, as a consequence of
the claim, λ(a) is a strictly increasing function of its argument. In order to show
the existence of a0, it suffices to show that a → λ(a) changes sign in [0,∞) (and,
hence, vanishes at some a0 > 0). But at a = 0 we have that

M0 = −w∂2
x + 1 − 3ϕ2

2w
= L,

which was considered before. Since we have checked that L has a (simple) negative
eigenvalue, −δ2 say, it follows that λ(0) < 0. On the other hand, by the claim,

Ma � M0 + a2 Id = L + a2 Id .

In particular, for every a > δ, we have Ma > (a2−δ2) Id, whence λ(a) � a2−δ2 > 0.
Thus, for any b > δ, the function λ(a) changes sign (exactly once) in the interval
(0, b). We have shown that there exists a0 : λ(a0) = 0.

We now have to show the second part of the proposition, namely, that 0 is
an isolated eigenvalue for Ma0 . Let φ0 be the eigenvector for the simple negative
eigenvalue for M0 = L. Note that, by proposition 5.1, the second eigenvalue of L
is 0, which means that M0|φ0

⊥ = L|φ0
⊥ � 0. In addition, by the claim, we have that

Ma0 � M0 + a2
0 Id = L + a2

0 Id, and thus, by the Courant minimax principle for the
second eigenvalue,

λ1(Ma0) = sup
z �=0

inf
u⊥z : ‖u‖=1

〈Ma0u, u〉 � a2
0 + inf

u⊥φ0 : ‖u‖=1
〈Lu, u〉 � a2

0 > 0.

It follows that λ0(Ma0) = 0, while λ1(Ma0) > 0, which shows the simplicity of the
zero eigenvalue for Ma0 . It now remains to establish the claim.
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Proof. By the form of the operators Ma, it suffices to show for all trigonometric
polynomials f ∈ L2[0, T ] that, for a � b,

a2〈ϕc(a2 − w∂2
x)−1[ϕcf ], f〉 � b2〈ϕc(b2 − w∂2

x)−1[ϕcf ], f〉.

But, letting an be the Fourier coefficients of ϕcf , that is,

ϕcf =
∑

n

an
e2πinx/T

√
T

or an =
1√
T

∫ T

0
ϕc(x)f(x)e−2πinx/T dx,

we see that

b2〈ϕc(b2 − w∂2
x)−1[ϕcf ], f〉 =

∑
n

b2

b2 + 4π2wn2/T 2 |an|2

�
∑

n

a2

a2 + 4π2wn2/T 2 |an|2

= a2〈ϕc(a2 − w∂2
x)−1[ϕcf ], f〉,

where we have used that

b2

b2 + 4π2wn2/T 2 � a2

a2 + 4π2wn2/T 2

whenever w > 0, a � b � 0.

5. Linear stability for the Boussinesq equation: proof of theorems 3.2
and 3.3

Now that we have the solutions, we need to check that the operator Hc satisfies the
requirements in theorem 4.1, after which we need to compute the index ω∗(Hc).
We collect the necessary results in the following propositions.

Proposition 5.1 (spectral properties of Hc). The operator Hc, as given in (3.2),
satisfies (4.1)–(4.3) for p = 2, 3.

Our next result gives a precise formula for the index ω∗(Hc).

Proposition 5.2. We have the following.

(1) For p = 2,

ω∗(Hc) =
√

w

2

√
F̃ (κ),

where F̃ (κ) is defined in (5.6).

(2) For p = 3,

ω∗(Hc) =
√

w

2

√
[4E(κ) − π2/K(κ)][(2 − κ2)E(κ) − 2(1 − κ2)K(κ)]

(2 − κ2)(E2(κ) − (1 − κ2)K(κ))
.

Remark 5.3. The function under the square root is positive for all values of κ :
0 < κ < 1.
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We now complete the proof of theorem 3.2, based on the results of propositions 5.1
and 5.2.

Let p = 3. We apply theorem 4.1, from which we get stability, provided that
|c| � ω∗(H). Thus, we need to resolve the inequality

|c| �
√

1 − c2

2

√
M(κ),

where we have taken

M(κ) :=
[4E(κ) − π2/K(κ)][(2 − κ2)E(κ) − 2(1 − κ2)K(κ)]

(2 − κ2)(E2(κ) − (1 − κ2)K(κ))
,

and we obtain, for the interval of the stable speeds, that

|c| �
√

M(κ)
4 + M(κ)

,

as stated in theorem 3.2.
Similarly, for p = 2, according to proposition 5.2 we have that

|c| �
√

1 − c2

2

√
F̃ (κ),

whence we conclude similarly that

|c| �
√

F̃ (κ)
4 + F̃ (κ)

is a necessary and sufficient condition for stability of the corresponding travelling
wave.

5.1. Proof of proposition 5.1

We note that standard arguments imply the validity of (4.2), since H is a fourth-
order operator. The reality condition (4.3) is also trivially satisfied, as all our poten-
tials are real valued. The condition that is hard to check is (4.1). We need to verify
that the operator H has a simple eigenvalue at 0. This was indeed the conclusion
of corollary 4.5.

Thus, it remains to show that the operator H defined in (3.2) has a simple
negative eigenvalue, and proposition 5.1 follows. This is a non-trivial fact. Interest-
ingly enough, this was needed (and proved in our paper [17]) when we considered
the transverse instability of the same spatially periodic waves in the Kadomtsev–
Petviashvili (KP) and modified KP models, that is, exactly for the operators con-
sidered here, corresponding to the cases f(u) = u2/2 and f(u) = u3. More pre-
cisely, we have derived a necessary condition such that the first two eigenvalues of
H = −∂xL∂x satisfy

λ0(H) < λ1(H) = 0,

which was verified for p = 2, 3. This is exactly what is needed here. The interested
reader may consult [17, § 4.1] for a full and complete proof.



482 S. Hakkaev, M. Stanislavova and A. Stefanov

5.2. Proof of proposition 5.2

5.2.1. The case p = 2

We compute the index of stability ω∗(H). We have that

〈H−1ψ′
0, ψ

′
0〉 =

1
‖ϕc + A‖2 〈H−1ϕ′

c, ϕ
′
c〉, (5.1)

where A = −(1/T )
∫ T

0 ϕc dx. Let f : H[f ] = ϕ′
c. It follows that −Lf ′ = ϕc + b for

some constant b. Hence,
−f ′ = L−1ϕc + bL−11. (5.2)

Thus,

〈H−1ψ′
0, ψ

′
0〉 =

1
‖ϕc + A‖2 〈f, ϕ′

c〉 =
1

‖ϕc + A‖2 〈L−1ϕc, ϕc〉 + b〈L−11, ϕc〉. (5.3)

From (5.2), we have that 0 = −〈f ′, 1〉 = 〈L−1ϕc, 1〉 + b〈L−11, 1〉, whence

b = −〈L−1ϕc, 1〉
〈L−11, 1〉 . (5.4)

Combining (4.8), (5.1) and (5.4) yields

〈H−1ψ′
0, ψ

′
0〉 =

1
‖ϕc + A‖2

(
〈L−1ϕc, ϕc〉 − 〈L−1ϕc, 1〉〈L−11, ϕc〉

〈L−11, 1〉

)

=
1

‖ϕc + A‖2

(
1
4c

d
dc

〈ϕc, ϕc〉 − 〈L−1ϕc, 1〉〈L−11, ϕc〉
〈L−11, 1〉

)
.

From (2.2), after integrating∫ T

0
ϕ2

c dx = 2w

∫ T

0
ϕc dx =

2w

T
F (κ),

we use (4.12) to find that

1
4c

d
dc

〈ϕc, ϕc〉 =
1
T

[−F (κ) − 256K4(κ)F ′(κ)G(κ)(1 − κ2 + κ4)]. (5.5)

We next use (4.8) and (4.10)–(4.12) to compute

〈L−11, ϕc〉 = 〈L−1ϕc, 1〉

=
1
2c

(
∂c

∫ T

0
ϕc dx

)
= −wT 3F ′(κ)G(κ)

= −256
wT

[K4(κ)F ′(κ)G(κ)(1 − κ2 + κ4)].

Finally, using the formulae for
∫ T

0 ϕ2
c dx,

∫ T

0 ϕc dx allows us to find

‖ϕc + A‖2 =
w[2F (κ) − F 2(κ)/16

√
1 − κ2 + κ4K2(κ)]

T
.
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Putting all these formulae together yields

〈H−1ψ′, ψ′〉 =
1

w[2F (κ) − F 2(κ)/16
√

1 − κ2 + κ4K2(κ)]

×
[
−F (κ) − 256K4(κ)F ′(κ)G(κ)(1 − κ2 + κ4)

− 4096K6(κ)(1 − κ2 + κ4)3/2(F ′(κ)G(κ))2

1 − 16
√

1 − κ2 + κ4K2(κ)F ′(κ)G(κ)

]
.

Thus, if we assign the function

F̃ (κ) :=
[
2F (κ) − F 2(κ)

16
√

1 − κ2 + κ4K2(κ)

]

×
(

F (κ) + 256K4(κ)F ′(κ)G(κ)(1 − κ2 + κ4)

+
4096K6(κ)(1 − κ2 + κ4)3/2(F ′(κ)G(κ))2

1 − 16
√

1 − κ2 + κ4K2(κ)F ′(κ)G(κ)

)−1

, (5.6)

we get that 〈H−1ψ′, ψ′〉 = −1/wF̃ (κ). Thus, the index formula holds as stated in
proposition 5.2, namely,

ω∗(H) =
w

2

√
F̃ (κ).

5.2.2. The case p = 3

In this section, we compute the index of stability. For this we need to first consider

〈H−1ψ′
0, ψ

′
0〉 =

1
‖ϕc + A‖2 〈H−1ϕ′

c, ϕ
′
c〉,

where A = −(1/T )
∫ T

0 ϕc dx = −α
√

2π/2K(κ). Thus, we need to compute H−1[ϕ′
c].

Let f : H[f ] = ϕ′
c. It follows that −Lf ′ = ϕc + b for some constant b. We conclude

that
−f ′ = L−1ϕc + bL−11.

Note that L−11 is well defined, since 1 ⊥ ϕ′
c, which spans Ker(L). Thus,

〈H−1ψ′
0, ψ

′
0〉 =

1
‖ϕc + A‖2 〈f, ϕ′

c〉

=
1

‖ϕc + A‖2 〈−f ′, ϕc〉

=
〈L−1ϕc, ϕc〉 + b〈L−11, ϕc〉

‖ϕc + A‖2 . (5.7)

Differentiating (2.1) (with a = 0) with respect to c yields

L−1ϕc =
1
2c

dϕc

dc
. (5.8)
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From (2.9), we get that
∫ T

0 ϕ2
c dx = 8K(κ)E(κ)/T and

〈L−1ϕc, ϕc〉 =
1
2c

〈
dϕc

dc
, ϕc

〉

=
1
4c

∂c

[ ∫ T

0
ϕ2

c dx

]

= − 4
T

E2(κ) − (1 − κ2)K2(κ)
κ(1 − κ2)

dκ

dw
. (5.9)

In addition, note that

〈L−11, ϕc〉 = 〈L−1ϕc, 1〉 =
1
2c

∂c

[ ∫ T

0
ϕc(x; κ) dx

]
= 0,

and hence

〈H−1ψ′
0, ψ

′
0〉 =

〈L−1ϕc, ϕc〉
‖ϕc + A‖2 .

From the relations (2.9), we have

w =
2 − κ2

2
ϕ2

1 =
4K2(κ)(2 − κ2)

T 2 ,

which, after differentiating with respect to w, allows us to write

dκ

dw
=

T 2

8
1

(2 − κ2)K(κ) dK(κ)/dκ − κK2(κ)
.

Thus,

〈L−1ϕc, ϕc〉 = −T

2
(E2(κ) − (1 − κ2)K2(κ))

κ(1 − κ2)
1

(2 − κ2)K(κ) dK(κ)/dκ − κK2(κ)
.

Using that dK(κ)/dκ = (E(κ) − (1 − κ2)K(κ))/κ(1 − κ2), we obtain that

〈L−1ϕc, ϕc〉 = − 1
α

E2(κ) − (1 − κ2)K2(κ)
(2 − κ2)E(κ) − 2(1 − κ2)K(κ)

= − 1
α

B(κ). (5.10)

Since
∫ 2K(κ)
0 dn(y; κ) dy = π, we get that

‖ϕc + A‖2 = α

(
4E(κ) − π2

K(κ)

)
= αC(κ). (5.11)

From the above relations and (5.7), we get that

〈H−1ψ′
0, ψ

′
0〉 = − 2 − κ2

wC(κ)
B(κ). (5.12)
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Thus,

ω∗(H) =
1

2
√

−〈H−1ψ′
0, ψ

′
0〉

=
√

w

2

√
C(κ)

(2 − κ2)B(κ)

=
√

w

2

√
[4E(κ) − π2/K(κ)][(2 − κ2)E(κ) − 2(1 − κ2)K(κ)]

(2 − κ2)(E2(κ) − (1 − κ2)K(κ))
,

which is exactly the claim of proposition 5.2.

6. Linear stability of the KGZ system: proof of theorem 3.4

We have already checked the conditions on the operator H, defined in (3.8) in § 4.3.
Namely, we established the simplicity of the eigenvalue at 0 in proposition 4.6, and
we then verified the existence and simplicity of a single negative eigenvalue. It now
remains to compute the index ω∗(H), after which we obtain a characterization of
the linear stability by theorem 4.1, namely, |c| � ω∗(H).

Proposition 6.1. For κ ∈ (0, κ0), κ0 = 0.937095 . . . , 〈H−1ψ′
0, ψ

′
0〉 < 0. For

κ ∈ (κ0, 1), 〈H−1ψ′
0, ψ

′
0〉 > 0, and

ω∗(H) =
√

w

2
√

N(κ)
,

where N is defined in (6.6). Note that N(κ) > 0, κ ∈ (κ0, 1).

Assuming the validity of proposition 6.1, we now complete the proof of theo-
rem 3.4. To that end, observe that, since 〈H−1ψ′

0, ψ
′
0〉 < 0, κ ∈ (0, κ0), we have

instability whenever κ ∈ (0, κ0). For κ ∈ (κ0, 1), we need to solve the inequality

1 > |c| �
√

w

2
√

N(κ)
=

√
1 − c2

2
√

N(κ)
,

which results in the following necessary and sufficient condition for linear stability:

1 > |c| � 1√
1 + 4N(κ)

, κ ∈ (κ0, 1).

This is exactly the statement of theorem 3.4.

6.1. Proof of proposition 6.1

We now estimate the index of stability 〈H−1ψ′
0, ψ

′
0〉,

ψ0 = m

⎛
⎜⎝

ϕ′
c

− ϕ2
c

2w
+

1
2wT

∫ T

0
ϕ2

c dx

⎞
⎟⎠ ,
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where m is such that ‖ψ0‖ = 1. Thus, we need to compute

H−1

⎛
⎜⎝

ϕ′′
c

−
(

ϕ2
c

2w

)′

⎞
⎟⎠ .

We have that

−wf ′′ + f − ϕ2
c

2w
f + ϕcg

′ = ϕ′′
c , −(ϕcf)′ − wg′′ = −

(
ϕ2

c

2w

)′
.

Integrating the second equation once yields

g′ =
ϕ2

c

2w2 +
c1

w
− ϕcf

w
, (6.1)

where c1 is a constant of integration and needs to be determined. The first equation
becomes

−wf ′′ + f − 3ϕ2
c

2w
f +

ϕ3
c

2w2 +
c1ϕc

w
= ϕ′′

c

or

Lf +
ϕ3

c

2w2 +
c1ϕc

w
= ϕ′′

c . (6.2)

On the other hand, taking the derivative with respect to w in (2.12) yields

ϕ′′
c = Ldϕc

dw
+

ϕ3
c

2w2 . (6.3)

From (6.2) and (6.3), we have that

L
(

f − dϕc

dw

)
= −c1

w
ϕc

and, hence,

f =
dϕc

dw
− c1

w
L−1ϕc = (1 − c1)

dϕ

dw
+

c1

w
ϕc. (6.4)

Putting this into (6.1) and integrating, we get

c1 =

∫ T

0 ϕc(dϕc/dw) dx − (1/2w)
∫ T

0 ϕ2
c dx

T + (1/w)〈ϕc,L−1ϕc〉

=

∫ T

0 ϕc(dϕc/dw) dx − (1/2w)
∫ T

0 ϕ2
c dx

T +
∫ T

0 ϕc(dϕc/dw) dx − (1/w)
∫ T

0 ϕ2
c dx

. (6.5)

Using that
∫ K(κ)
0 ϕ2

c = (16w2/T )E(κ)K(κ) and (4.23), we have that∫ T

0
ϕc

dϕc

dw
dx =

1
2

d
dw

∫ T

0
ϕ2

c dx

=
1
2

d
dw

[
16w2

T
E(κ)K(κ)

]

=
8w

T

[
2E(κ)K(κ) − (2 − κ2)K2(κ) d[E(κ)K(κ)]/dκ

d[(2 − κ2)K2(κ)]/dκ

]
.



Linear stability for periodic waves of Boussinesq and KGZ 487

0.92 0.94 0.96 0.98 1.00

−0.4

−0.2

0.2

0

Figure 10. The function N(κ), together with 1
4 . Recall that,

for stability, one needs 〈H−1ψ′
0, ψ

′
0〉 < 0 and, hence, N(κ) > 0.

The above formula allows us to express c1 as a function of κ only:

c1 =
2E(κ)K(κ)d[(2 − κ2)K2(κ)]/dκ − 2(2 − κ2)K2(κ)d[E(κ)K(κ)]/dκ

(2 − κ2)K2(κ)d[(2 − κ2)K2(κ)]/dκ − 2(2 − κ2)K2(κ)d[E(κ)K(κ)]/dκ

=
(2 − κ2)E2(κ) − 8(1 − κ2)E(κ)K(κ) + 2(1 − κ2)(2 − κ2)K2(κ)

2(2 − κ2)2E(κ)K(κ) − 2(1 − κ2)(2 − κ2)K2(κ) − 2(2 − κ2)E2(κ)
.

Now,

〈H−1ψ′
0, ψ

′
0〉 = m2

〈
H

(
f

g

)
,

(
f

g

) 〉

= m2

〈⎛
⎜⎝

ϕ′′
c

−
(

ϕ2
c

2w

)′

⎞
⎟⎠ ,

(
f

g

)〉

= m2
(

〈ϕ′′
c , f〉 +

〈
g′,

ϕ2
c

2w

〉)
.

From (2.12) and the expression for f and g′, we get that

〈ϕ′′
c , f〉 =

1
T

(2J2 − J3 − J4 + J5),
〈

g′,
ϕ2

c

2w

〉
=

1
T

(J1 + J2 − J3 − J4),

where

I1 =
∫ K(κ)

0
dn4(y, κ) dy =

4 − 2k2

3
E(k) − 1 − k2

3
K(k),

J1 =
T

2w3 〈ϕ2
c , ϕ

2
c〉 = 16

K(κ)
2 − κ2 I1,

J2 =
Tc1

2w2 〈ϕc, ϕc〉 = 8c1E(κ)K(κ),
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J3 =
T (1 − c1)〈ϕc dϕc/dw, ϕ2

c〉
2w2

= 8(1 − c1)
[
3K(κ)
2 − κ2 I1 − (2 − κ2)K2(κ)

d[(2 − κ2)K2(κ)]/dκ

d
dκ

[
K(κ)
2 − κ2 I1

]]
,

J4 =
Tc1

2w3 〈ϕ2
c , ϕ

2
c〉 = 32c1

K(κ)
2 − κ2 I1,

J5 =
T (1 − c1)

w

〈
ϕc,

dϕc

dw

〉

= 8(1 − c1)
[
2K(κ)E(κ) − (2 − κ2)K2(κ) d[E(κ)K(κ)]/dκ

d[(2 − κ2)K2(κ)]/dκ

]
.

In addition, we have that

1
m2 =

∥∥∥∥∥∥∥
⎛
⎜⎝ ϕ′

c

− ϕ2
c

2w
+

1
2wT

∫ T

0
ϕ2

c dx

⎞
⎟⎠

∥∥∥∥∥∥∥
2

= 〈ϕ′
c, ϕ

′
c〉 +

1
4w2 〈ϕ2

c , ϕ
2
c〉 − 1

4w2T

( ∫ T

0
ϕ2

c dx

)2

.

Using that dn′(y) = −κ2 sn(y) cn(y) and sn2(y) + cn2(y) = 1, we get that

〈ϕ′
c, ϕ

′
c〉 = ϕ2

1ακ4
[ ∫ 2K(κ)

0
sn2(y, κ) dy −

∫ 2K(κ)

0
sn4(y, κ) dy

]

=
8w

3T

K(κ)
2 − κ2 [2(2 − κ2)E(κ) − 4(1 − κ2)K(κ)]

and

1
m2 =

w

T

[
8K(κ)

3(2 − κ2)
[2(2 − κ2)E(κ) − 4(1 − κ2)K(κ)] +

16K(κ)
2 − κ2 I1 − 16

2 − κ2 E2(κ)
]

=
16w

T

[
E(κ)K(κ) − 1 − κ2

2 − κ2 K2(κ) − 1
2 − κ2 E2(κ)

]
.

Combining the above relations yields

〈H−1ψ′
0, ψ

′
0〉 =

J1 + 3J2 − 2J3 − 2J4 + J5

16w[E(κ)K(κ) − (1 − κ2)K2(κ)/(2 − κ2) − E2(κ)/(2 − κ2)]

:= −N(κ)
w

. (6.6)
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459–503.

23 T. Ozawa, K. Tsutaya and Y. Tsutsumi. Well-posedness in energy space for the Cauchy
problem of the Klein–Gordon–Zakharov equations with different propagation speeds in
three space dimensions. Math. Ann. 313 (1999), 127–140.

24 M. Stanislavova and A. Stefanov. Linear stability analysis for traveling waves of second
order in time PDEs. Nonlinearity 25 (2012), 2625–2654.

25 M. Tsutsumi and T. Matahashi. On the Cauchy problem for the Boussinesq type equation.
Math. Japon. 36 (1991), 371–379.

26 V. E. Zakharov. Collapse of Langmuir waves. JETP 35 (1972), 908–914.

(Issued 6 June 2014 )




