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Consider an abstract Hamiltonian system which is invariant under a one- 
parameter unitary group of operators. By a “solitary wave” we mean a solution the 
time development of which is given exactly by the one-parameter group. We find 
sharp conditions for the stability and instability of solitary waves. Applications are 
given to bound states and traveling waves of nonlinear PDEs such KleinGordon 
and Schrddinger equations. 0 1987 Academic Press, Inc. 

1. INTR0DUCT10N 

Systems with conserved energy abound in mathematics and physics. In 
this paper and its sequel we consider abstract Hamiltonian systems of the 
form 

$ = JE’(u(t)), (1) 

which are locally well-posed in a space X; here E is a functional (the 
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“energy”) and J is a skew-symmetric linear operator. We assume that 
Eq. (1) is invariant under a representation T( .) of a group G on X. For the 
present we shall assume G is the reals R under addition. The solutions the 
stability of which we study are not invariant under G but are “translates” of 
a fixed vector C#J E X; namely, 

u(t) = nothi (2) 

where #= 4, depends on WE R. They may be interpreted physically as 
“solitary waves” or “bound states.” Let us call the set {T(g)& g E G} the 
&orbit. We say the #-orbit is stable if a solution u(t) of (1) exists for all 
t 2 0 and forever remains near the &orbit in the norm of X provided its 
initial datum u(0) is sufficiently close to the d-orbit in the norm of X. 

If o = 0 then 4 is a stationary solution of (1) and E’(d) = 0. Its stability 
is determined by the linearized operator JE”(#). It is much easier however 
to analyze the self-adjoint operator E”(4). Formally, but formally only, a 
sufficient condition for stability is that E”(4) b 0. 

Associated with the group G (= IR in the present paper) is another con- 
served functional Q (interpreted as the “charge” in certain applications). 
The vector 4 is a critical point of E - oQ. We assume that the “linearized 
Hamiltonian” 

H=l?‘(q5)-~0Q”(q5) (3) 

has at most one negative eigenvalue. This means there can be at most one 
unstable direction near 4. The invariance implies that zero is in the spec- 
trum of H. If all the rest of the spectrum is positive, then the &orbit is 
stable. Our main result is the following (Theorem 2). Assume H has exactly 
one negative eigenvalue. Then the b-orbit is stabZe if and only if the scalar 
function 

4~) = E(4,) - wQ(dwu) (4) 

is convex at o. This also turns out to be equivalent to Q(dw) decreasing in 
o. A geometric way to state this condition is that the hypersurface 
fugxl QkL)) d oes not locally meet the “cone” (us X) E(u)-oQ(u) < 
E(d<J - ~QkL,,). Eq uivalently again, the hyperplane Q’(c#)~ does not meet 
the cone ( y E H ) (Hy, v) -C 0). For precise statements, see the next sec- 
tion. 

In Section 2 we state the assumptions and the main result. In Section 3 
we prove the stability. The main intermediate step is to show that 4 
minimizes E subject to constant Q. In Section 4 we prove the instability. To 
do this we construct a kind of Liapunov functional A in a neighborhood U, 
of the #-orbit which is strictly monotone on trajectories in U,. We basically 
follow the method of [ 131. Some extensions are given in Section 5. 
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In [4, 11, 12, 133 the stability and instability of the bound states 
exp(iwt)b(x) of lowest energy of the Klein-Gordon and Schrodinger 
equations 

u,,-du+f(24)=0, iu, - Au +f(u) = 0, 

where x E R”, were studied. In these cases the group R acts as mul- 
tiplication by exp(itl), 0 E R. In Section 6 we indicate how to recover the 
same results from our abstract theorem. Our proof of stability in Section 3 
is however much simpler than that in [ 111. Our proof of instability is to a 
large extent an abstraction of the one in [13]. For special types of non- 
linear terms satisfying convexity-like conditions, alternative proofs are 
possible (as in [2]), but we are interested in the general case. The stable 
and the critical (borderline) cases have also recently been studied in 
[14-161. The spectrum of the linearized equation has also been studied in 
[6]. Some problems of this type have also been studied in [8,9] in terms 
of the linearized equation. 

In Section 6 we give a series of examples: 

(A) traveling waves of nonlinear wave equations, 
(B) Klein-Gordon and Schrodinger bound states from [13], 

(C) bound states in the presence of a potential, 

(D) standing waves in an optical wave guide, and 

(E) solitary waves of generalized KdV equations. 

The goal of our second paper (II) is to study a general group G. The 
setup is the following. Let G be a Lie group of dimension m with Lie 
algebra g. Let T be a unitary representation of G on X which leaves E and 
J invariant. Let Q: g x X+ R be the invariant associated to T. That is, 
Q’(w,u)dQ/du=J-lc( ) f o u or OE g and UED(T~(~)) c X. Consider 
now solutions 4, of the equation 

E’(4) = Q’(a, 4,) 

for o E g. Then the “solitary wave” u(t) = T(exp(tw))qb, satisfies Eq. (1). We 
study its stability as a solution of (1). 

2. MAIN RESULTS 

Let X be a real Hilbert space with inner product ( , ). If X* is its dual, 
there is a natural isomorphism I: X-+ X* defined by 

(Zu, u> = (4 u), 
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where ( , ) denotes the pairing between X and X*. In this paper we will 
use I explicitly, but we will always identify X** with X in the natural way. 
Warning: when we refer to adjoints of linear operators we will mean with 
respect to ( , ) and not ( , ). 

Let J be a closed linear operator from X* to X with dense domain 
D(J) c X*. We assume that J is skew symmetric; that is, 

(Ju, v> = -(u, Jv) for U, v E D(J) (2.1) 

and also that 

J is onto. (2.2 

[We do not need J to be onto but only that 4, and x,, (defined later 
belong to the range of J.] 

Let E: X-+ R be a C* functional defined on all of X. We write its 
derivative as (E’(u), v), where E’: X+ X*, and its second derivative as 
(E”(u)w, v). 

Let T be a one-parameter group of unitary operators on X. Thus T(s) is 
a unitary operator from X onto X for each SE R; that is, (1 T(s)u(/ = Ilull; 
which is strongly continuous and satisfies T(s) T(r) = T(s + r) for all real s 
and r. Let T’(0) denote the infinitesimal generator, an operator, X -+ X, 
which is skew-adjoint with respect to the inner product ( , ) with dense 
domain. Using our definition of adjoint the unitarity of T can be expressed 
as 

T*(s)z= ZT( -s) for sE(W, 

where T*(s): X* +X*. 
We assume that E is invariant under T; that is, 

E( T(s)u) = E(u) for s E IF?, u E X. 

Differentiating (2.3) with respect to U, we get 

T(s)*E’( T(s)u) = E’(u). 

Differentiating again, we get 

T(s)*E”(T(s)u) T(s) = E”(u). 

Differentiating (2.3) with respect to s at s = 0, we get 

(E’(u), T(O)u) = 0 for uED(T’(0)). 

(2.3) 

(2.4) 

(2.5) 

(2.6) 
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We assume that J “commutes” with T, in the sense that 

T(s)J= JT*( -s). (2.7) 

This can be written equivalently as T(s) JT*(s) = J or as JZT(s) = T(s)JI. 
In particular (2.7) implies that T*(s)[D(J)] = D(J). Formally, if we dif- 
ferentiate (2.7) with respect to s at s=O, we get T’(O)J= -J(T’(O))*. 
Hence J-IT’(O)= -(T’(O))*J-‘= +(J-‘T’(O))*. In order to make this 
precise, we make the further assumption that 

there is a bounded linear operator B: X + X* such that B* = B 

and the operator JB is an extension of T’(0). 
(2.8 1 

We define another functional Q: X+ I4 by 

Q(u) = $(Bu, u). (2.9) 

It follows that Q is also invariant under T: 

Q(T(sb) = Q(u) for sE[W, uEX. (2.10) 

In order to prove (2.10), first let UED(T(O)). Then T(s)u~ll(T’(O)) c 
D(JB) and 

f Q( T(sb) = (Q’( T(s)u)> T’(O) T(sb > 

= (BT(s)u, JBT(s)u) = 0 

by (2.8) and (2.9). This proves (2.10) for a dense class of U. For general 
UEX, we simply approximate by elements of D(T’(0)). 

Differentiating (2.9) and (2.10) we have Q’(U) = Bu and Q”(U) = B for all 
u E X. Furthermore, 

(4 W)*Q’(T(G4 = Q’W 
(b) T*(s) BT(s) = B 

(c) BT’(O)= -T’(O)*B 

(d) B[D(T’(O))] = D(T’(O)*). 

The evolution equation which we shall study is 

$ = JE’(u(t)), u(t) E x. 

(2.11) 

(2.12) 
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Note that E and Q are formally conserved under the flow of (2.12). 
Namely, 

and 

= -( T(O)u, E’(u)) = 0 by (2.6). 

The equation will be considered only in a weak sense. 

DEFINITION. By a solution of (2.12) in a time interval 9, we mean a 
function 

u E C(4; X) (continuous with values in X) 

such that 

$ (4th $> = (E’(4f)h -Jlcl> (2.13) 

in 9’(Y) for all + E D(J) c X*. 

Assumption 1 (Existence of Solutions). For each U,,E X there exists 
to > 0 depending only on ~1, where )J+,ll d p, and there exists a solution u of 
Eq. (2.12) in the interval Y = [0, to) such that 

(a) u(O) = u,, and 

(b) E(u(l)) = Ebd, Q(4t)) = Q(ud for t E 9. 

This assumption can be weakened, say by introducing another Banach 
space, but we refrain from doing so here. 

We remark that if u(t) is a solution of (2.12), so is T(s) u(t) for all s E R. 
Indeed, by (2.4) and (2.7) 

<E’(n) u(t)), J$ > 

= <E’@(f)), T( -s) Jrcl> = <E’(4t)), JT*(sM > 

= -<JE’(u(t)), T*(s)l//) = -$ (u(t), P(s)+) 

= -$ (m)u(th $> for all tj? 15 D(J). 
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DEFINITION. By a bound state we mean a solution of the evolution 
equation of the special form 

U(l) = qothf4 (2.14) 

where o~lR and VEX. 

If d E D( T(0)) satisfies the “stationary” equation 

E’(b) = wQ’(b), (2.15) 

then T(wt)+ is a bound state. Indeed, 

$ T(ot)q5 = UT(O) T(ot)qd = wJz3T(ot)qs 

=oJT*(-ot)Q’(#)=.ZT*(-ot)E’(q4) 

= A??( T(ot)(b) 

by (2.8), (2.11), and (2.4). 

Assumption 2 (Existence of Bound States). There exist real oi < w2 and 
a mapping 

(a) o -+ 4, from the open interval (w,, w2) into X which is C’ such 
that for each OE (w,, 02) 

(b) E’(h) = uQ’(#,), 
(c) qb, e D( T(0)3) n D(JZT(O)*), 

(d) T(OMo, f 0. 

We define the scalar 

d(w) = E(4,) - wQ(#cJ (2.16) 

and the operator from X to X* 

H, = E”(AJ - uQ”(4d (2.17) 

Observe that H, is self-adjoint in the sense that Hz = H,. This means that 
I-‘H, is a bounded self-adjoint operator on X in the standard sense, since 
(I- ’ Hu, u) = ( Hu, u ) = (Hu, u ) = (I- ’ Hu, u). The “spectrum” of H, con- 
sists of the real numbers A such that H, - II is not invertible. We claim 
that 1=0 belongs to the spectrum of H,. Indeed, from (2.4), (2.11a) and 
(2.15), we have 

WT(sM,) - oQ’(T(sM,) = T*( -s)CWb,) - ~Q’(4,)1= 0. (2.17a) 
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Differentiating with respect to s at s = 0, we deduce that 

H,(T’(OM,) = 0. (2.18) 

Thus T’(O)q4,,, is an eigenvector with eigenvalue 0. 

DEFIN:TION. The +4,-orbit ( T(ot)qS,, t E R! > is stable if for all E > 0 there 
exists 6 > 0 with the following property. If (1~~ - $,\I -L 6 and u(t) is a 
solution of (2.12) in some interval [0, to) with u(0) = uO, then u(t) can be 
continued to a solution in 0 d t < cc and 

sup inf IIu( t) - T(s)dO,ll < s. 
o</<m rera 

Otherwise the 4,-orbit is called unstable; in particular, this would happen if 
solutions ceased to exist after a finite time. 

The following is an easy result. 

THEOREM 1. Given Assumptions 1 and 2, if the operator H, has its ker- 
nel spanned by T’(O)r+4, and the rest of its spectrum is positiue and bounded 
away from zero, then the $,,-orbit is stable. 

Assumption 3. For each o E (w,, c+), H, has exactly one negative 
simple eigenvalue and has its kernel spanned by T’(O)qS, and the rest of its 
spectrum is positive and bounded away from zero. 

THEOREM 2. Given Assumptions 1, 2, and 3, let o, <w < w2. Then the 
#,,,-orbit is stable tf and only tf the function d( .) is convex in a neighborhood 
sfw. 

Remark. For the sufficiency (stability), Assumption 2(c) can be 
weakened to 4 E D( r(0)2) and (2.2) is not needed at all. 

Here is a more detailed result in the case of strict convexity or concavity 
of d. 

THEOREM 3. Given Assumptions 1, 2, and 3, let w1 <o < co2 and 
d”(w) # 0. Then the following conditions are equivalent. 

(A) d”(w) > 0. 

(B) lf<Q’(4A Y)=O~ then (H,Y, Y)~O. 

(C) E(u) is minimized at u = (6,, for u in a neighborhood of #c0 with 
Q(u) = Q(#,). 

(D) The d,,,-orbit is stable. 

We split the proof of Theorem 3 into a series of smaller theorems. 
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In Section 3 we prove that (A) implies (B), (C), and (D). In Section 4 
we prove that (B), (C), and (D) each imply (A). In Section 5 we prove 
Theorems 1 and 2. 

We note that if d”(o) > 0 then H, has at least some negative spectrum. 
Indeed, differentiating (2.16) we have 

Ha 4: = Q’(cL 1, where & = d@,fdw. (2.19) 

Differentiating (2.15) twice we get 

d’(o) = -Q(h) (2.20) 

and 

d”(o)= -<Q'(#,,, 4:) = -(H&, 4;). (2.21) 

Thus (H&, &, ) < 0 if d”(w) > 0. 

3. STABILITY 

Often, when the parameter w  remains fixed, we will drop the subscript o. 
Thus we will write 4 for #,, H for H,, and so on. A tubular neighborhood, 
or simply tube, around the orbit { T(s)4 ) SE R} is defined by 

uE={#EX:f$ Ilu-T(S)qq<&). 

We first show that this orbit cannot keep coming back arbitrarily to 
itself, unless it is periodic. 

LEMMA 3.1. Under Assumptions 2 and 3, either (i) T(s)4 = q5 for some 
s > 0 or (ii) T(s,)q5 + q5 implies s, + 0. 

Proof Consider the set of critical points of L = E- wQ in a 
neighborhood of 4. If u is a critical point, then 

O=L’(u)-L’(~)=H(u-q4)+O((Ju-qS~~*) 

since H = L”(4). Therefore the set of critical points is locally isomorphic to 
the nullspace of H. Now 4 is a critical point and so is T(s)@ for every s by 
(2.17a). So there is a neighborhood N of 4 and a number 6 > 0 such that 

{ueN( L’(u)=O}= {T(r)4 ( Irl <a}. 

Now suppose (ii) is false. Then there is a sequence Is,/ 2 6 with T(s,)b EN. 
Fix n. We have just proved that there exists (r,J < 6 with T(s& = T(r,)qK 
So T(s, - r,)q5 = 4, which means (i) is valid. 
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In the next lemma we shall “factor out” the group action within a tube, 
in the sense that T(s)u is orthogonal to T(O)4 for some s = S(U). 

LEMMA 3.2. Given Assumptions 2 and 3, there exist E > 0 and a C2 map 

s: u, + l% (R/period, if the orbit is periodic) 

such that, for all u E U, and all r E R, 

(i) II T(s(u))u- 411 d II T(r)u - dll, 

(ii) (T(s(u))u, T(OM) = 0, 
(iii ) s( T(r)u) = s(u) - r, module the period if the orbit is periodic, 

(iv) s’(u) = ZT( -s(u)) T’(OM/(T’(O)*h T(s(u))u), 
(v) s’ maps U, into D(J) and Js’ is a C’ function from U, into X. 

Proof. The idea is to define S(U) as the minimum of p(s) = I/ T(s)u - q4II” 
for u close to the orbit of 4. We calculate 

p’(s) = 2( T(s)u - #, T’(0) T(s)u) = +2( T(s)24 T’(O)4) 

p”(s) = - 2( T(0) T(s)u, T’(O)#) = 2( T(s)u, T’(O)‘d). 

At u = 4 and s = 0, p’(O) = 0 and p”(O) = 2 11 T’(O)dI\* > 0. By the implicit 
function theorem there are an open ball V around 4), an interval Z around 
s = 0, and a C2 map s: I/ -+ Z such that the equation p’(s) = 0 has a unique 
solution s = S(U) E Z for all u E V. Thus S(U) is the unique minimum of p(s) 
in Z for a given u E V. By Lemma 3.1, for all 6 > 0 (6 less than half the 
period in the periodic case) there exists ~(6) >O such that if 
(I T(s)4 - 411 < q(6), then 1.~1 < 6 (or s lies within 6 of some multiple of the 
period in the periodic case). We choose b less than half the period in the 
periodic case, and we choose Z= (-6,6) and V= (v: I\II-~~\ <~(6)/3}. If 
UE I/, rE R, and \IT(r)tc-$11 -c /T(s(u))u--$I(, then 

II%)+-4 G IIT(rb-dll + IIT(r)(u- ~)II<211~-4II <v(h). 

Therefore r = S(U), plus a multiple of the period in the periodic case. This 
proves (i) and (ii) for u E V. To show (iii) within V, note that 

II T(s(uf - rW - 411 G II T(r)u - 411 + /I T(.$u)fu - 4 + llu - Oil. 

So if T(r)u E V and u E V, we have s(u) - r E Z (modulo the period). By 
uniqueness, s(T(r)u) =s(u) - r (modulo the period). To show (iv), we 
differentiate (ii) with respect to u E X to obtain 

(T(s(u))w, T(OM) + (s’(u), w  >( T”(O) T(s(u))u, T’(OM) = 0. 
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Since T’(O).is skew with respect to the inner product, 

(s,(u) 

3 

w> = (V-s(u)) T(O) 4, w) 

lwv24~ Wu))u) 

for all w  E X. This implies (iv). If this formula is differentiated once more 
with respect to u and if we make use of the assumption that 
4~ D(T(0)3) nD(.ZZT(0)2), then (v) follows. Finally, we extend the 
definition of S(U) to u E U,, where E = q(6)/3, as follows. If /Ju - 7’(s,,)q5ll <E 
for some s,, E [w, we define 

s(u)=s(T(-s&)-ssg. 

This definition is independent of the choice of s0 for the following reason. If 
((u - T(s,)q5(I <E and I(u - T(s,)q5[( c E, then T( -sO)u and T( -s,)u belong 
to V. Since (iii) has already been proved within V, we have 

s(T(so-sl) T(-s,)u)=s(T(-s,)u)-(so-s,) 

plus a multiple of the period if the orbit is periodic, where r = s,, -s, . Thus 

s(T(-sl)u)-sl =s(T(-s&)-ssg (in IX/period). 

Therefore S(U) is defined for all u E 17, and satisfies properties (i)-(v). 

From now on we make Assumptions 2 and 3 as well as fix the parameter 
w. Recall that T(O)4 generates the kernel of H. Denote by x = xW a negative 
eigenvector of H: 

Denote by P = P, the positive subspace of H. Thus there exists 6 = 6, > 0 
such that 

(HP, P> 26 11~11~ for pE P. (3.2) 

THEOREM 3.3. Let d”(w) > 0. Zf (Q’(q5), y) = (T(O)4, y) = 0 and y # 0, 
then (Hy, y) ~0. 

Proof: By (2.21) we have (HqF, 4’) < 0. Make a spectral decom- 
position 4’ = a,~ + b, T(O)4 + p,,, where p. E P. Then -&A2 + 
(HP,,, pO) ~0. Now let YEX with (Q’(4), y) =0 and (T(O)& JJ) =O. 
Decompose 

Y=aX+P with PEP. 

By (2.19) we have 

0 = (HqY, y) = -a,a1* + (HP,,, p). 
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Therefore 

(HP, PO)* 
(Hy, y>= -a*A*+(Hp,p)> -a2A2+CHp p > 

03 0 

COROLLARY 3.3.1. Zf (Q’(qS), y) =O, then 

(HY, Y> ac IWYII~ 

for some c > 0 where ll is the orthogonal projection onto [ T’(O@]’ 

THEOREM 3.4. [f d”(w) > 0, there exist c > 0 and E > 0 such that 

E(u) - E(4) 2 c II m(u))u - ~II’ 

for UE u,, Q(u) = Q(d). 

Proof: Let q = I-‘Q’(4) and decompose 

Wtu))u - d = aq + Y, 

where ( y, q) = 0 and a is a scalar. Then 

Q(4) = Q(u) = Q(T(stu))u) 

= Q(4)+ (Q’(4)> Wu))u-4> + OWM4b~/12) 

= Q($)+a lIql12+ O(lIW~))~-4112). 

Hence a = 0( I( T(s( u))u - 411’). Let L(u) = E(u) - wQ(u). Another Taylor 
expansion gives 

where u=T(s(u))u-d=aq+y. Since Q(u) = Q(d), L’(d) = 0, and 
L”(4) = H, this can be written as 

~(~)-~(~)=~(H~,~)+o(llull*) 

=t<fh y)+O(a2)+Ota 11~11)+411412) 

=t<Hy, ~)+~(Il~/l*). (3.3) 

Now 0 = (4, Y) = <Q’(d), Y> and 

tY> TtOM) = (Ttstu))u - 4 - aq, T’(OM) = 0 
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by Lemma 3.2 (ii). Therefore by Corollary 3.3.1 

w+Jw)~~c lIYl12+0(l1412). 

Finally Ilyll = llu--q/l B (lull - la1 llqll 2 )lull -O(llu11*). Therefore for Ilull 
small 

as we wanted to prove. 

THEOREM 3.5. Giuen Assumptions 1,2, and 3 and d”(o) > 0, the &orbit 
is stable. 

Proof: If it is unstable, there exists a sequence of initial data u,(O) and 
6>0 such that 

inf lb,(O) - ~bWII --t 0 but seR ;zf ki b*(t) - mMll~ 4 

where u,(t) is a solution with initial datum u,,(O). By continuity in t, we can 
pick the first time t, so that 

inf Ildt,) - T(sMll = 4 (3.4) ssR 

the solution u, existing at least in the time interval [O, t,]. By 
Assumption 1, 

Jf3u,(t,)) = a&l(o)) + E(4), 

Q(u,(tJ) = Q(un(O)) -+ Q(4). 

Choose a sequence (u,} so that Q(u,) = Q(d) and IIu,--u,,(t,)l( 40. By 
continuity of E, E(u,) + E(d). Choosing 6 sufficiently small, we may apply 
Theorem 3.4 to obtain 

0 + W&J-E(d) 2 c IIT(S(~“)b, - 4II’ = c llu, - n -hIMl12. 

Hence (lu,(t,) - 7’( -s(u,))&I + 0, which contradicts (3.4). 

4. INSTABILITY 

THEOREM 4.1. Zf d”(o) < 0, then 

(a) E(U) is not locally minimized at 4 with the constraint Q(U) = Q(d). 

(b) There exists y E D(T’(O)*) such that (Hy, y) < 0 and 
<Q’(4), Y> = 0. 
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Proof. We use the notations (3.1) and (3.2) as before. Consider q5n for 
s2 near o. Consider the function q(s, 52) = Q(q5, + q,). Then 

by (2.21). By the implicit function theorem there exists a C’ function G?(s) 
such that G?(O) = o and 

Q(hys, + CL) = Q(4J 

Now expand L,(U) = E(u) - s2Q(u) near u = dn to get 

-L?(ffL + %J = L46-2) + dG2(4Q)? Xn> 

+ s~2G%(4,) XCO~ x,> + 4s2). 

This may be written, for Sz = Q(s), as 

(4.1) 

E(&q.~, + aa) - f-2Q(d,) 
= 4Q(s)) + ~~2wQ(s,Xo~~ x,> + o(s2). 

But d”(o) < 0 so that 

(4.2) 

d(Q) < 40) + (Q - 0) d’(o) = E(4,) - QQ(4,) 

for Q near w, by (2.16) and (2.20). Furthermore 

(HQx<~ xw> 6S<H,xo,, x,o> <O 

for Sz near w  by continuity with respect to Sz. Altogether from (4.2) we 
have the Taylor expansion 

WOMAN + ao) <E(4,) + ~~2W~~w. x,> + 4~~). (4.3) 

Let 

By (4.1), (Q’(4,), z) = 0. Furthermore E(d,(,, + sx,,) - E(q5,) vanishes to 
second order at s = 0, so that 

+ %) < t <H,L x,> -=z 0. 

This proves (a). It also proves (b) except that z might not belong to 
D( T’(0)) = D. 
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Now D is dense in X and 1 - r(O)* is a positive operator on X since 

(I- Tyo)*)u, u)= Ilull*+ lITv)ul12> llol12 
for u E D( T’(O)*). Therefore 

r s [I - T’(o)*] -‘z-‘Q’(&) 

belongs to D(T’(O)*) and 

<Q’(&,, 5) = (Z-‘Q’kkA [I- W)*l -‘Z-‘Q’kLN > 0. 

GivenzEXwith (Q’(qSo),z)=Oand (H,z,z)<O, wepickxED(T’(O)*) 
so that /x-z/ < E. Then we let 

(Q’(hA x> 
y=x- <Q’(4aJ, s> ‘- 

Then (Q’(q5,), y) = 0 and 1) y-z/I = O(E). If E is small enough, 
(Hy, y) < 0. This completes the proof. 

LEMMA 4.2. For E sufficiently small there exists a C’ functional 
A: U, --) R such that 

0) A(T(s)u) =A(u), 

(ii) [Range of A’(u)] c D(J), 

(iii) JA’(qS) = -y with y gioen in Theorem 4.1, 

(iv) (Q’(U), JA’(u)) = 0 

for all uEU, andsE(W, 

(v) JA’: U, + X is C’. 

ProoJ: With y given in Theorem 4.1, let YE D(J) such that JY = y. 
With S(U) given in Lemma 3.1, we define 

A(u) = -( Y, T(s(u))u). (4.4) 

Invariance (i) is clearly satisfied. The derivative of (4.4) is 

A’(u) = - T*(s(u))Y - ( Y, T(s(u)) T’(O)u) s’(u). (4.5) 

By (2.7) the first term belongs to D(J). By Assumption 2, IT'(O)4 E D(J). 
By (2.7) ZT( -s) T’(O)+eD(J). By Lemma 3.l(iii), S’(U)E D(J) and 
therefore A’(u) E D(J). Putting u = #. 

A’(b) = -Y- ( Y, T’(O)d) s’(4). 
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The last term vanishes because 

(Y,T’(OM)=(Y,J@)= -(WY)= -tQ’(4,,r>=O 

by (2.8) and (2.1). Therefore A’(4) = - Y. Next, from (i) we have for 
u E D( T’(0)) n u, 

O=f ,_ A(T(s)u) = (A’(u), T’(O)u) = (A’(u), JQ’(u)) 
J-0 

= -<Q’(u), JA(u)). 

By a passage to a limit, the same is true for all u E U,. Finally in order to 
prove (v), we shall apply J to (4.5) and differentiate once more. To justify 
this procedure, recall that T(O)J= --Jr(O)* with the same domain and 
that JY= y E D( T(0)‘). Thus YeD(JT’(O)**). Now the derivative of J 
applied to (4.5) has several terms. The first term -JT*(s(u))Y is differen- 
tiable because YeD(JT’(O)*). The factor (Y, T(s(u)) T’(O)u) is differen- 
tiable because YE &r(O)**). The last factor J.s’(u) is differentiable by 
Lemma 3.2. 

DEFINITION. Solve the differential equation 

g= -JA’(u) (4.6) 

with the initial condition u(0) = u E U,. Call the solution u = R(A, u). It 
exists in some interval \A1 < A,(u) with values in U,. It satisfies 

T(s) R(k, u) = R(13, T(s)u) (4.7) 

$ Q(Wk u))= <Q’(u), -JA’(u)) =O (4.8) 

WA 4) 
d/l 

= -JA’(f$) = y. 
i. = 0 

LEMMA 4.3. There exists a C’ functional 

A: (UE U,: Q(u) = Q(4)) -+ R 

such that 

for all u E U, with Q(u) = Q(d) and u $ (T(s)& s E- R}. 

(4.9) 

(4.10) 
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ProoJ: Letting L=E-oQ, and M(u) = T(s(u)u), we have 
L(M(u)) = L(U). So Taylor’s expansion gives 

~~~~=~~~~+t~~C~~u~-~l,~~~)-~~+o(IlM(u)-~ll*). (4.11) 

Recall that M(u) - 4 is orthogonal to T(O)+. We define A = A(u) as the 
unique solution of the equation 

Iv, u) = wf(R(A 0)) - 4, K) = 0, (4.12) 

where x is the negative eigenvector of H. Indeed, f(0, d)= 
(M(d) - 4, xl = 0 and 

because (Hy, y) < 0. By the implicit function theorem, 1= A(u) exists in a 
neighborhood of u = 4, Since 

f(A W-b) = (MT(r) W, ~1) -44 xl =f(A ~1, 

the function A extends to all o in a tube U, for some E > 0. 
Into (4.11) we substitute U= R(A, u)= R(A(u), u). Thus M(u)-4 is 

orthogonal to both T(O)+ and x. By (3.2) 

Hence L(u) > L(d). Since Q(U) = Q(u) = Q(4), we have E(u) 2 E(4). 
Equality occurs only if M(u) = c$. That is, u is in the #-orbit and so is D. 

LEMMA 4.4. For u E UC with Q(u) = Q(b) and u $ ( T(s)4 ) s E rW} we haoe 

E(4) <E(u) + 4~) P(u), (4.13) 

where we define 

P(u) = (E’(u), -JA’(u)). (4.14) 

ProoJ: We note that 

$1 _ E(R(5 VI)= (E’(u), gi = ) = P(u) 
A-O A 0 
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and 

= (HY, Y> ~0. 

So the second derivative is negative for u in a neighborhood of 4 and the 
Taylor expansion in ,I gives 

E(R(I, u)) <E(u) + ItiP 

for all small L. Combining this inequality with (4.10), 

E(4) < JWWU), 0)) <E(u) + /l(u) P(u). 

LEMMA 4.5. There is a C* curue I/I: (-6,s) -+ U, such that $(O) = 4, 

V(O) = Y, Q($(s), = Q(d), f’(W)) h c an g es sign at s = 0, and Q+(s)) has a 
strict maximum at s = 0. 

Proof. Since y is a vector tangent to the smooth manifold 
(0 I Q(u) = Qk@), pick a curve through 4 tangent to y lying in this 
manifold. We have to show that P changes sign along this curve. Now 

by (2.15) and 

-$ _ E(W))= (L”($)Y, Y> + (L’(4)> V(O)) = <HY, Y> ~0. 
.F - 0 

So E($(.s)) has a strict local maximum at s=O. By (4.13), 

0 < E(d)- E(m)) G 4Ns)) p(m)) (4.15) 

for small s. The inequality is strict because $‘(O) = y # 7”(0)#. So it suffkes 
to show that /1($(s)) changes sign at s=O. Differentiating the defining 
equation (4.12) for A(ll/(s)), we get 

If s=o, then +(O) = 4, A($(O)) = A(d) = 0, 13R(0, u)/& = identity, 
Ii/‘(O) = y, and 8R(O, 4)/aA = y. Hence 
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However, 

WV)Y~ x)=(u+ (s’(4), x> WM X)‘(Y, x)ZO, 

whence 

d4W)) 
ds 

= -1 #O. 
x=0 

(4.16) 

We shall need a technical lemma. 

LEMMA 4.6. Let X and W be real Banach spaces with W densely embed- 
ded in X*. Let u E C(Y, X) n C’(9; W*), where 9 is an open interval of R. 
Let A E C’(X, R) with A’ E C(X, W). Then A 0 u E C’(Y) and 

dA(u(t)) = du 
dt 

z (t), A’(u(t)) . 
> 

(4.17) 

Proof. Since W c X*, it follows that Xc X** c W*. The last pairing is 
between W* and W. First we cut off and mollify in the time variable. Let 
PE C,“(R) be a positive function with integral 1. Let i,~ C,“(9) with 
[, + 1 in $. Let 

u,(t) = 1 v(n(t - 7)) L,(t) 4~) dz. 

Then U, E C’(Y, X) and u, --t u in C(9, X) and U: + U’ in C(9, W*). Now 

$ A(u,(t)) = 2 (t), A’MN) 3 

the pairing being between X and X*. Since A’ E C(X, W), the pairing may 
also be regarded between W* and W. As n -+ co, A’ 0 u, + A’ 0 u in C(9, W) 
and A 0 u, --f A 0 u in C(9). Therefore a passage to the limit yields (4.17). 

THEOREM 4.7. Zf d”(w) < 0, the &orbit is unstable. 

Proof: Recall that J: D(J)c X* +X is a closed linear operator. Let 
W=D(J) with the graph norm jlulj$,= j(vlj*+ IIJvl12. Then W is a Hilbert 
space, and J: W -+ X and J* : X* + W* are continuous. By definition (2.13) 
a solution of the evolution equation is a function u E C(Y, X) such that 

& <u(t), ti > = <E’(u(t)), -J+ > = <J*E’(u(t)), $ > 
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for all $ E W. Therefore u E C’(Y, W*) and 

du 
z= -J*E’(u(t)) for t~9. (4.18) 

Now fix o and (b = 4,. Fix the tube width E so small that Lemma 4.4 is 
valid. Let u0 = $(s) be given in Lemma 4.5 so that u0 is arbitrarily near 4, 
Q(uo) = Q(4), E(ucJ < E(4), and Quo) > 0. (P(u,) <O would also do.) 
According to Assumption 1, there is an interval [0, to) and a solution u(t) 
of (4.18) which satisfies u(0) = u0 and 

ecu(f)) = Q(uo) = Q(4)? E(u(t)) = a%) <E(d). (4.19) 

Since t, depends only on p where lluOll d p, either the solution u(t) can be 
continued to a solution for all time 0 < t < co which satisfies (4.18) or else 
it can be continued until it blows up at a finite time T: u(t) -+ cc as t r T. 
In the latter case we surely have instability. In the former case we argue as 
follows. 

In any interval [0, ti) in which u(t) E U, we may apply Lemma 4.4 and 
(4.19) to obtain 

0 < E(d) - Jf3ucl) = E(4) - au(t)) < Nu(t)) P(u(t)). 

Therefore P(u(t)) > 0. Taking E smaller if necessary, we may assume 
n(u(t)) < 1. Therefore 

P(u(t)) > E(fj) - E(q)) = &g > 0. (4.20) 

By Lemma 4.6, A 0 u is differentiable and 

$ au(r)) = fltf A’(u) = ( -J*E’(u), A’(u)) (dr’ ) 
= (E’(u), -JA’(u)) = P(u) > Eg 

in the interval [0, t ,). But 

Mv)l 6 II yllX*oI~ll + E) for VE U,. 

Therefore 

t <2 IIyIIx*(II~II +4< o3 
I’ E(4)-E(%) . 

So the solution must exit from the tube and the &orbit is unstable. This 
completes the proof of Theorem 3. 
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5. EXTENSIONS 

Most of this section is taken up with the proof of Theorem 2, that is, the 
extension to the case when 6(w) = 0. After that, we prove Theorem 1 and 
then extend our results to an arbitrary Banach space X. 

COROLLARY 5.1. Given Assumptions 1, 2, and 3, if d(.) is not convex in a 
neighborhood of co, then the #,-orbit is unstable. 

Proof Let S= {w 1 o1 <o<w2, the 4,-orbit is stable). The curve 
o + 4, is continuous. Therefore from the definition of stability, the set S is 
open. Let R= (w lo, <w<w2, d(.) is convex in a neighborhood of w). 
Obviously R is open. If d(.) is not convex in a neighborhood of w, then 
04 R. Hence there is a sequence o, -PO such that d”(o,) ~0. By 
Theorem 3, already proved, o, $ S. Therefore w  4 S. 

THEOREM 5.2. Fix w and suppose d”(w) = 0. Then (Hy, y) > 0 for all 
y E X such that y # 0 and y is orthogonal in X to each of the three vectors 
Z-‘Q’(4), d’, and T’(O)& 

Proof: By (2.8) and Assumption 2, JBd = T’(O)4 #O. So by (2.19), 
H#’ = Q’(4) = Bd # 0 where 4 = d&da. By (2.21) (H&, 4’) = d”(w) = 0. It 
follows that 4’ must have nontrivial components in both x and P. As in the 
proof of Theorem 3.2, we spectrally decompose 

4’=aox+boT’(0)d+p~ (PoEP). (5.1) 

Then a,#0 and pO#O and 

Q’(4) = H#’ = a, HI + HP,. (5.2) 

The proof of Theorem 3.3 is repeated exactly except that the inequality is 
not strict. So if y is orthogonal to both I- ‘Q’(b) and T(O)d, then 
(Hy, y) > 0. Suppose now that (Hy, y) = 0. From the proof of 
Theorem 3.3, we would then have Schwarz’s equality 

(HP, pcJ2 = <HP, P)(HPo, PO), 

where y has the spectral decomposition y = a~ + p, p E P. Therefore p and 
p. are linearly dependent, so that 

y=ax+cp,, (5.3) 

for some scalars a, c. We want to show that a = c = 0 if y is orthogonal to 
I,# as well. Thus 

O=(Z-‘Q’(d), Y)= <aHx+Hpo,ax+cpo) 
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and 

0 = (4’9 Y) = (aox + PO, ax + CPO). 

Hence a and c satisfy the linear system with matrix 

( 
ao(fk x> (HP~, po) 

a0 > lIPoIl 

This matrix is nonsingular since (Hz, x) and ( Hpo, po) have opposite 
signs (strictly). Hence a = c = 0. 

COROLLARY 5.3. Suppose d”(w,) = 0. If w  is sufficiently close to w. and 
if y #O is orthogonal to Z-‘Q’(b,), d&,, and T’(O)d,, then (H, y, y) >O. 

Proof: This is obvious by continuity in the variable w. 

THEOREM 5.4. Let d”(w) = 0 where w  is fixed. Let d” 20 in an open 
interval containing w. Then there exists E > 0 such that E(u) > E(d) for all 
u E U, with Q(u) = Q(4) and u # T(s)4 for s E R. 

Proof. Recall that we have abbreviated 4 = 4, with w  fixed. Given 
u E U, we define 

y = T(s)u - da - al -- lQ’(&). (5.4) 

We claim that the three parameters s, Sz, and a can be chosen depending on 
u so that y is orthogonal to the three vectors T(O)d,, $:, and I-‘Q’(4,). 
This can be accomplished in some neighborhood of 4, by the implicit 
function theorem provided a certain 3 x 3 determinant does not vanish. 
First note that when s = 0, Sz = w, and a = 0, we have y = u - 4,. Now the 
three orthogonality conditions 

0 = (Y, T’(OM,) = (Y> 4:) = (Y, I- ‘Q’GM (5.5) 

with y given by (5.4) are three scalar equations for S, !2, and u. The 
Jacobian, evaluated at s = 0, Sz = w, a = 0, and u = 4, = 4, is 

i 

II T’(O)411 2 0 - <Q’(d), T’(O)4 > = 0 

(T’(OM 4’) - IwIt -(Q’(d), 4’) =O 

(Q’(4), T’(O)4) = 0 - <Q’(4), 4’ > = 0 - llz-‘Q’(dN’ 1 

This is a triangular matrix with nonzero diagonal entries and so it is non- 
singular. This proves the claim. Furthermore 

I4 + I~-(4 + I4 =~~Il~-~,II~=~~IlYll~ (5.6) 
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as u + #-. Denoting v = T(s)u, a Taylor expansion yields 

C!(u) = Q(u) = Q(b) + <Q’(h), u- 4n> + WIlu - AA’) 

= Q(hJ + tQ’<4,,, &>(Q - WI+ W - 4’ 

+ <Q’(h), v+~~-1Q’(~,,>+~(IIu-~,l12, 

= Q(&) + W(Q-@)2)+u ll~-1Q’kMl12 + W~-4,112). 

Since Q(U) = Q(+,) by assumption and since Q’(b,) # 0, we deduce that 

I4 =w~-42+ Il~-~nl12~=~~IlYl12~, (5.7) 

the last bound coming from (5.6). 
Now we expand E(u) -&IQ(u) around u = da, noting that E’(4,) - 

aQ’(#n) = 0 by (2.15) and I!?‘(#,) - S2Q”(dn) = HQ by definition. Thus 

E(u) - f2Q(u) = E(u) - i-IQ(u) 

=~(~)+4(H,(~-~,),~-~,)+~(ll~-~,l12) 

We substitute u - #D = y + aZ-‘Q’(q5,) to get 

d(Q) + f(Hs-z.~ v> + O(a IIYII) + o(a21 + 4llu - &412). 

By (5.7) all the error terms may be written as o(Ilyj12). By (5.5) the con- 
ditions of Corollary 5.3 are satisfied with q, replaced by w  and o by 52. 
Therefore we deduce 

This is strictly greater than d(sZ) provided y # 0. By assumption u # T(r)gw 
for all r E II& Taking a small enough tube U,, we have u # T(r)& for all 
r E R, so that y # 0. Therefore 

E(u) - QQ(u) ’ d(Q) 
2 d(0) + d(o)(l2 - co) 

= ~Y4co) - aQ(4,) - Q(d,>(Q - 0) 

= H4,) - QQ(4,) 

because d is convex. Since Q(U) = Q(40), we conclude that E(u) > E(#,). 

Proof of Theorem 2. The cases d not convex and d”(w) > 0 were treated 
in Corollary 5.1 and Theorem 3.4. Let d be convex near o and let 
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d”(w) =O. Mimicking the proof of Theorem 3.4, we have u, E U,, 
Q(u,) = Q(4), and E(u,) + E(d). By Theorem 5.4 we must have 

inf l\u, - T(s)411 + 0. 
seR 

Therefore infs, R \l~Jt,) - T(s)&1 -+ 0, which contradicts (3.4). This com- 
pletes the proof. 

Proof of Theorem 1. By the assumption on H, it is obvious that 
(Hy, y) > 0 for any nonzero vector y orthogonal to the kernel T’(O)d. By 
a simple Taylor expansion we have exactly the conclusion of Theorem 3.4. 
Finally the stability is proved exactly as in Theorem 3.5. 

Extension to Bunach spaces. Let X be any real Banach space. Let J and 
E be as in Section 2. Let T be a one-parameter strongly continuous group 
of isometries of X onto X. Assume (2.3), (2.‘7), and (2.8), except that B is 
merely symmetric: (Bu, u) = (Bo, u) for U, u E X. Define Q(u) by (2.9). 

Assumptions 1 and 2 are unchanged with an exception noted below. 
Without the inner product we have to rephrase Assumption 3 as follows. 

Assumption 3B. For each w  E (o,, 02), let H,, = E”(4,) - wQ”(~~). We 
assume 

(i) There exists x E X such that (Hx, x) < 0. 

(ii) There exists a closed subspace P c X such that 

(HP, ~)a6 IIPII~ for PEP. 

(iii) For all u E X, there exist unique constants a, b, and a unique 
p E P such that 

u = ax + bT’(O)4 + p. 

Then we define n,(u) = p, n,(u) = b, and II,(u) = a. These operators are 
continuous projecions. We replace Assumption 2(c) by 

(c,) the functional u + ZZ,( T’(s)u) belongs to D(J), and 

(c?) the functional u + Z7,( YOU) belongs to X* for all s E R. 

THEOREM 5.5. If X is a Banach space and these assumptions hold, then 
Theorems 2 and 3 are ualid. 

LEMMA 5.6. Let M = { 4 + ax + p: p E P, a E R}. There exists E > 0 such 
that, for all u E U,, there are unique s = s(u) G R and m = m(u) E A4 such that 
u= T( -s)m. 
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Proof: Consider the mapping s, m + T( -s)m from Rx M into X. Its 
derivative at s = 0, m = 4 is 

(i, El) + -s”T(O)fj + rii 

This is an isomorphism since X= lR(7”(0)4)@M. By the implicit function 
theorem, the mapping u + (s, m) is a local isomorphism. 

COROLLARY. u + (s(u), m(u)) is smooth, 

s( T(r)u) = s(u) - r for rER, 

s’(u) E D(J), Js’(u) is differentiable, and 

~lJcm(u))~l 
(s’(u), u) = - fl,[ qs(u))ul. 

ProoJ: Writing u = T( -s)m as above, we have T(r)u = T( - (s - r)m) so 
that s( T(r)u) = S(U) - r since s(.) is uniquely defined. Now we have 

T(s( 24))~ = m(u) E M. 

Therefore Z7,[T(s(u))u - 41 =O. Differentiating with respect to u in the 
direction u, we get 

Thus we have formula (5.8). It follows from (cl) and (c2) above that 
s’(u) E D(J). 

Only the following changes are necessary in the succeeding discussion. In 
Theorem 3.3, the condition (T(O)#, y) = 0 is replaced by n,(y) = 0. In 
Theorem 3.4 let Q’(4)* = (YEX: (Q’(4), y) =O> and let y be the nearest 
point of the subspace Q’(d)l to m(u) - 4 = T(s(u))u - 4. Theorem 4.1 (b) is 
not difficult to modify. In Lemma 4.3 the equation (4.12) which defines 
A(u) is replaced by 

f(J, ~)=~.dm(W, VI)- 91=0 

and m(u) = M(u). It is this equation which is differentiated in Lemma 4.5. 
In Theorem 5.4, the three “orthogonality” conditions become the 

following. Z7,,( y) = 0, (Q’(4,), y) = 0, and y is the vector satisfying these 
two conditions which is nearest T(s)u-4,. 



STABILITY OF SOLITARY WAVES 185 

6. EXAMPLES 

In this section we present some examples that are applications of the 
abstract theory. 

A. Traveling Waves of Nonlinear Wave Equations 

Traveling wave solutions of the nonlinear wave equation 

u,, - uxx +f(u) = 0 (6.1) 

are generated by the invariance of the equation under space translation. 
Equation (6.1) can be written in the form (2.12), 

$ = JE’(u), 

where 

u=(I), J=(-; ;) 

E(u) = j (iv’ + +u; + F(u)) dx (6.2) 

F=j; F(0) = 0. 

If we define the space X= H’(R) x L2(R), then X* = ZZ’(R) x L2(R) and 
we have the isomorphism I: X-+ X*, where 

z=[-” ;I. 

The above initial value problem is well-defined on the space X. T(s) is a 
well-defined unitary group on X with 

and 

3 D(T(0))=H2(R)xH1(R)cX 

J-IT(s) = T*(s)J-‘. 

The invariance generates the conserved quantity (momentum) 

Q(u)=~(Bu,u)=~u,vdx, (6.3) 
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Now for traveling waves to exist we should find nonzero solutions of the 
equation 

E’(+) -oQ’($) = 0. 

The components of 4 = (4 cc/)’ will satisfy the equations 

-(l -~*wxx+f(~)=o~ (6.4) 

$ = 04,. (6.5) 

Suppose that f satisfies the following conditions. 

(i) f’(0) > 0. 

(ii) 31 such that F(q) < 0. (Consequently from (i), F(U) has at least 
one zero uO.) 

(iii) If u0 is the zero of F with smallest nonzero absolute value, then 
f(%)ZO. 

LEMMA 6.1. Zff satisfies (ik(iii), then the equation 

-P,,+f(P)=O 

has a unique solution that satisfies 

(4 P(X)>0, P(x)=P(-4, P(O)=U,. 
(b) p(x) decays exponentially like e-‘lXi with c > 0. 

Denote do(x) = p(x/,/G), w  E ( - 1, 1). Then 4, satisfies (6.4) and 
we have a nontrivial traveling wave. The linearized operator of (6.4) is 

L, = -( 1 - d) a; + f ‘(4,). (6.6) 

The kernel of L, is spanned by a,d,. Moreover since a,+, has a simple 
zero at x = 0, L, has exactly one strictly negative eigenvalue -cl:, with an 
eigenfunction x0, 

40 XUJ = -fcLY (6.7) 

In order to verify Assumption 3 of the theorem we shall compute the 
spectrum of the operator 

(6.8) 
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LEMMA 6.2. The spectrum of the operator H, is as follows: 

(1) There is one negative simple eigenvalue. 

(2) The kernel is spanned by T’(O)+,. 

(3) The positive spectrum of H, is bounded away from zero. 

Proof. Let v = (J/ , tj2)’ be an eigenfunction of H, with eigenvalue jti. 
Writing the components of the equation H,v = Ayr, we have 

For R # 1 we can rewrite the above equations as 

and 

(6.9) 

(6.10) 

If A< 0 then by (6.7) we have 

or 

which has exactly one negative root. Therefore H, has exactly one negative 
eigenvalue, A ~ (w). 

Next we substitute rZ = 0 in (6.3) and we get the kernel of H, to be span- 
ned by T(O)C$,. 

By Weyl’s theorem on the essential spectrum, the rest of the spectrum of 
H, is bounded away from zero. Q.E.D. 

Since H, satisfies the hypotheses of the theorem, the stability of the 
traveling wave is determined by the sign of d”(o). But 

d’(w) = -Q(hJ = --o i lax4rJ2 dx. 
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a(w)=(&T7)~~ j la,pl'dx<o. 

Hence all traveling waves are unstable. 

Remark. The well-known kink solutions +W(x - ot) travel 
monotonically from one zero of f to another. Therefore, a,4, does not 
vanish and is the lowest eigenfunction of the operator L, with eigenvalue 
zero. Hence L, 2 0. Now H, is again given by formula (6.8). By (6.9), H, 
cannot have any negative eigenvalues. By Theorem 1, the kinks are always 
stable. 

B. Standing Waves 

Equations that are invariant under phase transformation have standing 
wave solutions or bound states. These solutions are generated by the gauge 
group T(s)u = e%. Stability properties of these solutions were studied in 
[13] for the nonlinear Klein-Gordon equation 

u,, - Au + g( (u12)u = 0, XER”, 

and the nonlinear Schrodinger equation 

-iu,-du+g((u12)u=0, XEW. 

Some are stable and some are unstable. It is easy to verify that both of 
these equations satisfy Assumptions l-3 for the case of the state of lowest 
energy. In particular the linearized operator H, satisfies Assumption 3 by 
Lemma 8 of [13]. Therefore the previously proved stability and instability 
results follow directly from our abstract theorems. 

C. Nonlinear Schriidinger Equation with a Potential 

In this example we study the stability properties of bound states of the 
equation 

ihu, = -h2uxx + V(x)u +f(u) 

in one dimension where f(u) = g(luJ2)u. By changing variables t + t/h, 
y = (x -x,)/h, the equation takes the form 

iu, = -uyy + V(x, + hy)u +f(u). (6.11) 
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As in Example B, the bound states are solutions of the form eiw’& y), 
generated by the invariance of the equation under the phase transfor- 
mations T(s)24 = exp(is)u. Let 

where F(u) = f(u) and F(0) = 0. Equation (6.11) can be written in the form 
(2.12) where J= 4. The space X where this equation is well-defined is the 
complex H’(R) with the real inner product. Now T(s) is a unitary 
representation on X with a generator T(0) = i, and D(T(0)) = X. 
Moreover, B = - 1 and the conserved quantity (charge) is given by 

Q(U) = +<Bu, u) = -4 j- (u12 dy. 

Bound states of (6.11) satisfy the equation E’(d) - oQ’(d) =O. For sim- 
plicity we look for real solutions 4; that is, 

- h2L + V(x)4 +I”($) + Q-4 = 0 (6.12) 

or equivalently 

-d,v+ Wo+hY)4+f(4)+w~=O. (6.13) 

We will assume that the potential I/ is bounded, with I/* < V(X). The 
following theorem is due to Floer and Weinstein [S]. 

THEOREM 6.3. Let VE C’(R) have a nondegenerate critical point x0 and 
let o> -I/*. There exists h,>O such that for 0< h < h, Eq. (6.13) has a 
nonzero solution 4,,(~, y) “concentrated” around x0 in the sense that 

where 

(a) &,(o, y) is the unique solution of the equation -d2q5Jdy2 + 
f(&) + [ V(x,) + o]& = 0, which has its maximum at y = 0. 

(b) z(.) is a C’([O, ho])function, 
(c) p,,(w, y) is C2 in h and w  with values in H2(R), 

IIPh(w .)I1 t2 = 0th) as h + 0, 

(d) kc PAW Y) .~d,(w y  - 4h)h) dy = 0. 
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From now on we will suppress the subscript h or o when convenient. We 
also take x0 =O. The linearized operator H, = E”(Q) -@Q”(d), where 
4 = +,,(w, .) is the bound state, is 

where 

H,x = ~e(&,x) + iym(S,x), 

Rh = -8; + V(hy) + f’(b/,) + CD, 

Sh = -8: + VhY) + f(~/M/l + w. 

Observe that S+ = 0; therefore 4 is in the kernel of S. Moreover, d(v) is 
positive. It is easy to show that the kernel of S is spanned by 4. Therefore 
for H, to satisfy Assumption 3 it is sufficient to show that R,, has one 
negative simple eigenvalue and no kernel. Note that Rh converges to R, in 
the strong resolvent sense. By the same argument as in [ 10, p. 341, one can 
show that R, has simple eigenvalues in the neighborhoods of the negative 
and the zero eigenvalues of R,. The eigenvalues are C* functions of h. (The 
difference between our case and [lo] is that the potential is V(hy) rather 
than h V( y).) 

THEOREM 6.4. If x0 = 0 is a strict local minimum, i.e., V”(0) > 0, then R, 
has a small positive eigenvalue for h small. 

Proof In this proof derivatives with respect to h are denoted by primes 
and derivatives with respect to y by subscripts. Let E(h) be the eigenvalue 
of R,, close to zero, i.e., E(0) = 0, and let I/,, be the normalized eigenvector. 
We want to show that E(h) > 0 for h > 0. Differentiating Eq. (6.13) with 
respect to y and evaluating at h = 0, we get 

Ro 4o.y = 0 (6.14) 

Ro k”.” = -f”(hJ) 6,. (6.15) 

Differentiating with respect to h, we get 

R,&, = 0 (6.16) 

R& + R&b; = -y’V”(O)q$,. (6.17) 

Since the zero eigenvalue of R, is simple with eigenvector tiO, (6.14) and 
(6.16) imply that there are scalars CL and j3 so that & = CV&, and $,, = &&,. 
Let us compute E’(0) and E”(0). We have E(h) = ($,, R,,t,b,,) and 
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since I,/I~ is normalized. For h = 0, 

E’(O) = <ticI, NfQ,) = dwJ.&.? f”(4o) &,,) =o 

because d,, is an even function of y. Now differentiating (6.18) with respect 
to h and evaluating at h = 0, we get 

E”(O) = 2<4b? RbrC/o> + ($09 R;;+,)7 (6.19) 

where R$ =f"(&)& +f"'(&)(&,)'+ y*V"(O). 
The first term of (6.19) equals twice 

($b, &Go) = ($b, f”(h) &do> =d(‘+& f”(h) d;,,) 

= -@(J/b, MA,,,~,J = -aB(Roh h,,,) 

by (6.15). Since - R,~b=Rb~,=f"(~,)rbb~o, 

CC,, K&o> = ~2P2(f"(40) d&z, (bo,.vJ (6.20) 

The second term of (6.19) is 

(I(/m %‘$o) = (~‘v”(O)$o, $0) + Wd”‘kb)(&)*1L0) 

+ (f”(h) 4%1c/o> $0). (6.21) 

Moreover by (6.15) 

(.I-“(&,) &‘ILo, $0) =82(&‘, f”(4d 4;,,.) = -8*(& &do,.,) 

= -P2Wd6, 4o,,,.>. 

By (6.17) we have 

U”(hJ 46$0? $0) = B2(Y2~uwh d%,.“J 
2 2 2 

+ cf B (f”(CM 4o,.p, 4cl,yy >. (6.22) 

Substituting (6.20), (6.21), and (6.22) into (6.19), we get 

E"(O) = 3~282<S"(40) f&.7 40,yy) + ~2B2(do,,v? f"'(hJ $G,,) 

+P*(Y'T/"(wb,,, h,,> +B'<Y'~"(o)40~ h.y."). 

Integrating by parts we obtain 

E”(O) = 82~(o)(~cl, do>. (6.23) 

Therefore if V”(0) > 0 we have E"(0) > 0 and E(h) > 0 for small h > 0. 
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By Theorem 6.4, H, satisfies Assumption 3. By Theorem 2 these bound 
states are stable if d”(o) > 0. By (2.20) we have the following conclusion. 

THEOREM 6.5. Let VE C2(rW) with a nondegenerate minimum at x,,. Let 
o > -V*. There exists h, > 0 such that, $0 <h < h,, then #JO, .) exp(iwt) 
is stable if 

t, Ctio(w, N2400 

and is unstable if this derivative is <O. 

For example if f(u) = -[u(P- ‘u, it is stable if 1 < p < 5 and unstable if 
5<p<al. 

This example generalizes without difficulty to n dimensions. Replace 8: 
by the Laplacian. Theorem 6.3 is true provided f satisfies the usual con- 
ditions for the existence of a ground state &(w, 1~1) as in [13 J. 
Theorem 6.4 is true if ai a,V(O) is positive definite. For the proof, let 
II/k,,.., II/;: be the small eigenfunctions of R, for h small. Let 

for arbitrary CI, ,..., ~1,. Then we calculate E’(O)=0 and 

E”(O)= C(~i~jV(O))aiaj [ ij I[ O I[ O Jti2(Y)dy J$2(Y)dy 1-l. 
Therefore the zero eigenvalue of H, migrates to n positive eigenvalues of 
H, for h small. Theorem 6.5 is true without change. 

D. Optical Wave Guide 

Suppose we have three layered madia where the outside two are non- 
linear and the sandwiched one is linear. The index of refraction is given by 

dx, lu12) = rll + a IuIz9 IA> d 
?o, I4 G 4 

(6.24) 

where v1 < vo, - co <X < co. See Fig. 1. The differential equation that 
governs u(x, t) is 

iu,= -u xx - dx, I4 ‘)u. (6.25) 
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t 

2 

FIGURE 1 

This equation is again invariant under phase change, and the conserved 
quantity is Q(u) = +( Bu, u), where B = J-l T(0) = i* = -1. Therefore 

W=j (4 Iu,l*+W, 14)) dx, Q(u)= -$j lul*dx, 

where 

F(x, 1~1) = - j-;“’ g(x, /s[ *)s ds. 

Standing wave solutions generated by the symmetry are solutions of the 
equation E’(4) - oQ’(d) = 0 or explicitly 

-L-&3 lc4’M+4=0. (6.26) 

Akhmediev [l] has studied the bifurcation diagram for positive 
solutions of (6.26) (see Fig. 2). Curve AB corresponds to a solution which 
is positive and symmetric with respect to x. At w  = o,, a bifurcation occurs 
and BE corresponds to a symmetric solution while BCD is a double curve 
corresponding to two asymmetric solutions U, and u2, where 
ul(x) = u2( -x). The bifurcation diagram is not complete, i.e., it does not 
contain all possible solutions. For the complete diagram see [I]. The 
correspondence with Akhmediev’s notation is as follows: w  ++ n,, 1 ts k,, 
j(u(/ Lo ts S. The equations Akhmediev is considering are Maxwell’s, not 
Schrodinger’s, but the results are analogous. 

FIGURE 2 
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FIGURE 3 

We give a brief outline of the qualitative properties of the standing wave 
solutions. Define $ = #X and write (3) as an ODE: 

(6.27) 

If 1x1 <d, then g(x, 141’) = ‘lo and (6.27) becomes 

#’ = *, *’ = (w - VOM, (6.27a) 

which is a center if w  < qo. 
If 1x1> d, then g(x, 1d12) = q, + c1 141’ and (4) becomes 

b’ = !k lp = (0 - q,)(b - a#). (6.27b) 

The quantity H(& II/) = $$” - +(w - q,)b* + (a/4)b4 is conserved, so that if 
o > q, we have a homoclinic orbit. We are interested in the situation where 
qI CO < ‘lo. In this case we have to combine the center with the homoclinic 
orbit in order to produce solutions of (6.27). The following analysis is 
from [7]. 

Case (i). w, > o > ql. In this case we get only one solution, given by 

FIGURE 4 
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FIGURE 5 

the solid line in Fig. 3. The solution 4(x) is symmetric with respect to x. 
The linearized operator is 

(6.28) 

A comparison argument shows that R has exactly one negative eigenvalue 
and no zero eigenvalue. 

Case (ii). w  = w,. At the critical o the solution looks like Fig. 4. The 
solution is given by the solid line and in this case R has one negative and 
one zero eigenvalue. 

Case (iii). v],,>o>q,. After we pass the 0,. we have the situation 
shown in Fig. 5 and we have the three solutions, one symmetric and two 
asymmetric, shown in Fig. 6. 

Again a comparison argument shows that for the symmetric mode R has 
two strictly negative eigenvalues, while for the asymmetric modes R has 
only one negative eigenvalue. 

t 
“x 

j++” 

“X 
k+ U 

“X 

+-- 

U 

FIGURE 6 
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Therefore when we are on the branch ABCD of the bifurcation diagram 
the hypotheses of the theory are satisfied; consequently AB and CD are 
stable while BC is unstable. It can be proved by a different method that the 
branch BE is unstable [7]. 

E. Generalized KdV Equation 

Consider 

at + ux.x.x -f(u),=0 (xe R), 

where f satisfies the same conditions as in Example A. Consider the 
classical solitary waves of the form u = ~Jx- cot), where O<o c cc and 
b,( + co) = 0. The group action is translation, X= H’(R), E is the same 
functional as in Example 1, and Q(u) = - 4 j u2 dx, but 

J= a/ax. 

Our theorem does not apply but almost does. The single difficulty is that 
J is not onto. But as in Section 4 we would still like to consider J-‘y, 
which here is a function which does not vanish at infinity. This difficulty 
can be surmounted only by use of the third invariant Z(U) = f u dx. We refer 
to [3] for details. The results in [3] were found after the present paper 
was essentially complete. For the case f(u) = -up, the conclusion is that 
the solitary wave is stable if 1 < p < 5 and unstable if 5 < p < CO. 
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