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a b s t r a c t

We study the two-component Aliev–Panfilov reaction–diffusion system of cardiac excitation.

It is known that the model exhibits spiral wave instability in two-dimensional spatial domains.

In order to describe the spiral wave instability, it is important to understand periodic traveling

wave instability resulting from the model. We determine the existence and stability of periodic

traveling waves in the model. In addition, we calculate the stability boundary between stable

and unstable periodic traveling waves in a two-dimensional parameter plane. It is observed

that the periodic traveling waves express instability by a stability change of Eckhaus type.

As a result, a stable wave bifurcates to an oscillating periodic traveling wave. We describe

these phenomena by calculating the essential spectra of the waves. Furthermore, we study the

stability of the waves as a function of the gaps between two nullclines. In two dimensions, we

determine the spiral wave instability based on the stability boundary of the periodic traveling

waves.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

A periodic traveling wave (PTW) solution is an important solution pattern in one dimension for many partial differential equa-

tions (PDEs) in nonlinear systems. Periodic traveling wave solutions (PTWs) were first studied in 1973 by Kopell and Howard, who

used coupled reaction–diffusion equations for oscillatory systems [1]. They showed that waves with sufficiently low amplitude

are always unstable whereas those with sufficiently high amplitude are always stable. PTWs have also been observed in bio-

logical [2–4], physical [5–7], chemical [8–10] and ecological systems [11–13]. These are often modeled using a two-component

reaction–diffusion system of equations, e.g., [1,14–17]. The determination of PTW instability for excitable media is important

for researchers owing to the complex spatiotemporal patterns exhibited by the instability. A powerful and standard method for

studying the PTWs of PDEs is the method of continuation [18]. In this paper, we study the stability of PTWs numerically by using

a two-component excitable reaction–diffusion system for cardiac cell dynamics [19]. The first and most widely used PDE model

is the FitzHugh–Nagumo (FHN) model, which was developed by FitzHugh and Nagumo [14,15]. The FHN model is a simplified

version of the Hodgkin and Huxley model [20], a four-variable (V, m, n, and h) ionic model that describes the fast-slow dynamics

of an excitable system of a spiking neuron. Previous studies of PTWs focused on ionic models [21–23] and PDE models for ex-

citable systems [17,24–26] and other systems [27–29]. The Aliev–Panfilov model, which is a modified version of the FHN model,
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is capable of improving the shape of the cardiac action potential [19]. The action potential of a cardiac cell (myocardium) has

four different phases: resting membrane potential, rapid depolarization, plateau, and rapid repolarization. The cardiac action

potential mainly differs from the neuronal action potential in terms of the duration of the action potential or plateau phase. In

a nerve cell the action potential duration is approximately 1 ms. However, the cardiac action potential has a prolonged plateau

phase lasting around 300 ms [30]. Previous studies [31–36] of the Aliev–Panfilov model focused on investigating only the spiral

wave instability or the spiral chaos in two-dimensional numerical simulations. In the context of cardiac electrical activities, the

spiral breakup phenomenon is known as ventricular fibrillation. Spiral waves are of course two-dimensional, but they become

one-dimensional as one moves away from the center of the medium. A spiral wave approaches a periodic traveling wave solution

at a sufficiently large distance from the center. Instability of the PTW will lead to spiral instability, and therefore, possible spiral

breakup. To the best of our knowledge, no published work has investigated the stability of periodic traveling wave solutions in

the Aliev–Panfilov model.

Thus, the aim of this paper is to study the stability of PTWs in the Aliev–Panfilov model, which is given by (1) and (2) later

in the paper. We establish the existence and stability of the PTW solutions of the model in a two-dimensional parameter plane.

This is done by the method of continuation via the continuation package WAVETRAIN [18]. It is observed that a PTW solution

loses its stability in the model through a stability change of Eckhaus type. The family of PTWs with constant period crosses the

stability boundary, and the waves bifurcate to an oscillating wave pattern. We also study the existence and stability of the PTWs

as a function of the parameter b in (2), which is responsible for creating gaps between two nullclines at the right slow manifold.

Moreover, we show stable and unstable spiral dynamics in model (2) in a one-parameter family of solutions.

The remainder of the paper is organized as follows. In Section 2, we describe the models and methods of computation. In

Section 3, we present and discuss the results in one and two dimensions. Finally, we conclude the paper in Section 4.

2. Methods

2.1. Model

2.1.1. Original

The Aliev–Panfilov model [19] consists of two equations describing the fast and slow dynamics of an excitable medium, and

it is given as follows:

∂u

∂t
= du�u + ku(1 − u)(u − a) − uv,

∂v
∂t

= dv�v + ε(u, v)(ku(1 + a − u) − v), (1)

where ε(u, v) = ε0 + μ1v/(u + μ2) and the reaction terms f (u, v) = ku(1 − u)(u − a) − uv and g(u, v) = ε(u, v)(ku(1 + a − u)
− v) describe the local kinetics of variables u and v. The parameter ε, 0 < ε � 1, describes the ratio of the time scales of variables

u and v. The fast activator variable u and the slow inhibitor variable v are known as the excitable and recovery variables, respec-

tively. They are also referred to as the propagator and controller variables, respectively. The nullclines ( f (u, v) = 0, g(u, v) = 0)
of (1) has been plotted in [19]. The u-nullcline (ut = 0) is N-shaped, as in the case of the standard FHN model [14,15]. However,

the Aliev–Panfilov uses the term uv instead of v in the first equation of the FHN model. This improves the shape of the cardiac

action potential. The v-nullcline (vt = 0) is not linear or monotone as in the FHN model, but it is quadratic. This type of nullcline

geometry is more appropriate for the cardiac cell dynamics [19]. The parameter a is called the threshold. It lies between 0 and

1/2, i.e., 0 < a < 1/2. For a small perturbation of u less than the threshold value, i.e., u < a, the system reverts to the rest state;

otherwise (i.e., u > a), the system undergoes long excursions with fast-slow dynamics in the (u, v)-plane before reverting to the

stationary or (0, 0) state. Therefore, the system is an excitable system [37].

2.1.2. Modified

In this paper, we use the following variant of the Aliev–Panfilov model in order to control the distance between the two

nullclines uniformly at the right branch (marked by “R” in Fig. 1(a)) of the uv-plane as reported in [17,38].

∂u

∂t
= du�u + ku(1 − u)(u − a) − uv,

∂v
∂t

= dv�v + ε(u, v)(du(1 + b − u) − v). (2)

In (2), there are two new parameters d and b instead of k and a, respectively, in the second equation of (1). As a result, we

can slow down the solution profile on the slow manifold at the right branch by taking the value of b as small as required. The

nullclines of (2) are plotted in Fig. 1(a). Both nullclines intersect each other at a point that is called the rest state of the excitable

medium. The point corresponds to the (0, 0) state as shown in Fig. 1(a). Thus, there exists only one possible steady-state solution.

The parameter b in (2) is responsible for the creation of gaps between the two nullclines at the right knee or branch of the uv-

plane. It plays a crucial role in the model. Specifically, it controls the period of excitation of the medium and can have any value

greater than 0, because the two nullclines intersect each other at the right knee when b = 0. The excitation period increases as b

approaches 0 and decreases as b increases. This is crucial for controlling the velocity of the solution at the right slow manifold,
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Fig. 1. (a) Nullclines of model (2) for a = 0.15, k = 8.0, d = 6.5, and b = 0.1. (b) A direct numerical solution (pulse profile) of (2) with ε0 = 0.002, a = 0.15,

k = 8.0, d = 6.5, μ1 = 0.2, μ2 = 0.3, b = 0.1, du = 0.05, dv = 0.005, and system size Lx = 200.
as compared to the original Aliev–Panfilov model (1). The parameter d is responsible for adjusting the height of the v-nullcline.

The value of d is important for achieving a uniform gap between the two nullclines at the right branch. In this paper, d is fixed

at d = 6.5. Our aim is to understand the stability of periodic traveling wave solutions in (2) as a function of the parameter b and

the wave speed c. In general, it is difficult to understand the stability of PTWs of a PDE. The first step is to perform numerical

simulations of the whole PDE. For example, a numerical simulation of (2), shown in Fig. 1(b), indicates a stable PTW of the model.

We used an implicit scheme with periodic boundary conditions on [0, Lx]. Numerical integration was performed with space step

dx = 0.2 and time step dt = 0.01 on a domain of size Lx = 200.

2.2. Review of theoretical results

We look for the solutions of (1) in one spatial dimension with fixed shape and wave speed: u(x, t) = U(z), v(x, t) = V(z), and

z = x − ct, where x and t are the space and time coordinates, respectively, and c is the wave speed. In this moving coordinate

system, the equations in (1) reduce as follows:

duUzz + cUz + f (U,V) = 0,

dvVzz + cVz + g(U,V) = 0. (3)

Reducing to the first order, the above system (3) becomes

dU

dz
= P,

dP

dz
= (− cP − kU(1 − U)(U − a) + UV)/du,

dV

dz
= Q,

dQ

dz
= (− cQ − ε(U,V)(kU(1 + a − U) − V))/dv. (4)

A periodic traveling wave solution (U(z), V(z)) is a periodic orbit of this ordinary differential equation (ODE) system (4). In order to

study the stability of periodic traveling wave solutions, it is convenient to reformulate (1) in terms of z and t, i.e., u(x, t) = ũ(z, t)
and v(x, t) = ṽ(z, t). Then, (1) becomes

∂ ũ

∂t
= c

∂ ũ

∂z
+ du

∂2ũ

∂z2
+ f (ũ, ṽ),

∂ ṽ
∂t

= c
∂ ṽ
∂z

+ dv
∂2ṽ
∂z2

+ g(ũ, ṽ). (5)

The linearization of the co-moving frame reaction–diffusion Eq. (1) about the steady state (U(z), V(z)), by using ũ(z, t) = u(z, t) +
Û(z, t), is given by

∂Û

∂t
= c

∂

∂z
Û + D

∂2

∂z2
Û + JF · Û = LÛ, (6)

where JF denotes the Jacobian matrix of ( f (ũ, ṽ), g(ũ, ṽ)) with respect to ũ and its derivative along the periodic traveling wave,

and D = diag(du, dv) is the diffusion matrix. The linear operator L is defined as

L := c
∂ + D

∂2

2
+ JF. (7)
∂z ∂z
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Spectral stability of the wave (U(z), V(z)) can be determined by the spectrum of the linearized operator L. The eigenvalue problem

of (6) is given by

λφ̂ = c
d

dz
φ̂ + D

d2

dz2
φ̂ + JF · φ̂ = Lφ̂, (8)

with the appropriate boundary conditions derived using Floquet theory [39–41] are given by

φ̂(L) = φ̂(0) exp(iγ ), for some γ ∈ R, (9)

where L is the period of the PTW, γ is the phase shift across one period of the wave, φ̂ is the eigenfunction, and λ is the eigenvalue.

The stability of the PTWs or the calculation of essential spectra depends essentially on the boundary conditions (9). Thus, the

boundary conditions are crucial. Using the method adopted in [40], WAVETRAIN determines the stability of a PTW by calculating

the essential spectrum via the continuation technique. A spectrum λ(γ ) of a PTW solution is the set of all eigenvalues λ such that

(8) and (9) have a non-trivial solution [18]. For γ = 0, (8) and (9) can be solved by standard numerical methods. However, when

γ �= 0, these equations cannot be reduced to a matrix eigenvalue problem; hence, WAVETRAIN applies the numerical continuation

method to the phase difference γ [18] for the calculation of essential spectra. In this case, one first needs to calculate matrix

eigenvalues and the corresponding eigenfunctions for γ = 0 and use these solutions as initial data for the continuation over 0 <

γ < 2π for some selected matrix eigenvalues near the imaginary axis. For this purpose, one first needs to write (8) as a first-order

ODE system, which is given by

dv
dz

= (A(z) + λB)v. (10)

Here, v(z) ∈ R
4, the matrices A and B are of size 4 × 4, and A(z) is periodic with period L. Now, in order to rescale L to unity and to

get the appropriate boundary conditions for the continuation, one needs to consider the following Bloch transformation [40,42]:

v(z) = e
iγ z

L w(z), where ζ = z

L
. (11)

Therefore, (10) reduces to the following form:

dw

dζ
= L

[
A(ζ ) + λB

]
w − iγ w, w(1) = w(0). (12)

For each ν = iγ ∈ C, the Bloch-wave operator [40] is given by

Lν := c(
∂

∂z
+ ν) + D(

∂

∂z
+ ν)2 + JF. (13)

Further, (12) represents a first-order ODE system of the following original eigenvalue problem:

λψ̂ = Lνψ̂, ψ̂(1) = ψ̂(0). (14)

Thus, one can calculate the essential spectra of the linearized operator L by continuing some selected eigenvalues λ of the Bloch-

wave operators Lν defined in (13) in the parameter γ [40].

2.3. The WAVETRAIN package

We used the continuation package WAVETRAIN [18] for studying the PTWs. WAVETRAIN is a software for the study of PTWs

of PDEs, which uses AUTO [43] to perform continuation of solutions. Solving the above equations in (12) requires several special

settings, such as integral constraints to ensure the normalization of the rescaled eigenfunction and set orthogonality conditions

(full details are given in [40]). WAVETRAIN [18] manages all these settings to solve the original Eqs. (8) and (9). In order to

understand the stability of the PTW solutions, we need to calculate the spectra of the PTWs. In general, the spectra of linear

operators consist of two parts: a discrete part and a continuous part. These two parts are known as the point spectrum and the

essential spectrum, respectively. However, for PTWs, the point spectrum is always empty [41]. Therefore, the spectrum of a PTW

solution in a large domain consists of only the essential spectrum [41,42]. A PTW solution is said to be stable if the essential

spectrum of the solution does not cross the imaginary axis; otherwise, it is unstable [42]. If the curvature of the spectrum of

a PTW solution changes sign at the origin, then the PTW has instability of Eckhaus type. However, if a fold is generated in the

curvature of the spectrum and crosses the imaginary axis away from the origin, then it is called a stability change of Hopf type

[42]. The necessary conditions for the stability change of a PTW solution of Eckhaus type are

λ = Re(
dλ

dγ
) = Re(

d2λ

dγ 2
) = 0,

whereas a stability change of Hopf type occurs when

Re(λ) = Re(
dλ

dγ
) = 0 with Im(λ) �= 0.

However, for the sufficient condition one needs to add a transversality condition, i.e., the derivative of Re(λ) with respect to the

parameter γ is non-zero (for full details, we refer to [18,42]).
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2.4. Numerical methods for PDE integration

For direct numerical simulations in one dimension, we used an implicit scheme with periodic boundary conditions on [0, Lx].

For numerical computations in two dimensions, we used the alternating direction implicit (ADI) method [44,45] with Neumann

boundary conditions.

3. Results and discussion

3.1. Stability of PTWs in the original Aliev–Panfilov model

In this section, we study the stability of PTWs of (1). We used a numerically calculated periodic orbit from the PDEs as an

initial solution for the continuation. Fig. 2(a) shows the existence and stability of the PTWs of (1) as a function of the threshold

parameter a and the wave speed c. The other parameters are the same as those listed in Table 1. In [46], the parameter a is impor-

tant for determining the spiral wave instability in two spatial dimensions. We consider a sufficiently small diffusion coefficient

for the second component instead of zero, because in this case, the traveling wave ODEs (4) are more regular. The triangles on the

parameter plane indicate that there is no PTW solution at that point, and the circles indicate the existence of PTWs. The green

line represents the stability boundary of Eckhaus type between stable and unstable PTWs. For the mathematical details of the

Eckhaus instability, we refer to [40], and for the calculation procedure of the stability boundary, we refer to [42]. The red (blue)

circles indicate stable (unstable) PTWs at a given point of the wave speed c and the parameter a. The gray line is the locus of the

PTWs with constant period = 25. Let us call this line the “iso-period” line. We observe that the iso-period line crosses the Eck-

haus stability boundary. This stability information is important for determining spiral instability in two spatial dimensions in the

numerical simulation later in the paper. The point where eigenvalues cross the imaginary axis is seen at the level of an extended

medium as the emergence of spontaneous oscillations. We also observe that the waves having sufficiently small periods are al-

ways unstable [1,24]. Fig. 2(b) shows a bifurcation diagram for a = 0.1, which calculates the wave period as a function of wave

speed. Plotting the wave period as a function of the wave speed is a standard way of presenting PTW families, which is known as

the dispersion relation of the PTWs. In the dispersion curve, the fast (c > 0.1815) and slow (c < 0.1815) branches are connected at a

critical point (c0 = 0.1815, L0 = 2.90), where the wave period has a local minimum value (see Fig. 2(b)). The Eckhaus bifurcation

point between stable and unstable PTWs is at cE = 0.2952 and LE = 6.76. This indicates the onset of the instability of the PTWs.

Thus, the PTWs having period less than 6.76 are always unstable in the fast branch. The slow branch is always unstable [40]. We
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Fig. 2. PTW stability in the original Aliev–Panfilov model. (a) Existence and stability of PTWs of (1) as a function of a and c. The parameter values are the same as

those listed in Table 1. The symbols represent the results on a 10 × 10 grid in the parameter plane: indicates that there is no PTW at that point; indicates the

existence of a stable PTW; indicates the existence of an unstable PTW. The green solid line is the Eckhaus-type stability boundary between stable and unstable

PTWs. The gray line is the locus of the PTWs with constant period = 25. The pink lines are the loci of homoclinic solutions. (b) The branch of the PTWs (or the

bifurcation diagram) of (1) when a is fixed at a = 0.1. The curves were calculated and plotted using the software package WAVETRAIN [18]. (For interpretation of

the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1

Typical set of parameter values in (1) used in the numerical computation [19].

Parameters k a μ1 μ2 du dv ε0

Values 8.0 ��� 0.2 0.3 0.05 0.005 0.002
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Fig. 4. In the center: a bifurcation diagram of the PTWs for a = 0.05. The plots (i) and (ii) illustrate the essential spectra for different parts of the dispersion

curve. The gray lines indicate the spectra and the black dots denote eigenvalues corresponding to eigenfunctions for γ = 0 in (9). The essential spectra are for (i)

a stable PTW, when c = 0.376 and a = 0.05, and (ii) an unstable PTW, when c = 0.36 and a = 0.05.
show this phenomenon by calculating the essential spectrum later in the paper, as shown in Fig. 4. Fig. 2(b) also shows that as

the period of these PTWs approaches a very large value, their velocities approach a limiting wave speed and the waves approach

a homoclinic solution. Thus, the PTW branches (families) begin and end at homoclinic solutions (see Fig. 2(b)). It is possible to

calculate actual locus of homoclinic solutions by numerical continuation [47,48]. However, it is easier to approximate the locus

by a PTW solution of a large period (say, 1000). Fig. 2(b) also indicates that the region giving waves in Fig. 2(a) is bounded above

and below by the locus of homoclinic solutions. We find that if the PTWs exist for a parameter setting of the PDEs, then they also

exist for a range of the wave speed c [1]. Fig. 3 shows the profile of a solution in the (a, c)-parameter space, where the parameter

a = 0.15 and the wave speed c = 0.15. The corresponding period of the PTW is 19.43.

Fig. 4 shows the essential spectra of the PTWs for different parts of a dispersion curve. The central plot of Fig. 4 is a dispersion

curve for a = 0.05. This curve shows fast and slow PTW branches. The fast (c > 0.17) and slow (c < 0.17) wave branches are

connected by the critical point at L0 = 2.4 and c0 = 0.17. Plot (i) shows an essential spectrum of a stable PTW of (1), when the

wave speed c = 0.376. It corresponds to a PTW at the fast branch before the Eckhaus bifurcation point (c > 0.3753). The Eckhaus

bifurcation point is at cE = 0.3753, where the onset of PTW instability occurs. The period at the Eckhaus bifurcation point is

LE = 19.88, which is the minimum stable period of the PTWs. The spectrum is located in the left half of the complex plane,

meaning that the PTW is stable. Plot (ii) shows an essential spectrum of an unstable PTW, when the wave speed c = 0.36, which

corresponds to a PTW after the Eckhaus bifurcation point (c < 0.3753). In this case, the curvature of the spectrum crosses the
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Table 2

Typical values for the parameters in (2) used in the computation.

Parameters k d a b μ1 μ2 du dv ε0

Values 8.0 6.5 0.15 ��� 0.2 0.3 0.05 0.005 0.002
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the results on a 10 × 10 grid in the parameter plane: indicates that there is no PTW at that point; indicates the existence of a stable PTW; indicates the

existence of an unstable PTW. The green line is the Eckhaus-type stability boundary between stable and unstable PTWs. The gray lines are the loci of the PTWs

with constant periods. The pink lines are the loci of homoclinic solutions. (b) The branch of the PTWs (or dispersion curve) of (2) when b is fixed at b = 0.08. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
imaginary axis at zero, meaning that the PTW has instability of Eckhaus type. Therefore, we conclude that the waves are unstable

beyond the Eckhaus bifurcation point (c < 0.3753).

3.2. Stability of PTWs in a variant of the Aliev–Panfilov model

In this section, our aim is to determine the existence and stability of PTWs of (2). Here, we consider the parameter b as a

control parameter, while the other parameters are the same as those listed in Table 2. The parameter b is important because

it determines the gap between the two nullclines at the right branch, as mentioned earlier. The meanings of the symbols in

the parameter plane are the same as in Fig. 2. The gray lines are the loci of the PTWs with constant periods = 25 and 8. We

observe that the iso-period lines cross the Eckhaus stability boundary as b decreases. The blue circular points below the stability

boundary indicate that the waves having sufficiently small periods are unstable [1,24]. Fig. 5(b) shows a dispersion curve for

the parameter b = 0.08. The Eckhaus (E) bifurcation point between stable and unstable PTWs is at (0.2727, 11.02). The PTWs are

also unstable between the Eckhaus point (cE, LE) and the critical point (c0, L0) = (0.135, 2.85) in the fast family. Thus, the PTWs

having periods less than 11.02 are always unstable in the fast branch. Fig. 5(b) also shows that the PTW branches (families) begin

and end at homoclinic solutions. This indicates that the region giving waves in Fig. 5(a) is bounded above and below by the

homoclinic solutions. The pink lines are the loci of the homoclinic solutions (see Fig. 5(a)). The main advantage of the model (2)

is that the stability boundary is nearly parallel to the iso-period lines for b ≥ 0.2. This suggests that the periods of the PTWs are

constant even we increase the gap between the two nullclines. However, for b < 0.2, the stability boundary gradually becomes

steeper under change of b (see Fig. 5(a)). As a result, the iso-period lines cross the stability boundary.

In Fig. 6, we calculate the essential spectra of the PTWs for different parts of a dispersion curve of the model (2). The central

plot of Fig. 6 is a dispersion curve for b = 0.05. Plot (i) shows an essential spectrum of a stable PTW of (2), when the wave speed

c = 0.29, which corresponds to a PTW at the fast branch before the Eckhaus bifurcation point (c > 0.2875). The minimum stable

period at the Eckhaus bifurcation point is L = 20.02. The spectrum is located in the left half of the complex plane, meaning that

the PTW is stable. This suggests that for all PTWs in the fast branch for c > 0.2875, the eigenvalues have a negative real part.

Plot (ii) shows an essential spectrum of an unstable PTW, when the wave speed c = 0.28, which corresponds to a PTW after the

Eckhaus bifurcation point (c < 0.2875). The spectrum crosses the imaginary axis, meaning that the eigenvalues have a positive

real part and the PTW is unstable. Thus, the PTWs in the fast branch having sufficiently large periods between the Eckhaus point

and the critical point are also unstable in the modified Aliev–Panfilov model (2).
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ii i

Fig. 6. In the center: a bifurcation diagram (or dispersion relation) of the PTWs for b = 0.05. The plots (i) and (ii) illustrate the essential spectra for different parts

of the dispersion curve. The gray lines indicate the spectra and the black dots denote eigenvalues corresponding to eigenfunctions for γ = 0 in (9). The essential

spectra are for (i) a stable PTW, when c = 0.29 and b = 0.05, and (ii) an unstable PTW, when c = 0.28 and b = 0.05.
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Fig. 7. Space-time plots of the PTWs in the PDE simulation of (1) based on the dispersion curve in Fig. 4 (center plot). The parameter settings are the same

as in Fig. 4. (a) A stable PTW for the system size Lx = 160 (i.e., spatial period l1 = 20). (b) An “oscillating PTW” for the system size Lx = 150 (i.e., spatial period

l2 = 18.75).
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3.3. Oscillating PTWs through PDE simulations

In this section, we compare the results obtained in the previous sections with those of the corresponding direct PDE sim-

ulations. Fig. 7 shows different patterns of the PTWs in the PDE simulation around the Eckhaus bifurcation point. We used an

implicit scheme with periodic boundary conditions on [0, Lx]. Numerical integration was performed with space step dx = 0.166

and time step dt = 0.01 on a grid of 960 elements. The parameter settings are the same as in Fig. 4. In Fig. 4, the dispersion curve

shows that at the Eckhaus bifurcation point, the period of the PTW is l = 19.88. Therefore, we consider a PTW of eight pulses in

a medium of system size Lx = 160, i.e., spatial period, say, l1 = 20. The relation between the system size and the spatial period

is defined as Lx := n × l, where n is the number of pulses and l is the spatial period or wavelength. Fig. 7(a) shows a stable PTW

solution for the system size Lx = 160, i.e., spatial period l1 = 20, when l1 > l. This period is slightly greater than the minimum

stable period in Fig. 4 (center plot). We found an “oscillating PTW” in the simulation result. In Fig. 7(b), we consider a PTW

of eight pulses in a system of length Lx = 150, i.e., spatial period l2 = 18.75. Fig. 7(b) shows the “oscillating PTW” or alternans

[49,50], when l2 < l.

In Fig. 8, we compare the results of the stability change of the Eckhaus-type PTWs in model (2) with those of the simulations.

The central plot in Fig. 6 shows a dispersion curve. A closer inspection reveals that the fast branch of the PTWs destabilizes
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Fig. 8. Space-time plots based on the dispersion curve in Fig. 6 (central plot). (a) A stable PTW solution in the PDE simulation for L = 161 (i.e., l1 = 20.125). (b)

An “oscillating PTW” solution in the PDE simulation for L = 148 (i.e., l2 = 18.5). The parameter settings are the same as in Fig. 6.
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Fig. 9. The spiral wave dynamics as a function of b in (2). The other parameter values are the same as in Table 2 or Fig. 5. The panels are at (a) b = 0.15, (b)

b = 0.1, (c) b = 0.083, and (d) b = 0.08. Numerical simulation with space step dx = dy = 0.1 and time step dt = 0.02 on a grid of 1000 × 1000 elements. The

black area represents the excited state (u = 1.0) and the white area represents the resting state (u = 0.0) of the medium.
via a stability change of Eckhaus type when the wave speed c = 0.2875. We also observe that the minimum stable period of

the PTWs at the Eckhaus point is approximately 20.02 (say, l). Now, we consider a PTW of eight pulses in a medium of system

size Lx = 200. We gradually decreased the system size and found a stable pattern of solutions until the onset of the Eckhaus

bifurcation. Fig. 8(a) shows a stable PTW solution for the system size Lx = 161, i.e., spatial period l1 = 20.125, when l1 > l. This

period is slightly greater than the minimum stable period in Fig. 6. However, when we decreased the wavelength, we found

an oscillatory pattern of solutions in a second simulation. Fig. 8(b) shows an “oscillating PTW” for the system size Lx = 148,

i.e., spatial period l2 = 18.5, when l2 < l. Thus, the results of the traveling wave ODEs are consistent with the stability of the

corresponding PDE simulation.

3.4. Spiral breakup phenomenon through PDE simulations

In this section, we present some simulation results in two dimensions of model (2) as a function of the parameter b. We

considered the parameter b as a control parameter as a consequence of the one-dimensional numerical study. We found that the

Eckhaus boundary in the (b, c)-parameter space becomes steeper as b decreases (see Fig. 5(a)). We would like to determine spiral

instability for the same computational settings in this section.

First, Fig. 9 shows the dynamics of the spiral wave as a function of the parameter b of (2). We continued the simulation for a

long time for every value of b in order to reach a steady-state solution. As an initial guess, we used a single traveling pulse solution

truncated to half of the domain as a two-dimensional broken wave front in order to get the first initial spiral. Fig. 9(a and b) shows

a stable spiral pattern for b = 0.15 and b = 0.1, respectively. The excited state (black area) becomes thicker in the second case as

the parameter b decreases. The onset of instability or spiral breakup was found near the boundary of the medium for b = 0.083

(see Fig. 9(c)). The chaotic pattern increases when b is further decreased, and finally, far-field breakup is transmitted near the

vicinity of the first initial spiral core with one initial pulse intact at around b = 0.08 (see Fig. 9(d)). These numerical results of

the direct PDE simulations are consistent with the stability of the PTWs in the traveling wave ODEs presented in Fig. 5. Thus, the
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Fig. 10. Time sequence illustrating the dynamical mechanism of spiral breakup in (2) when b = 0.08. The other parameter values are the same as in Fig. 5. The

panels are at (a) t = 0, (b) t = 122, (c) t = 732, and (d) t = 1100. Numerical simulation with space step dx = dy = 0.1 and time step dt = 0.02 on a grid of 1000 ×
1000 elements.
spiral wave instability occurs as a consequence of the PTW instability. Several numerical studies related to spiral breakup in the

Aliev–Panfilov model have been reported [19,34–36,51]. However, previous studies did not consider the parameter b as a control

parameter in order to obtain stable and unstable spiral wave dynamics.

Next, we show the spiral breakup phenomenon of (2) as a function of time. Fig. 10 shows the evolution of spatial pattern

formation when b = 0.08. Fig. 10(a) shows the dynamics of a stable spiral pattern, which is considered as an initial guess for

the subsequent simulations in Fig. 10(b–d). Numerical integration is performed with space step dx = dy = 0.1 and time step

dt = 0.02 on a grid of 1000 × 1000 elements. The parameter settings are the same as in Fig. 5(a). In this case, after several

rotations of the spiral wave, the initial breakup occurs in the arm of the spiral wave (near the boundary) instead of the vicinity

of the core (see Fig. 10(b)) at time t = 122. This type of breakup is known as far-field breakup [24]. Gradually, the excited state

covered most regions of the medium. The pulse breaks at the spiral arm form two new spiral tips and make the medium spatially

disorganized (see Fig. 10(c)). A new wave break produces two more new spirals. This process continues repeatedly throughout

the medium, and at t = 1100, a chaotic pattern of waves appears (see Fig. 10(d)).

4. Conclusions

We studied the existence and stability of the periodic traveling wave solutions in an excitable reaction–diffusion system.

In general, the PTWs exhibit stability change of either Eckhaus type or Hopf type [40]. The computational results obtained by

the calculation of essential spectra confirmed Eckhaus-type instability in the original Aliev–Panfilov model and modified Aliev–

Panfilov model. Our results showed that in PTWs, the stability change of Eckhaus type [42] occurs in waves having both small

and large periods. The small-period waves are always unstable [1,24]. Therefore, the instability of the waves having large periods

is important. We found in both models that the PTWs having large periods cross the stability boundary, and as a result, they

bifurcate to an oscillating wave. The advantage of the modified Aliev–Panfilov model is that the excitation period increases as the

parameter decreases (for a fixed value of the parameter a). Eventually, it reaches to a homoclinic solution (see Fig. 5(a)). Moreover,
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the stability boundary becomes steeper as b decreases. As a result, the waves having large periods cross the stability boundary and

bifurcate to an oscillating PTW. The oscillating periodic wave pattern was observed as a consequence of the Eckhaus bifurcation

point (see Figs. 7 and 8). This indicates a good agreement between the continuation result of the traveling wave ODEs and the

stability of the corresponding direct numerical simulation of the PDE system. The instability of the PTWs in one dimension

is closely related to the instability of the spiral wave in two dimensions [46]. The determination of the mechanism of spiral

instability or spiral breakup in cardiac activity is an open problem. Our two-dimensional results showed that the spiral instability

is caused by the PTW instability in the modified Aliev–Panfilov model. Moreover, we found that far-field breakup [24] occurred

as a consequence of the Eckhaus instability of the PTWs.
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