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Abstract. We consider a nonlinear damped hyperbolic equation in Rn, 1 ≤ n ≤ 4, depending on
a positive parameter ε. If ε = 0, this equation reduces to the well-known parabolic KPP equation.
We remark that, after a change of variables, the hyperbolic equation has the same family of one-
dimensional travelling waves (or fronts) as the KPP equation. Using various energy functionals,
we show that these fronts are locally stable under perturbations in appropriate weighted Sobolev
spaces. Moreover, the decay rate in time of the perturbed solutions towards the front of minimal
speed c = 2 is shown to be polynomial. In the one-dimensional case, if ε < 1/4, we can apply a
Maximum Principle for hyperbolic equations and prove a global stability result. We also prove
that the decay rate of the perturbed solutions towards the fronts is polynomial, for all c > 2.
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1. Introduction

We consider the damped hyperbolic equation

εutt(ξ, t) + ut(ξ, t) = ∆ξu(ξ, t) + f(u(ξ, t)) , (1.1)

where ξ = (ξ1, ξ2, . . . , ξn) ∈ Rn, t ∈ R+, ε > 0, and f : R → R is a nonlinear
map.

When ε = 0, Eq.(1.1) reduces to a semilinear parabolic equation, usually asso-
ciated to the names of Fisher [Fi] or Kolmogorov, Petrovsky and Piskunov [KPP],
which arose in the context of a genetic model for the spread of an advantegeous
gene through a population. This equation also occurs in McKean’s model for
particles that undergo a branching process and perform Brownian motion [McK].
In particular if the branching mechanism is binary, the nonlinearity is given by
f(u) = u−u2. More generally, reaction-diffusion equations of this type have been
commonly used as mathematical models describing the motion and interaction of
different types or species in chemistry or biology [Fife]. In particular, for appro-
priate nonlinearities f(u), these equations have a continuous family of travelling
waves (or fronts) describing the invasion of one species by another [AW].
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However, modelling the spatial spread of particles by a diffusion process is
not completely satisfactory. Indeed, in Brownian motion particles can move with
arbitrarily high speed, and the directions of motion at successive times are uncor-
related. A more realistic model is obtained by replacing the diffusion process with
a velocity jump process, see [Ha2] for a detailed discussion and an extensive bibli-
ography. In the one-dimensional case, this model leads to the damped hyperbolic
equation (1.1), where ε > 0 is a parameter related to the “turning rate” of the par-
ticles. In the same spirit, in carrying over to correlated random walks McKean’s
idea of connecting a branching process to a process for spatial spread, Dunbar and
Othmer [DO] obtain the hyperbolic equation (1.1), in the one-dimensional case,
where ε is a parameter of the correlated random walk. Finally, equations of the
form (1.1) also arise as mathematical models for the propagation of voltage along
a nonlinear transmission line [DO].

In this paper, we study (1.1) in the multi-dimensional case. For convenience,
we restrict ourselves to the KPP nonlinearity f(u) = u − u2, but more general
cases can be treated by the same methods [Ci]. Our aim is to show that (1.1)
has a family of stable travelling waves, as it is well-known when ε = 0. Existence
of uniformly translating front solutions to damped hyperbolic equations has been
proved by Hadeler [Ha1] in a more general context. In our case, this is simply
done by setting

u(ξ, t) = g(
√

1 + εc2ξ1 − ct) , (1.2)

and inserting into (1.1). One obtains for g the differential equation

g′′(x) + cg′(x) + g(x)− g(x)2 = 0 . (1.3)

It is well-known [AW] that, for all c ≥ 2, this equation has a front-like solution
g(x) satisfying g′(x) < 0 for all x ∈ R, limx→−∞ g(x) = 1, limx→+∞ g(x) = 0,
and g(x) is unique up to a translation in the variable x. Therefore, for all ε > 0,
Eq.(1.1) has a continuous family of travelling waves of the form (1.2) indexed by
the parameter c ≥ 2. It should be noted that the speed of such a wave is no longer
c, but c(1 + εc2)−1/2, a quantity which is bounded by 1/

√
ε as c→∞.

The stability of travelling waves for KPP and similar nonlinear parabolic equa-
tions has been intensively studied over many years. Early results have been ob-
tained using comparison theorems based on the Maximum Principle, see [KPP],
[Fi], [AW]. When combined with probabilistic techniques, these methods give a
very detailed description of the basin of attraction of the wave [Bn]. In parallel, a
local stability analysis of the front in suitable weighted spaces has been initiated by
Sattinger [Sa] and extended recently by Kirchgässner [Ki], Kapitula [Ka], Bricmont
and Kupiainen [BK], Gallay [Ga], Eckmann and Wayne [EW], using functional-
analytic techniques, renormalization group methods, or energy functionals. In
particular, the decay rate in time of the perturbations in the critical case c = 2
has been investigated [Ki], [BK], [Ga]. Similar results have also been obtained for
higher dimensional equations [MJ], and for systems of parabolic equations [KR],
[RK].
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The aim of this paper is to extend part of the stability results available for
the KPP equation to the hyperbolic equation (1.1). In particular, using energy
functionals, we shall show that the travelling waves (1.2) are locally stable in
appropriate function spaces for all c ≥ 2 and all ε > 0. Moreover, using the
Maximum Principle for hyperbolic equations, we shall prove a global stability
result in the one-dimensional case, provided ε is sufficiently small. Finally, a decay
rate as t → +∞ of the perturbations will be obtained if c = 2, or if n = 1 and
ε < 1/4.

We now proceed to state our results in a more precise way. Given ε > 0, c ≥ 2,
we go to a moving frame using the change of variables

u(ξ, t) = v(
√

1 + εc2ξ1 − ct, ξ2, . . . , ξn, t) ≡ v(x, y, t) , (1.4)

where x =
√

1 + εc2ξ1 − ct and, if n > 1, y = (ξ2, . . . , ξn). The equation for v is

εvtt + vt − 2εcvxt = vxx + ∆yv + cvx + v − v2 , (1.5)

and by construction v(x, y, t) = g(x) is a stationary solution of (1.5). As in
the parabolic case, this solution can only be stable if we restrict ourselves to
perturbations which decay to zero sufficiently fast as x → +∞. To achieve this
decay, we look for solutions of the form v(x, y, t) = g(x) + a(x)w(x, y, t), where
a(x) = e−γx for some γ > 0 which will be fixed later. Then w(x, y, t) satisfies the
equation

εwtt+(1+2εcγ)wt−2εcwxt = wxx+∆yw+(c−2γ)wx+(1−cγ+γ2−2g)w−aw2 .
(1.6)

In the sequel, we shall rewrite in the usual way this second order equation as a
first order system for the pair (w,wt), and we shall study the stability of the origin
(w,wt) = (0, 0) for this system in a space Z1

ε which we now describe.

Function spaces. For all j ∈ N, we denote by Hj = Hj(Rn) the usual (real)
Sobolev space of order j over Rn, with H0(Rn) = L2(Rn). Similarly, we denote by
Hj
a = Hj

a(Rn) the weighted Sobolev space defined by the norm ‖w‖Hja = ‖aw‖Hj .
We also set L2

a = H0
a . We write Xj for the intersection Hj ∩Hj

a equipped with
the norm ‖w‖2Xj = ‖w‖2Hj + ‖w‖2

Hja
, and Zjε for the product Xj ×Xj−1 equipped

with the (ε-dependent) norm

‖(w1, w2)‖2
Zjε

= ‖w1‖2Xj + ε‖w2‖2Xj−1 . (1.7)

Finally, we define Yε = H1 × L2 and Yεa = H1
a × L2

a, equipped with the (ε-
dependent) norms

‖(w1, w2)‖2Yε = ‖w1‖2H1 + ε‖w2‖2L2 , ‖(w1, w2)‖Yεa = ‖(aw1, aw2)‖Yε .
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Remark that Z1
ε ≡ Yε ∩ Yεa.

It follows from these definitions that (w,wt) ∈ Z1
ε if and only if (aw, awt)(1 +

eγx) ∈ H1 × L2. Therefore, our perturbation space {(aw, awt) | (w,wt) ∈ Z1
ε }

depends on γ and becomes smaller when γ is increased. On the other hand, using
a direct calculation in Fourier space, one can verify that the origin in (1.6) is
linearly stable in Z1

ε only if 1− cγ+ γ2 ≤ 0. In fact, this condition can be inferred
from the coefficient of w in (1.6). As a consequence, the biggest perturbation space
in which we can hope for stability of the wave is obtained by taking

γ =
c

2
−
√
c2

4
− 1 . (1.8)

Note that this value corresponds to the exponential decay rate of g(x) as x→ +∞,
since g(x) ∼ e−γx if c > 2 and g(x) ∼ xe−x if c = 2 [AW]. In the sequel, we shall
always assume that (1.8) holds, so that (1.6) becomes

εwtt + (1 + 2εcγ)wt − 2εcwxt = wxx + ∆yw +
√
c2 − 4wx − 2gw− aw2 . (1.9)

Furthermore, we shall assume without loss of generality that g(0) = 1−σ for some
σ ≤ 1/8, and that g(x) ≥ 2a(x)/3 for all x ≥ 0. This can always be achieved by
replacing g(x) with g(x− x0) for some sufficiently large x0 > 0.

Remark. As in the parabolic case, one can show that the origin in (1.6) is ex-
ponentially stable in Z1

ε if c > 2 and 1 − cγ + γ2 < 0. The fastest decay rate is
obtained for γ = γ̂(ε), where

γ̂(ε) =
c

2

√
1 + 4ε
1 + εc2

. (1.10)

Since this result can be proved using the same spectral estimates as in the parabolic
case [Sa], we shall focus here on the marginal choice (1.8) for which no exponential
decay is expected.

Using these definitions, we can state our first result, which shows that the
travelling waves are locally stable.

Theorem 1.1. Assume that n ≤ 4, and let ε0 > 0, c ≥ 2. Then there exist
constants δ0 > 0 and K0 ≥ 1 such that, for all 0 < ε ≤ ε0, the following holds :
for all (ϕ0, ϕ1) ∈ Z1

ε such that ‖(ϕ0, ϕ1)‖Z1
ε
≤ δ0, there exists a unique solu-

tion (w,wt) ∈ C0([0,∞), Z1
ε ) of (1.9) with initial data (w(0), wt(0)) = (ϕ0, ϕ1).

Moreover, one has

‖(w(t), wt(t))‖Z1
ε
≤ K0‖(ϕ0, ϕ1)‖Z1

ε
, (1.11)

for all t ≥ 0, and

lim
t→+∞

(
‖∇w(t)‖X0 + ‖wt(t)‖X0 + ‖w(t)‖L2

a

)
= 0 . (1.12)



Vol. 48 (1997) Stability of travelling waves for a damped hyperbolic equation 455

In addition, if c = 2, one has

lim
t→+∞

√
t
(
‖∇w(t)‖X0 + ‖wt(t)‖X0 + ‖w(t)‖L2

a

)
= 0 . (1.13)

Remarks. 1) By a solution of (1.9), we always mean a mild solution, that is a
solution of the integral equation associated with (1.9), see the proof of Proposi-
tion 2.1 below. In general, such solutions satisfy (1.9) in a distributional sense
only, see Lions [Li], Section 1.1. However, if (ϕ0, ϕ1) ∈ Z2

ε , then the solution
(w,wt) belongs to C1([0,∞), Z1

ε )∩C0([0,∞), Z2
ε ) and satisfies (1.9) in a classical

sense. In (1.11) and in the sequel, we use the short notation w(t) for w(·, ·, t),
when no confusion is possible.
2) The restriction n ≤ 4 arises because we control the nonlinearity aw2 in (1.9)
in the energy space Z1

ε , using the Sobolev embedding of H1(Rn) into L4(Rn).
More generally, if f(u) in (1.1) is a polynomial of degree p > 1, we assume that
n ≤ 2p/(p− 1). This bound could be improved up to 2(p + 1)/(p − 1) using the
more sophisticated Lp − Lp′ estimates of Strichartz [St], [Br].
3) If n ≥ 3, it follows from (1.11), (1.12) and the Sobolev embedding theorem that

lim
t→+∞

(‖w(t)‖Lq + ‖aw(t)‖Lq) = 0 , 2 < q ≤ 2n
n− 2

. (1.14)

If n = 2, then (1.14) is valid for all q > 2 and even for q =∞ if n = 1. In the case
where c = 2, (1.11) and (1.13) imply that

lim
t→+∞

(
tη‖w(t)‖Lq + t1/2‖aw(t)‖Lq

)
= 0 , η =

n(q − 2)
4q

,

for the same values of q.
In Theorem 1.1, the size of the basin of attraction of the wave, in particular

its possible dependence on the parameter ε > 0, is not specified. However, in the
parabolic limit ε → 0, it is known [KR] that the travelling fronts are stable with
respect to large positive perturbations, and a similar property is expected to hold
for (1.5) if ε is sufficiently small. To investigate this point, we restrict ourselves
for convenience to one space dimension, and we apply the Maximum Principle for
hyperbolic equations, which is briefly recalled in Appendix A. Our second result
reads:

Theorem 1.2. Assume that n = 1, and let ε0 > 0, c ≥ 2, d ∈ (0, 1]. Then
there exists a constant C ≡ C(ε0, c, d) such that, for any 0 < ε ≤ ε0 and for any
constant K > 0 such that

1− 4ε(d+K) ≥ 0 , (1.15)

the following holds: for any (ϕ0, ϕ1) ∈ Z1
ε satisfying ‖(ϕ0, ϕ1)‖Z1

ε
≤ K∗ where

K∗ = CK(1 +K)−1/3 and such that, for (almost) every x ∈ R,

ϕ0(x) ≥ −(1− d)a(x)−1g(x) , (1.16)
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εϕ1(x) ≥ εcϕ′0(x)− 1
2

(ϕ0 +(1−d)a−1g)(x)+εc(−γϕ0 +(1−d)a−1g′)(x) , (1.17)

there exists a unique solution (w,wt) ∈ C0([0,∞), Z1
ε ) of (1.9) with initial data

(ϕ0, ϕ1). Moreover, one has

‖(w(t), wt(t))‖Z1
ε
≤ K , w(x, t) ≥ −(1− d)a−1(x)g(x) , (1.18)

for all x ∈ R, t ∈ R+, and (1.12), (1.13) hold.

Remarks. 1) In the proof, the constant K∗ will actually appear as the solution
of the equation K6K

∗(1 + K∗)1/2 = K, for some constant K6(ε0, c, d) ≥ 1. This
precise form is due to our choice of the nonlinearity f(u) = u− u2 in (1.1). If for
example f(u) = u−um, m ≥ 2, the exponent 1/2 in the above relation is replaced
by (m − 1)/2. Note that, if ε is small, K (hence K∗) can be chosen very big by
(1.15), and Theorem 1.2 shows in this case that the travelling wave is stable with
respect to large perturbations, provided they satisfy the “positivity conditions”
(1.16), (1.17). Conversely, if ε is large, then K (hence K∗) has to be very small,
and Theorem 1.2 reduces to a local stability result similar to Theorem 1.1.
2) The conditions (1.16), (1.17) appear when applying the Maximum Principle to
the equation (1.5), see Appendix A. The first one simply says that v(x, 0) ≥ dg(x)
for all x ∈ R. The second one is not very restrictive if ε is small, and disappears
in the limit ε→ 0.

The previous results are still incomplete for at least two reasons. First, they
fail to give a decay rate for the perturbations when c > 2. Next, it would be very
natural to have a global existence result if d = 0. Indeed, it is known that, if
0 ≤ v(x, 0) ≤ g(x), the solution v(x, t) of the parabolic equation (1.5) with ε = 0
exists for all times and satisfies 0 ≤ v(x, t) ≤ g(x) (in terms of the variable w, this
corresponds to −a−1(x)g(x) ≤ w(x, t) ≤ 0.)

We shall give a partial answer to both questions when ε ≤ 1/4. Indeed, in this
case the Maximum Principle allows us to compare the solution w(x, t) of (1.9) with
solutions of linear equations, whose initial data are the “positive” and “negative”
parts (ϕ±0 , ϕ

±
1 ) of (ϕ0, ϕ1), in the sense of Appendix A. They are given by

ϕ+
0 (x) = sup(0, ϕ0(x)) , (1.19)

ϕ+
1 (x) = c(ϕ+

0 )′(x)− (
1
2ε

+ cγ)ϕ+
0 (x) + sup(0, (ϕ1 − cϕ′0 + (

1
2ε

+ cγ)ϕ0)(x)) ,

and

ϕ−0 (x) = inf(0, ϕ0(x)) , (1.20)

ϕ−1 (x) = c(ϕ−0 )′(x)− (
1
2ε

+ cγ)ϕ−0 (x) + inf(0, (ϕ1 − cϕ′0 + (
1
2ε

+ cγ)ϕ0)(x)) .
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Remark that (ϕ±0 , ϕ
±
1 ) belong to Z1

ε and that ϕi = ϕ+
i +ϕ−i for i = 0, 1. Although

the norms of ϕ±1 seem to depend strongly on ε, it is actually not the case: the
reader may check that |ϕ±1 (x)| ≤ |ϕ1(x)|+ c|ϕ′0(x)| a.e. in R.

With these definitions, we can state the last result:

Theorem 1.3. Assume that n = 1, and let ε ∈ (0, 1/4], c ≥ 2, d ∈ [0, 1].
Then there exists a constant N(c) ≥ 1 such that, for any nonnegative constant K
satisfying

1− 4ε(1 +K) ≥ 0 ,

the following holds: for any (ϕ0, ϕ1) ∈ Z1
ε satisfying (1.16), (1.17) and such that

inf
(
‖(ϕ0, ϕ1)‖Z1

ε
, ‖(ϕ+

0 , ϕ
+
1 )‖Z1

ε

)
≤ K

N(c)
,

where (ϕ+
0 , ϕ

+
1 ) is given by (1.19), there exists a unique solution

(w,wt) ∈ C0([0,∞), Z1
ε ) of (1.9) with initial data (ϕ0, ϕ1). Moreover, one has

−(1− d)g(x) ≤ a(x)w(x, t) ≤ K , (1.21)

for all x ∈ R, t ∈ R+. Finally, if d > 0 and ε < 1/4, one has

lim
t→+∞

t1/4 (‖w(t)‖L∞ + ‖(w(t), wt(t))‖Yεa) = 0 .

Remark. The case K = 0 corresponds to nonpositive initial data : (ϕ+
0 , ϕ

+
1 ) = 0.

Then (1.21) shows that the solution w(x, t) remains nonpositive for all times.
An outline of the paper is as follows. In Section 2 we introduce energy func-

tionals which allow us to derive a priori estimates for the solutions w(x, t) of (1.9)
under the assumption that either ‖w(t)‖X0 is sufficiently small or w(x, t) satisfies
the lower bound in (1.18) on some time interval. Using these energy estimates, we
prove Theorem 1.1 in Section 3. Section 4 is devoted to the one-dimensional case
n = 1. Combining the Maximum Principle with the estimates of Section 2, we
derive Theorem 1.2. Furthermore, when ε ≤ 1/4, we obtain linear bounds for the
solutions of (1.9) which allow us to prove Theorem 1.3. In Section 5, we consider
the limiting parabolic equation (1.1) when ε = 0. Noting that all the estimates
made in Section 2 are uniform in ε when 0 < ε ≤ ε0, and using the Maximum
Principle for parabolic equations, we obtain analogues of Theorem 1.1 and Theo-
rem 1.3. Thereby we recover some known stability results for the KPP equation.
Finally, in Appendix A, we recall the Maximum Principle for hyperbolic equations
[PW] in a version adapted to our purposes.
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2. Energy estimates

In this section, we derive some a priori estimates for the solutions of (1.9) which
will be needed in the proofs of Theorem 1.1 and Theorem 1.2. We begin with a
standard local existence result.

Proposition 2.1. Let ε > 0, c ≥ 2, and let (ϕ0, ϕ1) ∈ Z1
ε . Then there exists

a time T = T (ε, c, ϕ0, ϕ1) > 0 such that (1.9) has a unique solution (w,wt) ∈
C0([0, T ], Z1

ε ) satisfying (w(0), wt(0)) = (ϕ0, ϕ1).

Remark. In fact, the proof gives a lower bound on the existence time which
depends only on ε, c and ‖(ϕ0, ϕ1)‖Z1

ε
. Moreover, the energy estimates below will

show that this time is independent of ε if ε ∈ (0, ε0].

Proof. Setting W = (w,wt)t (where t denotes the transposition), we rewrite (1.9)
into the “abstract form”

Ẇ = AW + F (W ) , (2.1)

where A is the linear operator

A =
(

0 1
ε−1(∂2

x + ∆y +
√
c2 − 4∂x − 2g) −ε−1 + 2c(∂x − γ)

)
,

and F (W ) = (0,−ε−1aw2)t. It is not difficult to show that the operator A, defined
on the domain D(A) = Z2

ε , is the generator of a C0-semigroup [Pa] of bounded
linear operators in Z1

ε . Indeed, A can be written as the sum of a bounded operator
(depending on x ∈ R through the function g) and an unbounded operator with
constant coefficients, for which the property of being a generator can be verified
by a direct calculation (using Fourier transforms). Therefore, it follows from a
classical stability theorem ([Pa], Theorem 3.1.1) that A is the generator of a C0-
semigroup eAt in Z1

ε .
On the other hand, it is easy to verify that F : Z1

ε → Z1
ε is a C1 map. In-

deed, if w ∈ X1 = H1 ∩ H1
a , then by the Sobolev embedding theorem ‖w‖2

L4 ≤
KS‖w‖2H1 and ‖aw‖2

L4 ≤ KS‖w‖2H1
a

for some KS > 0. Therefore, ‖aw2‖2
L2 ≤

‖aw‖2
L4‖w‖2L4 ≤ K2

S‖w‖2H1‖w‖2H1
a

and ‖aw2‖2
L2
a

= ‖aw‖4
L4 ≤ K2

S‖w‖4H1
a
. Combin-

ing these inequalities, we find that ‖aw2‖X0 ≤ KS‖w‖2X1 , which proves that F
maps Z1

ε into itself. Since F is quadratic, the differentiability follows by the same
estimates.

In view of these properties, a standard result in semigroup theory ([Pa], The-
orem 6.1.4) implies that, for all Φ = (ϕ0, ϕ1)t ∈ Z1

ε , the integral equation

W (t) = eAtΦ +
∫ t

0
eA(t−τ)F (W (τ)) dτ ,
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has a unique solution W ∈ C0([0, T ], Z1
ε ) for some T > 0. This is what we

call a (mild) solution of (2.1), hence of (1.9). Moreover, if Φ ∈ Z2
ε , then W ∈

C1([0, T ], Z1
ε ) ∩ C0([0, T ], Z2

ε ) and satisfies (2.1) in a classical sense ([Pa], Theo-
rem 6.1.5). �

In the sequel, we fix ε0 > 0, c ≥ 2, and for some ε ∈ (0, ε0] we assume that we
are given a solution W = (w,wt) of (1.9) defined on some time interval [0, T ] and
satisfying one of the following two assumptions:
Hypothesis H1:

‖w(t)‖X0 ≤ δ for all t ∈ [0, T ], for some sufficiently small δ > 0,
Hypothesis H2:

w(x, y, t) ≥ −(1− d)a(x)−1g(x) a.e.(x, y), ∀t ∈ [0, T ], for some d ∈ (0, 1].
These two cases are adapted to the purposes of the proofs of Theorem 1.1

and Theorem 1.2 respectively. To be specific, we assume in the first case that
δ ≤ 1/(8KS), where KS is the constant of the Sobolev embedding of H1 into L4

(as in the proof of Proposition 2.1).
Under these assumptions, we shall study two families of energy functionals:

unweighted and weighted ones, which control the size of the solution w(x, y, t) in
the spaces Yε and Yεa respectively. We shall derive differential inequalities for these
functionals, which will show that the solution w(x, y, t) is bounded uniformly in
time by a quantity depending only on the initial data.

2.1. Unweighted functionals

Given w(x, y, t) as above, we define

E0(t) =
∫

Rn

(
ε

2
w2
t +

1
2
|∇zw|2 + gw2 +

1
3
aw3

)
dz ,

E1(t) =
∫

Rn

(
1 + 2εcγ

2
w2 + εwwt

)
dz ,

E2(t) = αE0(t) +E1(t) ,

(2.2)

where α = max(2ε, 1/(2c2)). Here and in the sequel, we set z = (x, y) ∈ Rn and
dz = dxdy.

Lemma 2.2. Assume that H1 or H2 holds. Then

E0(t) ≥
∫

Rn

(
ε

2
w2
t +

1
4
|∇zw|2 +

1
2
gw2

)
dz , (2.3)

for all t ∈ [0, T ]. Moreover, E0 ∈ C1([0, T ]) and

Ė0(t) ≤ (c2 − 4)E0(t) . (2.4)
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Proof. We first control the cubic term in (2.2). Using the Cauchy-Schwarz and
Sobolev inequalities, we have∣∣∣∣∫

x≤0
aw3 dz

∣∣∣∣ ≤ (∫
x≤0

a2w2 dz

)1/2(∫
x≤0

w4 dz

)1/2

≤ KS‖w‖X0

∫
x≤0

(
w2 + |∇zw|2

)
dz

≤ 2KS‖w‖X0

∫
x≤0

(
gw2 +

1
2
|∇zw|2

)
dz ,

(2.5)

since g(x) ≥ 1− σ ≥ 1/2 for x ≤ 0. Similarly,∣∣∣∣∫
x≥0

aw3 dz

∣∣∣∣ ≤ (∫
x≥0

w2 dz

)1/2 (∫
x≥0

a2w4 dz

)1/2

≤ KS‖w‖X0

∫
x≥0

(
aw2 + |∇z(a1/2w)|2

)
dz .

The integral of |∇z(a1/2w)|2 is equal to∫
x≥0

(
a|∇zw|2 +

γ2

4
aw2 − γawwx

)
dz ≤

∫
x≥0

(
3
4
γ2aw2 +

3
2
a|∇zw|2

)
dz .

Since γ2 ≤ 1 and 2a(x)/3 ≤ g(x) ≤ 1 for x ≥ 0, we thus have∣∣∣∣∫
x≥0

aw3 dz

∣∣∣∣ ≤ KS‖w‖X0

∫
x≥0

(
2aw2 +

3
2
a|∇zw|2

)
dz

≤ 3KS‖w‖X0

∫
x≥0

(
gw2 +

1
2
|∇zw|2

)
dz .

(2.6)

Combining (2.5) and (2.6), we conclude∣∣∣∣∫
Rn

aw3 dz

∣∣∣∣ ≤ 3KS‖w‖X0

∫
Rn

(
gw2 +

1
2
|∇zw|2

)
dz . (2.7)

If H1 holds, one has KS‖w‖X0 ≤ KSδ ≤ 1/2, and (2.3) follows immediately. If
H2 holds, then aw3 ≥ −gw2 a.e.(x, y) and (2.3) is obvious.

To prove (2.4), we first assume that (ϕ0, ϕ1) = (w(0), wt(0)) ∈ Z2
ε . In this case,

one has (w,wt) ∈ C1([0, T ], Z1
ε ), so that E0 ∈ C1([0, T ]), and a direct calculation

shows that

Ė0(t) = −(1 + 2εcγ)
∫
Rn

w2
t dz +

√
c2 − 4

∫
Rn

wxwt dz . (2.8)
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In the general case where (ϕ0, ϕ1) ∈ Z1
ε , we use the fact that the solution (w,wt) ∈

Z1
ε depends continuously on the initial data (ϕ0, ϕ1), uniformly in t ∈ [0, T ].

Therefore, if G(t) denotes the right-hand side of (2.8), we see that (for fixed t)
both E0(t) and E0(0)+

∫ t
0 G(s) ds are continuous functions of (ϕ0, ϕ1) ∈ Z1

ε . Since
they coincide on a dense subset (namely, Z2

ε ), they must be equal everywhere. This
proves that E0 ∈ C1([0, T ]) and satisfies (2.8). Finally, since

√
c2 − 4

∣∣∣∣∫
Rn

wxwt dz

∣∣∣∣ ≤ ∫
Rn

(
w2
t +

c2 − 4
4
|∇zw|2

)
dz ,

we see that (2.4) follows from (2.3) and (2.8). �

Lemma 2.3. Assume that H1 or H2 holds. Then there exist positive constants
K1,K2 depending only on ε0, c such that

K1‖W (t)‖2Yε ≤ E2(t) ≤ K2‖W (t)‖2Yε(1 + ‖w(t)‖X0) , (2.9)

for all t ∈ [0, T ]. Moreover, E2(t) ≥ αE0(t)/2, E2 ∈ C1([0, T ]) and

Ė2(t) ≤ −1
2
E0(t) . (2.10)

Remark. We recall that W = (w,wt). The fact that K1,K2 are independent of
ε will be very important in Section 5, where the limiting case ε = 0 is considered.
Note that the standard choice α = 2ε in (2.2) would lead to a constant K1 of order
ε, see the proof below.

Proof. Since α ≥ 2ε, we have

|εwwt| ≤
1
3
w2 +

3
4
ε2w2

t ≤
1
3
w2 +

3
8
αεw2

t . (2.11)

Therefore, using (2.3), we obtain

E2(t) ≥
∫

Rn

(
αε

8
w2
t +

α

4
|∇zw|2 +

α

2
gw2 +

1
6
w2
)
dz .

Furthermore, using (2.7), we find

E2(t) ≤
∫

Rn

(
αεw2

t +
α

2
|∇zw|2 + αgw2 + (1 + εcγ)w2 +

α

3
aw3

)
dz

≤ (1 +KS‖w‖X0)
∫

Rn

(
αεw2

t +
α

2
|∇zw|2 + αgw2 + (1 + εcγ)w2

)
dz .
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Since 0 ≤ g ≤ 1, ε ≤ ε0, and 1/(2c2) ≤ α ≤ max(2ε0, 1/(2c2)), we obtain (2.9),
with K1,K2 independent of ε. Similarly, since |εwwt| ≤ w2/2 +αεw2

t /4, it follows
from (2.2), (2.3) that

E1(t) ≥ −αε
4

∫
Rn

w2
t dz ≥ −

α

2
E0(t) ,

hence E2(t) ≥ αE0(t)/2.
To prove (2.10), we proceed along the same lines as in the preceding lemma.

Using a direct calculation and a density argument, we show that

Ė1(t) =
∫

Rn

(
εw2

t − 2εcwxwt − |∇zw|2 − 2gw2 − aw3
)
dz ,

hence

Ė2(t) = (ε− α(1 + 2εcγ))
∫
Rn

w2
t dz + (α

√
c2 − 4− 2εc)

∫
Rn

wxwt dz

−
∫

Rn

(
|∇zw|2 + 2gw2 + aw3

)
dz .

If α = 2ε, then α
√
c2 − 4− 2εc = −4εγ, and

4εγ|wxwt| ≤ 4ε2cγw2
t +

γ

c
w2
x ≤ 2εαcγw2

t +
1
2
|∇zw|2 ,

since γ/c ≤ 1/2 by (1.8). If α = 1/(2c2) ≥ 2ε, then |α
√
c2 − 4− 2εc| ≤ αc and

αc|wxwt| ≤
α

4
w2
t + αc2w2

x =
α

4
w2
t +

1
2
|∇zw|2 .

In both cases, we find

Ė2(t) ≤ −
∫
Rn

(
ε

2
w2
t +

1
2
|∇zw|2 + 2gw2 + aw3

)
dz.

If H1 holds, then by (2.2), (2.7)

Ė2(t) +
1
2
E0(t) ≤ −

∫
Rn

(
1
4
|∇zw|2 +

3
2
gw2 +

5
6
aw3

)
dz

≤ −(1− 5KS‖w‖X0)
∫

Rn

(
1
4
|∇zw|2 +

1
2
gw2

)
dz ≤ 0 .

If H2 holds, then we simply have

Ė2(t) +E0(t) ≤ −
∫
Rn

(
gw2 +

2
3
aw3

)
dz ≤ −1

3

∫
Rn

gw2 dz ≤ 0 .

In both cases, we obtain (2.10). �

Remark. Up to now, we did not use the fact that d > 0. Therefore, Lemma 2.2
and Lemma 2.3 are still valid if H2 holds with d = 0, and the constants K1,K2
are independent of d.
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2.2. Weighted functionals

Under the same assumptions as above, we define the weighted functionals

F0(t) =
∫

Rn

(
ε

2
a2w2

t +
1
2
a2|∇zw|2 + a2gw2 +

1
3
a3w3

)
dz ,

F1(t) =
∫

Rn

(
1− 2εcγ

2
a2w2 + εa2wwt

)
dz ,

F2(t) = α̂F0(t) + F1(t) + βE0(t) ,

(2.12)

where α̂ = max(2ε, d/(2c2)) and β = 3α̂. In the case where H1 holds, we set d = 1,
so that α̂ = α.

Remark. The additional term βE0(t) in (2.12) guarantees that F2(t) ≥ 0. How-
ever, if ε is sufficiently small, then α̂F0(t) + F1(t) is already positive, so we may
set β = 0. This possibility will be used in Section 4.3 below.

Lemma 2.4. Assume that H1 or H2 holds. Then there exist positive constants
K3,K4,K5 such that

K3‖W (t)‖2Yεa ≤ F2(t) ≤ K4‖W (t)‖2Yεa(1 + ‖w(t)‖X0) + βE0(t) , (2.13)

for all t ∈ [0, T ]. Moreover, F2 ∈ C1([0, T ]) and satisfies

Ḟ2(t) + κF2(t) ≤ K5E0(t) , (2.14)

where κ = d/(8(1 + α̂)).

Remark. Here and in the sequel, K3,K4, . . . denote positive constants depending
only on ε0, c and, if H2 holds, on d > 0.

Proof. Using the identity∫
Rn

a2|∇zw|2 dz =
∫

Rn

(
|∇z(aw)|2 + γ2a2w2

)
dz , (2.15)

together with the relation 1− cγ + γ2 = 0, we write F2(t) as

F2(t) =
∫

Rn

(
α̂ε

2
a2w2

t +
α̂

2
|∇z(aw)|2 + cγ(α̂/2− ε)a2w2 +

α̂

2
(2g − 1)a2w2

+
α̂

3
a3w3 +

1
2
a2w2 + εa2wwt

)
dz + βE0(t) . (2.16)
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To prove (2.13), we first note that cγ(α̂/2 − ε) ≤ cγα̂/2 ≤ α̂ and g ≤ 1. Using
(2.11), we thus find

F2(t) ≤
∫

Rn

(
α̂εa2w2

t +
α̂

2
|∇z(aw)|2 + (1 + α̂)a2w2 +

α̂

3
a3w3

)
dz + βE0(t) .

(2.17)
Furthermore, in analogy with (2.5), we have∣∣∣∣∫

Rn

a3w3 dz

∣∣∣∣ ≤ KS‖w‖X0

∫
Rn

(
a2w2 + |∇z(aw)|2

)
dz . (2.18)

Therefore, combining (2.17) and (2.18), we easily obtain the upper bound in (2.13).
To prove the lower bound, we first use (2.11) and the fact that α̂ ≥ 2ε. We find

F2(t) ≥
∫

Rn

(
α̂ε

8
a2w2

t +
α̂

2
|∇z(aw)|2 +

α̂

2
(2g − 1)a2w2 +

α̂

3
a3w3 +

1
6
a2w2

)
dz

+ βE0(t) .
(2.19)

If H1 holds, we apply (2.18). Since KS‖w‖X0 ≤ 3/4, we obtain

F2(t) ≥
∫

Rn

(
α̂

8
a2w2

t +
α̂

4
|∇z(aw)|2 + α̂(g − 3/4)a2w2 +

1
6
a2w2

)
dz + βE0(t) .

If x ≤ 0, then g(x) − 3/4 ≥ 1 − σ − 3/4 ≥ 0, since σ ≤ 1/8. If x ≥ 0, then
g(x)− 3/4 ≥ −1 and a(x)2 ≤ a(x) ≤ 3g(x)/2, so that∫

x≥0
a2w2 dz ≤ 3

2

∫
x≥0

gw2 dz ≤ 3E0(t) , (2.20)

by (2.3). Therefore, since β = 3α̂, we have

F2(t) ≥
∫

Rn

(
α̂ε

8
a2w2

t +
α̂

4
|∇z(aw)|2 +

1
6
a2w2

)
dz . (2.21)

If H2 holds, we observe that

α̂(g − 1/2)a2w2 +
α̂

3
a3w3 ≥ α̂(2g/3− 1/2)a2w2 a.e.(x, y) .

Again, we have 2g(x)/3−1/2 ≥ (1−4σ)/6 ≥ 0 if x ≤ 0, and 2g(x)/3−1/2 ≥ −1 if
x ≥ 0. Therefore, using (2.19) and proceeding as above, we again arrive at (2.21).
This proves the lower bound in (2.13).

To prove (2.14), we proceed along the same lines as in the preceding lemmas.
Using a direct calculation and a density argument, we first show that

Ḟ2(t) = (ε− α̂)
∫

Rn

a2w2
t dz + c(α̂− 2ε)

∫
Rn

a2wxwt dz

−
∫

Rn

(
|∇z(aw)|2 + (2g − 1)a2w2 + a3w3

)
dz + βĖ0(t) .

(2.22)
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If α̂ = d/(2c2) > 2ε, then

|c(α̂− 2ε)wxwt| ≤ cα̂|wxwt| ≤
α̂

4
w2
t +

d

2
|∇zw|2 .

Therefore, using (2.15) together with d ≤ 1, γ2 ≤ 1, we find

Ḟ2(t) ≤ −
∫
Rn

(
ε

2
a2w2

t +
1
2
|∇z(aw)|2 + (2g − 1− d/2)a2w2 + a3w3

)
dz+βĖ0(t) .

(2.23)
If α̂ = 2ε, then (2.23) follows immediately from (2.22).

We now combine (2.17) and (2.23). Using (2.4) and the fact that κα̂ ≤ 1/2,
we easily find

Ḟ2(t) + κF2(t) ≤ −
∫

Rn

(
1
4
|∇z(aw)|2 + (2g − 1− d/2− κ(1 + α̂))a2w2

)
dz

− (1− κα̂/3)
∫

Rn

a3w3 dz + β̂E0(t) ,

(2.24)
with β̂ = β(κ+ c2 − 4). If H1 holds, we use (2.18) and obtain

Ḟ2(t) + κF2(t) ≤ −
∫
Rn

(
2g − 3/2− κ(1 + α̂)−KS‖w‖X0

)
a2w2 dz + β̂E0(t) .

If x ≤ 0, then 2g(x)−3/2−κ(1+ α̂)−KS‖w‖X0 ≥ 1/2−2σ−κ(1+ α̂)−KSδ ≥ 0,
by assumptions on σ, δ, κ. If x ≥ 0, the same quantity is bounded from below by
−2. Therefore, using (2.20), we find Ḟ2 + κF2 ≤ (6 + β̂)E0, which is (2.14).

If H2 holds, we infer from (2.24)

Ḟ2(t) + κF2(t) ≤ −
∫

Rn

(
(1 + d)g − 1− d/2− κ(1 + α̂)

)
a2w2 dz + β̂E0(t) .

Since g(x) → 1 as x → −∞, there exists xd ≤ 0 such that g(x) ≥ 1 − d/8 for
all x ≤ xd. Therefore, if x ≤ xd, one has (1 + d)g − 1 − d/2 − κ(1 + α̂) ≥
(3d− d2)/8− κ(1 + α̂) ≥ 0 by assumptions on d, κ. If x ≥ xd, the same quantity
is bounded from below by −2, and∫

x≥xd
a2w2 dz ≤ 9

4
e−2γxd

∫
x≥xd

gw2 dz ≤ 9
2
e−2γxdE0(t) ,

since 3g(x) ≥ 3g(x − xd) ≥ 2a(x − xd) = 2eγxda(x) for all x ≥ xd. Combining
these inequalities, we find Ḟ2 +κF2 ≤ (9e−2γxd + β̂)E0, which is the desired result.

�
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Corollary 2.5. Assume that H1 or H2 holds. Then there exists a constant K6 ≥ 1
such that

‖W (t)‖Z1
ε
≤ K6‖W (0)‖Z1

ε
(1 + ‖w(0)‖X0)1/2 , (2.25)

for all t ∈ [0, T ].

Proof. According to Lemma 2.3, we have

‖W (t)‖2Yε ≤
K2
K1
‖W (0)‖2Yε(1 + ‖w(0)‖X0) , (2.26)

for all t ∈ [0, T ], since E2 is a decreasing function of t. On the other hand, it follows
from (2.14) and Lemma 2.3 that Ḟ2(t) + κF2(t) ≤ K̂5E2(t), where K̂5 = 2K5/α.
Integrating this inequality, we find

F2(t) ≤ e−κtF2(0) + K̂5

∫ t

0
e−κ(t−τ)E2(τ) dτ ≤ F2(0) +

K̂5
κ
E2(0) ,

hence

‖W (t)‖2Yεa ≤
1
K3

(
K4‖W (0)‖2Yεa + (6 + K̂5/κ)K2‖W (0)‖2Yε

)
(1 + ‖w(0)‖X0) ,

(2.27)
by (2.9), (2.13). Combining (2.26) and (2.27), the result follows. �

If H2 holds with d = 0, it is no longer possible to bound W (t) uniformly in
time as in Corollary 2.5, but the energy estimates above still imply that ‖W (t)‖Z1

ε

cannot grow faster than an exponential. This result will be useful in Section 4.

Corollary 2.6. Assume that H2 holds with d = 0. Then there exist constants
ρ > 0 and K7 ≥ 1 such that

‖W (t)‖Z1
ε
≤ K7(1 + eρt)‖W (0)‖Z1

ε
(1 + ‖w(0)‖X0)1/2 , (2.28)

for all t ∈ [0, T ].

Proof. We recall that Lemma 2.2 and Lemma 2.3 still hold if d = 0, see the
remark at the end of Section 2.1. Furthermore, if we define F2(t) by (2.12) with
α̂ = α = max(2ε, 1/(2c2)) and β = 3α, then it is easily verified that (2.13) is still
valid. However, (2.23) has to be replaced by

Ḟ2(t) ≤ −
∫
Rn

(
ε

2
a2w2

t +
1
2
|∇z(aw)|2 + (g − 3/2)a2w2

)
dz + βĖ0(t) .

Therefore, using (2.4), (2.21), we obtain

Ḟ2(t) ≤ 9F2(t) + β(c2 − 4)E0(t) ,

which replaces (2.14). Integrating this inequality and proceeding as in the proof
of Corollary 2.5, we obtain (2.28), with ρ = 9/2. �
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3. Local stability

In this section, we prove Theorem 1.1 using the energy estimates of Section 2.

Proof of Theorem 1.1. Given ε0 > 0, c ≥ 2, we define δ0,K0 by the relations

K6δ0(1 + δ0)1/2 = δ/2 , K0 = K6(1 + δ0)1/2 ,

where K6(ε0, c) ≥ 1 is given in Corollary 2.5 and δ = 1/(8KS) in the hypothesis
H1, Section 2. Then, for all Φ = (ϕ0, ϕ1) ∈ Z1

ε such that ‖Φ‖Z1
ε
≤ δ0, Eq.(1.9) has

a unique global solution W (t) = (w(t), wt(t)) ∈ Z1
ε satisfying W (0) = Φ. Indeed,

in view of the local existence result (Proposition 2.1), it is sufficient to show that
‖W (t)‖Z1

ε
< δ whenever W (t) exists. Assume on the contrary that there exists

a time T > 0 such that ‖W (T )‖Z1
ε

= δ and ‖W (t)‖Z1
ε
< δ for all t ∈ [0, T ).

Then ‖w(t)‖X0 ≤ ‖W (t)‖Z1
ε
≤ δ for all t ∈ [0, T ], so that H1 holds on [0, T ].

By Corollary 2.5, it follows that ‖W (T )‖Z1
ε
≤ K6δ0(1 + δ0)1/2 = δ/2, which is

a contradiction. Therefore, W (t) exists for all times and the assumption H1 is
always satisfied. By Corollary 2.5 again, we conclude that ‖W (t)‖Z1

ε
≤ K0‖Φ‖Z1

ε

for all t ≥ 0, which proves (1.11).
To prove (1.12), (1.13), we use the differential inequalities satisfied by the

functionals E0, E2, F2 defined in Section 2. The following arguments are standard
(see for example [EW]) and will be reproduced here for the sake of completeness.
First, since E2 is a positive, decreasing function of t by Lemma 2.3, E2(t) converges
to a nonnegative limit as t → +∞. By (2.4), (2.10), so does E0 + 2(c2 − 4)E2.
Therefore, E0(t) converges as t→ +∞, and since E0(t) ≥ 0 it follows from (2.10)
that the integral ∫ +∞

0
E0(τ) dτ ≤ 2(E2(0)−E2(+∞))

is finite. Thus E0(t) converges to zero as t → +∞. Moreover, integrating the
differential inequality (2.14), we find

F2(t) ≤ e−κtF2(0) +K5

∫ t

0
e−κ(t−τ)E0(τ) dτ

≤ e−κtF2(0) +K5

(
e−κt/2

∫ t/2

0
E0(τ) dτ +

∫ t

t/2
e−κ(t−τ)E0(τ) dτ

)

≤ e−κt/2(F2(0) + 2K5E2(0)) +
K5
κ

sup
τ∈[t/2,t]

E0(τ) ,

(3.1)

hence F2(t) converges to zero as t → +∞. Therefore, using the lower bounds in
(2.3), (2.13), we obtain (1.12).

In the case where c = 2, E0 itself is a decreasing function of t by (2.4), hence
tE0(t) ≤ 2

∫ t
t/2 E0(τ)dτ . Thus tE0(t) converges to zero as t → +∞, and by (3.1)

the same is true for tF2(t). Therefore, using again (2.3), (2.13), we obtain (1.13).
This concludes the proof of Theorem 1.1. �
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4. Global stability results in the one-dimensional case

Throughout this section, we assume that n = 1. First, we prove Theorem 1.2
using the results of Section 2 and the Maximum Principle for hyperbolic equations.
Then, we study in more details the case ε ≤ 1/4; in particular, we give linear upper
and lower bounds for the solutions of (1.9). Finally, using these linear bounds, we
prove Theorem 1.3.

4.1. Global stability for arbitrary ε

We first show that the hypothesis H2 (see Section 2) holds if the solution w(x, t)
of (1.9) is bounded from above and if the initial data satisfy (1.16), (1.17).

Proposition 4.1. Let ε > 0, d ∈ [0, 1] and let K be a nonnegative constant such
that

1− 4ε(d+K) ≥ 0 . (4.1)

For some T > 0, assume that (w,wt) ∈ C0([0, T ], Z1
ε ) is a solution of (1.9) with

initial data (ϕ0, ϕ1) satisfying (1.16), (1.17), namely

ϕ0(x) ≥ −(1− d)a−1(x)g(x) , (4.2)

εϕ1(x) ≥ εcϕ′0(x)− 1
2
(
ϕ0 +(1−d)a−1g

)
(x)+ εc

(
−γϕ0 +(1−d)a−1g′

)
(x) , (4.3)

for (almost) every x ∈ R. Suppose moreover that

a(x)w(x, t) ≤ K , ∀ (x, t) ∈ R× [0, T ] . (4.4)

Then
w(x, t) ≥ −(1− d)a−1(x)g(x) , ∀ (x, t) ∈ R× [0, T ] . (4.5)

Proof. We recall that the inequality (4.5) is equivalent to v(x, t) ≥ dg(x), where
v(x, t) = g(x) + a(x)w(x, t) is the solution of (1.5). Also, we remark that dg − v
belongs to the space C0([0, T ],H1

loc(R)) ∩ C1([0, T ], L2
loc(R)) and satisfies

L̃(dg − v) ≡ L̃(dg − v) + h̃(x, t)(dg − v) = g2d(1− d) ,

where L̃(v) = vxx+2εcvxt−εvtt+cvx−vt and h̃(x, t) = 1−v(x, t)−dg(x). There-
fore, to prove (4.5), we are led to apply the Maximum Principle (Theorem A.1,
Appendix A) to the function dg − v and to the operator L̃. The condition (A.1)
is obviously satisfied. Due to (4.4), the condition (A.2) holds, i.e.,

h̃(x, t) ≥ 1− (1 + d)g(x)−K ≥ −K − d .
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This estimate and (4.1) imply that (A.3) also holds. Moreover, since 0 ≤ d ≤ 1,
we have L̃(dg − v)(x, t) ≥ 0 a.e.(x, t) ∈ R × [0, T ], which is (A.4). Finally, the
conditions (A.5) and (A.6) required on dg− v are nothing else but the hypotheses
(4.2) and (4.3). Therefore, it follows from Theorem A.1 that (dg − v)(x, t) ≤ 0,
that is, w(x, t) ≥ −(1− d)a(x)−1g(x), for all (x, t) ∈ R× [0, T ]. �

Using Proposition 4.1 and Corollary 2.5, we now prove the first global stability
result.

Proof of Theorem 1.2. The proof is very similar to the one of Theorem 1.1
given in Section 3. Let µ be a real number, 0 < µ < 1. Given ε ∈ (0, ε0], d ∈ (0, 1]
and K > 0 satisfying (4.1), we define K∗ by the relation

K6K
∗(1 +K∗)1/2 = (1− µ)K ,

where K6(ε0, c, d) ≥ 1 has been introduced in Corollary 2.5. According to Proposi-
tion 2.1, for any (ϕ0, ϕ1) ∈ Z1

ε satisfying (4.2), (4.3) and such that ‖(ϕ0, ϕ1)‖Z1
ε
≤

K∗, there exist a time T > 0 and a unique solutionW (t) = (w,wt) ∈ C0([0, T ), Z1
ε )

of (1.9) with initial data (ϕ0, ϕ1) such that ‖W (t)‖Z1
ε
< K for all t ∈ [0, T ) and,

if T < ∞, W (t) ∈ C0([0, T ], Z1
ε ) and ‖W (T )‖Z1

ε
= K. We show by contradiction

that T =∞. If T <∞, we have

a(x)w(x, t) ≤ ‖aw(t)‖L∞ ≤ ‖aw(t)‖H1 ≤ ‖W (t)‖Z1
ε
≤ K ,

for all t ∈ [0, T ]. Thus, by Proposition 4.1, w(x, t) ≥ −(1 − d)a(x)−1g(x) for
all (x, t) ∈ R × [0, T ], i.e. the hypothesis H2 of Section 2 holds on [0, T ]. By
Corollary 2.5, it follows that ‖W (T )‖Z1

ε
≤ K6(1 +K∗)1/2K∗ = (1−µ)K, which is

a contradiction. Therefore T = ∞, and the inequalities (1.18) hold for all times.
The decay properties (1.12), (1.13) are proved like in Section 3. �

4.2. Linear bounds in the case ε ≤ 1/4

From now on, we assume that ε ≤ 1/4. In this case, the range of application
of the Maximum Principle is much wider, and we can show that the solution
w(x, t) of (1.9) is bounded from above and from below by solutions of suitable
linear equations. These linear bounds will be crucial for the proof of Theorem 1.3.
Before stating the results, we introduce some additional notation.

For all d ∈ [−1, 1], we denote by Sd(t) ∈ L(Z1
ε , Z

1
ε ) the linear group associated

with the equation (Ldw)(x, t) = 0, where

Ldw = −εwtt − (1 + 2εcγ)wt + 2εcwxt + wxx +
√
c2 − 4wx − (1 + d)gw . (4.6)

For (ϕ0, ϕ1) ∈ Z1
ε , we set

Sd(t)(ϕ0, ϕ1) = (w̃d(t), w̃dt(t)) . (4.7)
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In (1.19), (1.20), we have defined the positive and negative parts (ϕ±0 , ϕ
±
1 ) of

(ϕ0, ϕ1). In analogy with (4.7), we set

Sd(t)(ϕ±0 , ϕ
±
1 ) = (w̃±d (t), w̃±dt(t)) . (4.8)

We now show the existence of a linear upper bound.

Lemma 4.2. Let ε ≤ 1/4. For any (ϕ0, ϕ1) ∈ Z1
ε , the solution (w,wt) ∈

C0([0, T ], Z1
ε ) of (1.9), with initial data (ϕ0, ϕ1), satisfies for any d ∈ [−1, 1],

w(x, t) ≤ w̃1(x, t) ≤ w̃+
d (x, t) , ∀ (x, t) ∈ R× [0, T ] , (4.9)

where w̃1, w̃+
d have been defined in (4.7) and (4.8) respectively.

Proof. We first prove the inequality w(x, t) ≤ w̃1(x, t). The function w − w̃1
satisfies the equation L1(w − w̃1) = aw2 ≥ 0, where L1 has been defined in (4.6).
Thus, we can apply the Maximum Principle to the function w − w̃1 and to the
operator L1. Indeed the conditions (A.1), (A.2), (A.4) are satisfied, and, since the
initial data for w, w̃ coincide, (A.5) and (A.6) obviously hold. Since −2g(x) ≥ −2,
the condition (A.3) with h = −2 becomes (1−4ε)(ε+ ε2c2) ≥ 0, which is satisfied
because ε ≤ 1/4. Therefore, Theorem A.1. implies that w(x, t) − w̃1(x, t) ≤ 0 for
all (x, t) ∈ R× [0, T ].

We next show that w̃+
d (x, t) ≥ 0. Since Ld(−w̃+

d ) = 0, we can apply the
Maximum Principle to the function −w̃+

d and to the operator Ld. In view of
the first part of the proof, the conditions (A.1) to (A.4) hold. Due to the choice
of (ϕ+

0 , ϕ
+
1 ) made in (1.19), the hypotheses (A.5) and (A.6) are also satisfied.

Therefore, by Theorem A.1, w̃+
d (x, t) ≥ 0 for all (x, t) ∈ R×R+.

Finally, we show that w̃1(x, t) ≤ w̃+
d (x, t) for all d ∈ [−1, 1], by applying

the Maximum Principle to the function w̃1 − w̃+
d and to the operator L1. As

we have already remarked, the hypotheses (A.1), (A.2), (A.3) are satisfied. The
condition (A.4) holds, since L1(w̃1−w̃+

d ) = (1−d)gw̃+
d and w̃+

d ≥ 0. The choice of
(ϕ+

0 , ϕ
+
1 ) in (1.19) also implies that (A.5) and (A.6) hold. Hence, by Theorem A.1,

w̃1(x, t) ≤ w̃+
d (x, t) for all (x, t) ∈ R× [0, T ]. �

In a similar way, we obtain linear lower bounds for w(x, t).

Lemma 4.3. Let ε ≤ 1/4, d ∈ [0, 1], and let K be a nonnegative constant such
that

1− 4ε(1 +K) ≥ 0 . (4.10)

For some T > 0, assume that (w,wt) ∈ C0([0, T ], Z1
ε ) is a solution of (1.9) with

initial data (ϕ0, ϕ1) ∈ Z1
ε satisfying (4.2) and (4.3). Suppose moreover that (4.4)

holds. Then

w̃−−1(x, t) ≤ w̃−d (x, t) ≤ w(x, t) , ∀ (x, t) ∈ R× [0, T ] , (4.11)
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where w̃−−1, w̃−d have been defined in (4.8).

Proof. As in the proof of Lemma 4.2, we show that w̃−d (x, t) ≤ 0 by applying the
Maximum Principle to the function w̃−d and to the operator Ld. To show that
w̃−−1(x, t) ≤ w̃−d (x, t), we apply the Maximum Principle to the function w̃−−1 − w̃

−
d

and to the operator L−1. Since L−1(w̃−−1 − w̃
−
d ) = −(1 + d)gw̃−d and w̃−d ≤ 0, the

hypothesis (A.4) holds. The other conditions are obvious or have been verified in
the proof of Lemma 4.2.

It remains to prove that w(x, t) ≥ w̃−d (x, t). We again apply the Maximum
Principle, but now to the function w̃−d −w and to the operatorL∗1 = L−1+h∗, where
h∗(x, t) = −(2g(x) + a(x)w(x, t)). Since h∗(x, t) ≥ −2−K, the condition (A.3)
becomes (1− 4ε(1 +K))(ε+ ε2c2) ≥ 0, which is nothing but (4.10). Moreover, we
have L∗1(w̃−d −w) = −w̃−d (aw+(1−d)g) ≥ 0, since w̃−d (x, t) ≤ 0 and a(x)w(x, t) ≥
−(1 − d)g(x) by Proposition 4.1. Thus (A.4) holds, and due to the choice of
(ϕ−0 , ϕ

−
1 ) in (1.20) the conditions (A.5) and (A.6) are also satisfied. Therefore

w̃−d (x, t) ≤ w(x, t) by Theorem A.1, and Lemma 4.3 is proved. �
Since w̃1(x, t) is a solution of the linear equation L1w = 0, it is easy to bound

it in terms of the initial data (ϕ0, ϕ1). We have the following result:

Lemma 4.4. Let ε ≤ 1/4. There exists a constant N = N(c) ≥ 1 such that

‖S1(t)‖L(Z1
ε ,Z

1
ε ) ≤ N , ∀ t ∈ R+ . (4.12)

Proof. All we need is repeating the energy estimates of Section 2 for the linear
equation obtained by dropping the last term −aw2 in (1.9). The functionals
E0(t), E2(t), F2(t) are then replaced by the quadratic expressions

Ẽ0(t) =
∫

R

(
ε

2
w2
t +

1
2
|wx|2 + gw2

)
dx , Ẽ2(t) = αẼ0(t) +E1(t) ,

F̃2(t) = α

∫
R

(
ε

2
a2w2

t +
1
2
a2|wx|2 + a2gw2

)
dx+ F1(t) + βẼ0(t) ,

where α, β,E1(t), F1(t) are defined in (2.2), (2.12). Of course, the hypotheses H1,
H2 are not needed anymore, since they were used to control the cubic terms in
E2(t), F2(t). Following exactly the lines of the proof of Lemma 2.2, Lemma 2.3,
Lemma 2.4 (with obvious simplifications), we arrive at Corollary 2.5, which reduces
in this case to ‖W (t)‖Z1

ε
≤ N‖W (0)‖Z1

ε
for some N(c) ≥ 1. This proves (4.12). �
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4.3. Global stability and decay in the case ε ≤ 1/4

Using the linear bounds of Section 4.2, we are now able to improve the global
stability results. Theorem 1.3 will be a direct consequence of the following two
propositions:

Proposition 4.5. Let ε ≤ 1/4, d ∈ [0, 1] and K be a nonnegative constant, such
that (4.10) holds. For any (ϕ0, ϕ1) ∈ Z1

ε satisfying (4.2), (4.3) and

inf(‖(ϕ0, ϕ1)‖Z1
ε
, ‖(ϕ+

0 , ϕ
+
1 )‖Z1

ε
) ≤ K

N
, (4.13)

where (ϕ+
0 , ϕ

+
1 ) is defined in (1.19) and N in Lemma 4.4, there exists a unique

global solution (w,wt) ∈ C0([0,∞), Z1
ε ) of (1.9) with initial data (ϕ0, ϕ1). More-

over, we have

−(1− d)g(x) ≤ a(x)w(x, t) ≤ K , ∀ (x, t) ∈ R×R+ , (4.14)

and

w̃−−1(x, t) ≤ w(x, t) ≤ w̃1(x, t) ≤ w̃+
−1(x, t) , ∀ (x, t) ∈ R×R+ . (4.15)

In addition, if d > 0, the properties (1.12) and (1.13) hold.

Remark. The case K = 0 is non trivial: it corresponds to (ϕ+
0 , ϕ

+
1 ) = 0, i.e.

ϕ0(x) ≤ 0 , ϕ1(x) ≤ cϕ′0(x) − (
1
2ε

+ cγ)ϕ0(x) .

In this case, (4.14) shows that w(x, t) stays nonpositive for all times.

Proof. According to Proposition 2.1, there exist a maximal time T > 0 and a
solution (w,wt) ∈ C0([0, T ), Z1

ε ) of (1.9) with initial data (ϕ0, ϕ1) such that either
T =∞, or T <∞. In the latter case, there exists a sequence of positive times tn,
tn < T , such that tn → T as n→ +∞ and

‖(w(tn), wt(tn))‖Z1
ε
→ +∞ , (4.16)

as n→ +∞. By Lemma 4.2 and Lemma 4.4, we have

a(x)w(x, t) ≤ inf(a(x)w̃1(x, t), a(x)w̃+
1 (x, t)) ≤ inf(‖w̃1(t)‖X1 , ‖w̃+

1 (t)‖X1)

≤ N inf(‖(ϕ0, ϕ1)‖Z1
ε
, ‖(ϕ+

0 , ϕ
+
1 )‖Z1

ε
) ≤ K ,

for all (x, t) ∈ R× [0, T ). Therefore, by Proposition 4.1,

w(x, t) ≥ −(1− d)a(x)−1g(x) , ∀ (x, t) ∈ R× [0, T ) ,
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which allows us to apply Corollary 2.6. It follows that

‖(w(t), wt(t))‖Z1
ε
≤ K7(1 + eρT )‖(ϕ0, ϕ1)‖Z1

ε
(1 + ‖ϕ0‖X0)1/2 , ∀ t ∈ [0, T ) ,

(4.17)
which contradicts (4.16). Thus T =∞, and (4.14) holds. The estimate (4.15) is a
direct consequence of Lemma 4.2 and Lemma 4.3. Finally, if d > 0, the properties
(1.12), (1.13) are obtained like in the proof of Theorem 1.1 in Section 3. �

Remark. If d = 0, we can still show, by arguing as in the proof of Theorem 1.1
in Section 3, that

lim
t→+∞

(‖wx(t)‖L2 + ‖wt(t)‖L2) = 0 ,

and that this quantity is O(t−1/2) if c = 2. However, since (2.14) no longer holds,
we cannot show that ‖(w,wt)‖Yεa converges to zero in this case.

Proposition 4.6. Under the assumptions of Proposition 4.5, the solution (w,wt) ∈
C0([0,∞), Z1

ε ) of (1.9) with initial data (ϕ0, ϕ1) satisfies

lim
t→+∞

t1/4‖w(t)‖L∞ = 0 . (4.18)

If, in addition, d > 0 and ε < 1/4, then

lim
t→+∞

t1/4 (‖w(t)‖L∞ + ‖(w(t), wt(t))‖Yεa) = 0 . (4.19)

Proof. We first prove (4.18). From (4.15), it follows that

‖w(t)‖L∞ ≤ sup(‖w̃+
−1(t)‖L∞ , ‖w̃−−1(t)‖L∞) , ∀t ∈ R+ . (4.20)

Therefore, we need only show that (4.18) holds for any solution w̃ ∈ C0([0,∞), X1)∩
C1([0,∞), X0) of the linear equation with constant coefficients L−1w̃ = 0. Again,
this can be done using the energy estimates of Section 2. Indeed, setting w̃(x, t) =
ω(x+ νt, t), where ν =

√
c2 − 4/(1 + 2εcγ), we see that ω(x, t) satisfies

εωtt + (1 + 2εcγ)ωt − 2Bωxt = Aωxx , (4.21)

where B > 0 and A = (1 + εc2 + εc
√
c2 − 4)/(1 + 2εcγ) > 0. Remark that the

coefficient of ωx vanishes in (4.21), like for the equation (1.9) in the case c = 2.
Therefore, setting

E0(t) =
∫

R

(
ε

2
ω2
t +

1
2
A|ωx|2

)
dx ,

and modifying in the same way the definitions of E1(t) and E2(t), we show like in
Section 2 that Ė0(t) ≤ 0 and that (2.9), (2.10) hold. Then arguing like in Section
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3, we find that ‖ω(t)‖H1 ≤ C0‖ω(0)‖H1 , and limt→+∞ t1/2‖ωx(t)‖L2 = 0. Since
‖ω(t)‖L∞ ≤ ‖ω(t)‖1/2

L2 ‖ωx(t)‖1/2
L2 , we see that limt→+∞ t1/4‖ω(t)‖L∞ = 0, which

together with (4.20) proves (4.18).
To prove (4.19), we recall that, if ε < 1/4, we can define F2(t) by (2.12) with

β = 0. Indeed, if ε = 1/4− µ for some µ > 0, it is easy to verify that, under the
hypothesis H2,

F2(t) ≥ µK3(c)‖W (t)‖2Yεa , (4.22)

for some constant K3(c) > 0. Proceeding again like in the proof of Lemma 2.4,
we show that

Ḟ2(t) + κF2(t) ≤ C1

∫
x≥xd

a2(x)w2(x, t)dx ≤ C2‖w(t)‖2L∞ , (4.23)

where C2 = (C1/2γ)e−2γxd. Integrating this differential inequality and using
(4.18) and (4.22), we obtain (4.19). The proof of Proposition 4.6, hence of Theo-
rem 1.3, is complete. �

Remark. Since L−1 is a linear operator with constant coefficients, it is possible
to obtain explicit expressions for the solutions of the equation L−1w̃ = 0 in terms
of the initial data, see for example [Sm], chap. VII.2.5, or [Ha2]. Therefore, (4.18)
could also be proved by a direct (but cumbersome) calculation.

5. The limiting case ε = 0

5.1. Local stability

If we set ε = 0 in (1.1), we obtain the well-known parabolic KPP equation, the
travelling wave solutions g(x) of which are given by (1.2) for c ≥ 2. To study
their stability, we can proceed like in the Introduction. First, using the change
of variables (1.4), we arrive at (1.5) with ε = 0. Then, we look for solutions of
the form v(x, y, t) = g(x) + a(x)w(x, y, t), where a(x) = e−γx, and we are led to
study the stability of the solution w = 0 of the parabolic equation (1.6) for ε = 0
in the Sobolev space X1 ≡ H1 ∩ H1

a . Again, linear stability holds if and only if
1− cγ + γ2 ≤ 0, so the biggest perturbation space is obtained by choosing γ as in
(1.8). Then, the equation (1.6) for ε = 0 becomes

wt = wxx + ∆yw +
√
c2 − 4wx − 2gw− aw2 . (5.1)

It is known in this case that the origin is stable in X1, with polynomial decay of
the perturbations as t→ +∞.

Remark. In the case c > 2, it is also known that the origin is exponentially stable
in X1 if 1 − cγ + γ2 < 0. The best decay rate is obtained for the value γ = c/2
[Sa], which is precisely (1.10) for ε = 0.
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In Section 2, we introduced various energy functionals for ε > 0, which were
used to estimate the different norms of the solution (w,wt) of (1.9). These func-
tionals are all well defined for ε = 0 and allow us to control the norm of the solution
w of (5.1). Since all the estimates are uniform in ε as ε goes to 0, we can follow
exactly the lines of the proof of Theorem 1.1, and we arrive at the following local
stability result:

Theorem 5.1. Assume that n ≤ 4, and c ≥ 2. Then there exist constants δ0 > 0
and K0 > 0 such that the following holds: for all ϕ0 ∈ X1 satisfying ‖ϕ0‖X1 ≤ δ0,
there exists a unique solution w ∈ C0([0,∞), X1) of (5.1) with initial condition
w(0) = ϕ0. Moreover, one has ‖w(t)‖X1 ≤ K0‖ϕ0‖X1 for all t ≥ 0, and

lim
t→+∞

(
‖∇w(t)‖X0 + ‖w(t)‖L2

a

)
= 0 .

In addition, if c = 2, one has

lim
t→+∞

√
t
(
‖∇w(t)‖X0 + ‖w(t)‖L2

a

)
= 0 .

Remark. In contradistinction to the hyperbolic case, a decay rate in time of the
solution w(t) of (5.1) is easily obtained for all c ≥ 2. Indeed, following the ideas
of Nash, it is a classical task to estimate the Lp-norm of solutions to parabolic
equations for p ≥ 2. In our case, if we know an upper bound on ‖w(t)‖Lp , then we
can show that ‖w(t)‖L2p decays to zero (like some inverse power of t) as t → ∞,
see [FS]. Thus, using the L2-bound of Theorem 5.1 and proceeding by recursion,
we can show that

‖w(t)‖Lq + ‖w(t)‖Lqa = O
(
t−η
)
, t→ +∞ ,

where η = n(q − 2)/(4q) and q > 2 is as in (1.14).

5.2. Global stability

Like in the hyperbolic case, we obtain a global stability result when n = 1. But here
we apply the Maximum Principle for parabolic equations on unbounded domains
as given in [PW], Section 3.6. Remark that it is required that w(x, t) does not
grow faster than exp(Cx2) as x goes to ±∞ (uniformly in t), a condition which is
clearly satisfied in our case. Like in Section 4.2, we denote by Σd(t) ∈ L(X1, X1)
the linear semigroup associated with the equation

wt = wxx +
√
c2 − 4wx − (1 + d)gw , d ∈ [−1, 1] .

For ϕ0 ∈ X1, we set Σd(t)ϕ0 = w̃d(t), Σd(t)ϕ±0 = w̃±d (t), where ϕ±0 have been given
in (1.19), (1.20). Then, following the lines of the proofs contained in Section 4,
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we obtain the global stability result below, which has already been known, though
maybe not exactly in this form, see also [RK].

Theorem 5.2. Assume that n = 1, and let c ≥ 2, d ∈ (0, 1]. Then, for any
ϕ0 ∈ X1 satisfying (1.16), namely ϕ0(x) ≥ −(1 − d)a(x)−1g(x) for all x ∈ R,
there exists a unique solution w ∈ C0([0,∞), X1) of (5.1) with initial condition
w(0) = ϕ0. Moreover, one has w(x, t) ≥ −(1− d)a−1(x)g(x), and

w̃−−1(x, t) ≤ w(x, t) ≤ w̃1(x, t) ≤ w̃+
−1(x, t) ,

for all x ∈ R, t ∈ R+. In particular, if d > 0,

lim
t→+∞

t1/4
(
‖w(t)‖L∞ + ‖w(t)‖H1

a

)
= 0 .

Appendix A. Maximum principle for a hyperbolic operator

We consider the following hyperbolic operator L with constant real coefficients

L(u) = Auxx + 2Buxt + Cutt +Dux +Eut ,

where
C < 0 , B2 −AC > 0 . (A.1)

We introduce a function h ∈ C0(R× [0, T ]) satisfying

h(x, t) ≥ h, for all (x, t) ∈ R× [0, T ] , (A.2)

where T is a positive number and h is a real number. We assume in addition, that
the condition

(E2 − 4Ch)(B2 −AC) ≥ (BE − CD)2 , (A.3)

holds. Finally, we set L = L + h(x, t). The following Maximum Principle is
a simple consequence of the one given by Protter and Weinberger (see [PW],
Chapter 4, Theorem 1).

Theorem A.1. Assume that the conditions (A.1), (A.2) and (A.3) hold. If the
function (u(x, t), ut(x, t)) belongs to C0([0, T ],H1

loc(R) × L2
loc(R)), with Auxx +

2Buxt + Cutt in L2
loc(R× (0, T )), and satisfies the following properties,

L(u)(x, t) ≥ 0 , a.e.(x, t) ∈ R× [0, T ] , (A.4)

u(x, 0) ≤ 0 , ∀x ∈ R , (A.5)
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−Cut(x, 0)−Bux(x, 0)− 1
2
Eu(x, 0) ≤ 0 , a.e. , (A.6)

then u(x, t) ≤ 0 for all (x, t) ∈ R× [0, T ].

Proof. Protter and Weinberger proved their Maximum Principle under the stronger
assumption u(x, t) ∈ C2(R× (0, T )) ∩ C1(R× [0, T )), but their proof generalizes
easily to functions u satisfying the weaker regularity hypothesis (u(x, t), ut(x, t)) ∈
C0([0, T ],H1

loc(R)×L2
loc(R)), with Auxx+2Buxt+Cutt in L2

loc(R×(0, T )). Indeed
their key identity (see [PW], Equation (3), page 202) still holds under these weaker
regularity assumptions and is proved by a density argument.

If E = D = 0, the result of Theorem A.1 is a direct consequence of the above
remark and of Theorem 1 of [PW]. Indeed, thanks to our assumptions (A.1),
(A.2), (A.3), the condition of [PW] on the operator L, that is h(x, t) ≥ 0, is
clearly satisfied. Since E = 0, the conditions required on u(x, t) are exactly the
hypotheses (A.4) to (A.6).

If E 6= 0 or D 6= 0, we reduce our problem to the previous case by introducing
the function

v(x, t) = e−αt−βxu(x, t) ,

where
α =

EA−BD
2(B2 −AC)

, β =
CD −EB

2(B2 −AC)
.

A short computation shows that

L(u)(x, t) = eαt+βxL̃(v)(x, t) ,

where L̃(v) = Avxx + 2Bvxt + Cvtt + h̃v and

h̃(x, t) = − 1
4C
{

(E2 − 4Ch(x, t))− (EB − CD)2

B2 −AC
}
.

Now, we can apply the previous Maximum Principle, where D = E = 0, to the
operator L̃ and to the function v. Indeed, due to the hypotheses (A.1), (A.2), (A.3),
h̃(x, t) ≥ 0 for all (x, t) ∈ R× [0, T ]. Moreover, L̃(v)(x, t) ≥ 0 a.e.(x, t) ∈ R× [0, T ]
and v satisfies

v(x, 0) ≤ 0 , −Cvt(x, 0)−Bvx(x, 0) ≤ 0 ,

which are exactly the required conditions. Thus, we have proved that v(x, t) ≤ 0,
hence u(x, t) ≤ 0 for all (x, t) ∈ R× [0, T ]. �

Remark. Theorem A.1 suggests the following definition of a partial order in
H1
loc(R)× L2

loc(R). We say that (ϕ0, ϕ1) ≤ (ψ0, ψ1) if

ϕ0(x) ≤ ψ0(x) , ∀x ∈ R ,

−Cϕ1(x) −Bϕ′0(x)− 1
2
Eϕ0(x) ≤ −Cψ1(x) −Bψ′0(x) − 1

2
Eψ0(x) a.e. ,
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see (A.5), (A.6). Then, if (ϕ0, ϕ1) ≤ (ψ0, ψ1), the solution of the linear hyperbolic
equation L(u)(x, t) = 0 satisfying u(x, 0) = ϕ0(x), ut(x, 0) = ϕ1(x) stays for all
t ∈ R+ below the solution of the same equation with initial data (ψ0, ψ1). An
important property of this order is that we can write any (ϕ0, ϕ1) ∈ H1

loc × L2
loc

as the sum of a “positive” part (ϕ+
0 , ϕ

+
1 ) ≥ 0 and a “negative” part (ϕ−0 , ϕ

−
1 ) ≤ 0.

This decomposition is unique if we impose that (ϕ+
0 , ϕ

+
1 ) = 0 whenever (ϕ0, ϕ1) ≤

0 and (ϕ−0 , ϕ
−
1 ) = 0 whenever (ϕ0, ϕ1) ≥ 0. In the case of the operator Ld defined

in (4.6), for which C = −ε, B = εc, E = −(1 + 2εcγ), the corresponding formulae
for (ϕ±0 , ϕ

±
1 ) are given in (1.19), (1.20).
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