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In recent years, the Evans function has become
an important tool for the determination of stability
of travelling waves. This function, a Wronskian of
decaying solutions of the eigenvalue equation, is
useful both analytically and computationally for the
spectral analysis of the linearized operator about
the wave. In particular, Evans-function computation
allows one to locate any unstable eigenvalues of
the linear operator (if they exist); this allows one
to establish spectral stability of a given wave
and identify bifurcation points (loss of stability) as
model parameters vary. In this paper, we review
computational aspects of the Evans function and
apply it to multidimensional detonation waves.

This article is part of the theme issue ‘Stability of
nonlinear waves and patterns and related topics’.

1. Introduction

Nonlinear travelling waves appear as particular solutions
in a wide variety of models of natural phenomena.
Important examples include shock waves and detonations
in compressible fluid flow [1,2], solitary waves in optics
and bodies of water [3,4], migrating population densities
in ecology [5], phase transitions in materials [6] and
chemotaxis in cell motion [7].

As with any evolutionary system, some notion of
stability is necessary to characterize robust phenomena.
In the case of travelling waves, stability means that the
shape of the wave is steadily maintained as it propagates
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forward in time, and that small disturbances in the wave decay away without ill-effect. More
precisely, stability in this context means that the perturbed wave converges to a translate of the
original unperturbed wave.

The absence of stability, both physically and mathematically, is manifested by sensitivity to
small disturbances or perturbations which distort or otherwise alter the state of the system,
resulting in either irregular behaviour or a transition to another state. Thus, in this sense, stability
is the arbiter of whether a given travelling wave solution is physically viable. In recent years,
there have been several developments that have impacted our understanding of travelling wave
stability. In particular, a large body of methods built around the Evans function! have been
developed to attack a diverse variety of problems; see [12-14] for overviews. The Evans function,
denoted D(1), is defined as a Wronskian of decaying solutions of the eigenvalue problem Av = Lv,
as derived from the linearized system v; = Lv. Under fairly general conditions, the Evans function
is analytic on an open set containing the closed, deleted? right half of the complex plane

IT={zeC|Rer>0,A%#0}.

In a manner similar to the characteristic polynomial, the roots of the Evans function correspond
exactly, both in location and multiplicity, to the eigenvalues of £; see [15] for a rigorous treatment.
Thus, by computing the Evans function along contours in /7, winding numbers can be calculated,
and one can systematically count and locate its roots (and hence the eigenvalues of £) within. If
there are no roots of the Evans function in /7, then the given travelling wave is spectrally stable.
In the case of instability, one can produce bifurcation diagrams to illustrate and observe its onset
as parameters in the system vary; see [16-18] for illustrative examples.

Given an evolution equation u; = F(u), we note that travelling wave solutions # moving
forward at speed s are equivalent to steady-state solutions in a moving frame x — x — st. In other
words, the travelling wave solution i is also the steady-state solution of the translated evolution
equation u; =suy + F(u). Hence, the linearized behaviour about #i can be determined by the
linear partial differential equation vy = Lv := (sdy + DF(it))v for the perturbation v. It is natural to
examine the corresponding eigenvalue problem Av = Lv, where £: X - X is a densely defined
differential operator on a certain Banach space X of perturbations; see [14,19,20] for details.

We then write the eigenvalue problem as a first-order system of ordinary differential equations
(ODEs)

L o i S

_d
=
Assuming that i converges exponentially to the constant states uy as x — +o0, it follows that
A(x; A) converges exponentially to the constant matrices

W =A@ )W, WeC", ' 1.1)

Ax()=_lim A(x;2). 12)

Moreover, if the constant matrices in (1.2) have the same inertia for all A € I7, that is if both A (1)
and A_(X) can each be split into k growth and n — k decay modes, then one can show that a non-
trivial bounded solution of (1.1) corresponds to the intersection of the k-dimensional unstable
manifold U_(x; 1) growing from zero at x= —oo and the (n — k)-dimensional stable manifold
S4+(x; 1) decaying to zero at x = 4o0. This intersection can be detected by the vanishing of a certain
determinant, and the resulting Evans function is analytic on /7.

Numerically, it is very difficult to integrate the stable and unstable manifolds of (1.1). There
are significant issues with stiffness in (1.1) that result from the multi-mode growth and decay
rates of the corresponding manifolds. Integrating naively results in a compounding of errors
that yields unreliable output. This issue was first remedied by Pego (in the appendix of [21]),
who was the first to use the compound-matrix method [22-26] to compute the Evans function.
Essentially this method lifts (1.1) into an appropriate wedge-product space where it can be

!Developed by J. Evans in his work on the stability of nerve axon equations [8-11].

2Because the set of travelling waves solutions is invariant under translations x — x + ¢, there is always an eigenvalue at A =0,
and so we exclude the origin from the closed right-half plane in our definition of spectral stability.
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integrated numerically as a single trajectory. This approach was subsequently rediscovered and
further developed independently by Brin and colleagues [27-29] and Bridges and colleagues
[30,31] a few years later. The compound-matrix method fixes the problems with stiffness, but
at the cost of factorial computational complexity. In particular, an n-dimensional system with k
and n — k dimensional unstable/stable manifolds at the two endpoints, respectively, becomes an
%)-dimensional system of ODEs, which is computationally prohibitive unless n is rather small.

In 2006, Humpherys & Zumbrun [32] proposed a new approach that represents the unstable
and stable manifolds using the continuous orthogonalization method of Drury [33] together with
a scalar ODE that restores analyticity. This approach, sometimes described as the polar-coordinate
method, reduces the time required to compute the Evans function to cubic complexity and has
been used in many studies (e.g. [18,34,35]). We provide additional details for this method since
we use it in the featured study of multidimensional detonations described in §5.

Other clever methods for computing the Evans function have also been considered. Ledoux
et al. [36] choose an optimal coordinate patch representation for evolving the flow along the
underlying Grassmann manifold. Gesztesy et al. [37] derive general perturbation expansions for
analytically varying Fredholm determinants thus allowing them to avoid computing an Evans
function. Lafortune et al. [38] evolve the entire flow while monitoring a Wronskian condition
and adaptively changing integration tolerances to obtain reasonable results. Barker et al. [39]
compute the Evans function as a boundary value problem. Methods have also been developed for
numerically computing the periodic Evans function [40] and for obtaining a rigorous enclosure
of the Evans function [41].

In this paper, we review a number of central computational aspects of the Evans function, and
we illustrate them by presenting new computational results for the stability of multidimensional
viscous strong detonation waves. In §2, we describe the Evans function. In §3, we give an
overview of the computational details including the polar-coordinate and adjoint formulations
of the Evans function, how to deal with error bounds in the output, and some best practices for
counting and locating roots. Section 4 provides a simple example of the Evans function for viscous
shock layers in the isentropic Navier-Stokes equations as initially reported in [42]. We conclude
this paper by presenting new Evans function results for planar strong detonations in §5.

0L 3260 3 Sl i G BuaindsponBlore

2. Theoretical background

We review the construction of the Evans function. Given the eigenvalue problem Av = Lv that
comes from linearizing the flow about the travelling wave solution # as described above, we
write the eigenvalue problem as a first-order system (1.1) and identify an eigenvalue of £ with a
non-trivial solution W of (1.1) satisfying W(4o00) =0.

(@) The Evans function

There are three main assumptions for the matrix A(x; A) defined in (1.1). First, we assume for each
A € IT that A4 (1) are consistently split; that is, they have the same inertia and no eigenvalues on
the imaginary axis. More precisely, if EY} (1) and E3.(A) are the unstable and stable eigenspaces
of A+()), respectively, we require that dimE" (1) =k and dim E% (A) =n — k for some fixed k,
0 <k <n. Second, we assume that A(x; 1) is analytic for A € [T, and third that A(x;A) > A+(X)
exponentially in x for each A € IT; that is, there exists an « > 0 such that

A(x; 1) =Ax(0) + O™ 2.1)

as x — +oo. In particular, convergence is uniform in A over compact subsets of IT U {0}.

As a result of these three assumptions, a non-trivial bounded solution W of (1.1) exists if
and only if the unstable manifold U_(x;1) at x=—o0 intersects non-trivially with the stable
manifold S4(x; A) at x = +o00. The existence of non-trivial solutions of (1.1) follows from theory of
exponential dichotomies, which characterizes the conditional stability of linear systems of ODEs;
see [43] for details.
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More precisely, the unstable and stable manifolds mentioned above are defined as the sets of
initial conditions of (1.1) that flow to zero towards their respective end-states; that is,

U_(x0; ) = {Wp € C" | W(x) = 0 as x = —oo where W(xp) = Wp}
and

S (x0;A)={Wp e C" | W(x) = 0 as x = oo where W(xg) = Wp}.

Note that U_(x; 1) and S, (x; 1) are subspaces of C" having dimension k and n — k, respectively. It
follows that A € C is an eigenvalue of £ if and only if U_(0;A) N 54.(0; &) # {0}.
Let
W_(0)=[Wy(h) -+ Wi (xa)]eCmk

(2.2)
and Wi(x; 1) = [W":'H(x; A e W,T(x; Al e Cnx(n—k)’

be matrices whose columns are analytic bases of U_(x; 1) and S (x; 1), respectively. We define the
Evans function as

D@)=det((W-(x;) Wi(0)D)| _ - 2.3)

This is an analytic function whose zeros correspond exactly in location and multiplicity to the
eigenvalues of £; see [15] for a rigorous treatment.

Computing the Evans function is rather tricky. Ideally, we would simply integrate (1.1) for
some analytic set of basis vectors W_(—L; 1) of the space U_(—L;2) from x=—L to x=0 and
similarly integrate some analytic set of basis vectors W, (L; 1) of the space S (L; ) backwards
from x=L to x=0 and then compute (2.3). However, this presents several problems. First, it is
not clear how to come up with bases vectors for U_(—L; 1) and S4(L; A) for even a single value A.
Since the condition that defines U_(—L; 1) and S (L; A) is based on their asymptotic convergence
to zero, we can prove they exist, but it is hard to accurately identify them numerically. Second,
supposing we did have initial basis vectors W_(—L; 1) and W, (L; A), if we naively integrated (1.1)
from x = %L to x = 0 numerically, our results would be garbage. This is due to stiffness inherent
in numerically integrating linear multi-mode systems; indeed, the errors in the trajectories will
swamp the integration and result in unreliable output. Thirdly, it’s also unclear how to choose
the bases W+(£L; ) to be analytically varying in A. Since U_(x;A) and S (x; 1) are subspaces,
any constant multiple of basis vectors are also basis vectors, and therefore there is no reason to
assume that W..(£L; ) will be analytically varying, not to mention continuous. This feature has
to be ‘built-in” to the computational method.

To resolve the first issue, we make use of the ‘gap lemma’ [44,45], which leverages the
exponential convergence of A(x; 1) to the constant matrices A (1). Specifically, for fixed A, choose
bases V_(1) of E* (1) and V(1) of E3 (). It follows that

L o i S

Wa(x; 1) = e=MEFDY L )1 + O ™). (2.4)

In other words, while we do not know the values of Wi (+L;1), we do know that they can be
well-approximated, when L is sufficiently large, by W4 (%£L;A) = V1 (A). Furthermore, we know
that the trajectories produced by these approximate initial conditions will give us sufficiently
accurate values of the Evans function to where we can rely on its output for winding number
calculations; see §3f for details.

The second issue is solved by numerically integrating with the polar-coordinate method, as
described in §3b. Other methods exist (e.g. [30,36]), but this approach is arguably the easiest to
explain and implement.

The third (and last) issue is resolved by making sure that the basis vectors V.i(1) are
analytically varying. This is accomplished by using Kato’s method, as described in §3d. This
makes the Evans function (2.3) analytic and therefore suitable for winding number calculations.

https://royalsocietypublishing.org/doi/epdf/10.1098/rsta.2017.0184 Pagina 4 di 10



Evans function computation for the stability of travelling waves 13/05/22, 20:04

(b) The adjoint formulation

For fixed A € [T, if k> n/2, it is often advantageous to use the adjoint formulation of the Evans
function [46]. Instead of finding the k-dimensional unstable manifold U_(x; ) of (1.1) at x = —o0,
we find the (n — k)-dimensional unstable manifold {I_(x; ) of the adjoint ODE W’ = —A(x; 1)*W
at x = —oo. Denoting the ith column of W_(x; 1) by W;(x) and the jth column of W_(x; 1) by Wj(x),
we note that

(Wix) - Wj(x)' = Wilx) - Wix) + (W) () - Wj(x)
= W} (0)A(x; A)Wj(x) — W ()A(x; A)Wj(x) =0.

Hence, W;(x) - Wj(x) = const. and since Wi(—00) - Wj(—00) =0, we have that W; and W; are
orthogonal for all x. Hence, W* (x)W_(x) = 0. Now, if

det((W-(x;4) Wi (;1)])lx=0=0,
or, equivalently, if there exist non-trivial u € C¥ and v € C"* such that
W_(0; )u + W, (0;A)v =0,

we see that

0L 3260 3 Sl i G BuaindsponBlore

0= W* (0; \)[W—(0; M)u + W4(0; )v] = W* (0; W)W (0; A)v, 2.5)

thus
det(W* (x; \) W4 (x; 1)) |x=0 = 0. (2.6)

Conversely, if (2.6) holds, then there exists v € C"~* such that W_(0; A)*W..(0; A)v = 0. But since
W_(0; 1) forms a basis for the null space of W_ (0; A) and W (0; A)v is in the null space of W_ 0; 1),
there exists u € CX such that W_(0; A)u = W,.(0; A)v. It follows that

det([W_(x;2) Wi(x;2)])x=0=0.
Thus, we define the left-adjoint Evans function to be
D(A) = det(W* (x; )) W, (x; 1)) |x=0- 2.7)

We may similarly define the right-adjoint Evans function using the adjoint at x = +o00, which we
would expect to be advantageous when k < 11/2. In either case, the polar-coordinate method can
be easily adapted to the adjoint formulation of the Evans function; see §3c for details.

3. Computational set-up and details

In this section, we describe the steps required to effectively compute the Evans function. We
assume that the evolution equation is linearized and the corresponding eigenvalue problem is
cast as a first-order system of ODEs as given in (1.1). We begin by showing how to compute the
travelling-wave profiles numerically. Then we describe the polar-coordinate method and how
to use the polar-coordinate method for the adjoint formulation of the Evans function. We then
explain the initialization process with Kato’s method to ensure that the bases for the unstable and
stable manifolds are chosen analytically. We briefly examine the kinds of contours one considers
when computing, and then we conclude the section with a discussion on how to count and locate
the unstable roots of the Evans function and therefore establish whether a given travelling wave
is (spectrally) unstable.

https://royalsocietypublishing.org/doi/epdf/10.1098/rsta.2017.0184 Pagina 5 di 10



Evans function computation for the stability of travelling waves 13/05/22, 20:04

(@) Computing the travelling wave

The travelling wave profile is determined by solving a two-point boundary value problem (BVP)
on the infinite domain —oo < x < 00:

U'(x)=f(U(x)), UeRN, Jim U()=U: and = %. (3.1)

Fronts and pulses correspond, respectively, to heteroclinic and homoclinic orbits in the
N-dimensional phase space, and, in general, this is a task that requires numerical computation.
To connect the unstable manifold at x = —oc to the stable manifold at x = 400, we use projective
boundary conditions P4 (U(£L) — U+)=0 at +L, where P+ are matrices whose columns are
orthogonal vectors that respectively span the orthogonal complements of the spans of df (U..) for
L sufficiently large. In other words, we project out the stable manifold at x = —oo and the unstable
manifold at x = oo.

Since the mathematical boundary conditions of (3.1) are at x=zo00, and the ODE is
autonomous, there is a one-parameter manifold of solutions of (3.1) corresponding to translational
invariance; that is, x = x 4 c. We choose a particular solution by including an additional condition
at x =0 called the centring condition. A typical approach for a front is to set one of the midpoints of
(U_- + U4)/2 to occur at x =0 and a typical approach for a pulse is to require that the derivative
of the pulse vanish at x = 0. Other conditions can also be specified. Hence, we have conditions at
x==*L and at x=0, and so we are left with a three-point BVP. A useful technique is to double
the size of the N-dimensional system and halve the domain, thus going from the N-dimensional
problem

YRI0/107 9LE ¥ 205§ subij g BioBulysiqndkranosiefor-ers

U'=fU), xel[-LL], UeRY,

to the 2N-dimensional problem

u ,_ ) N
(V) _(—f(V)>' xe[0,L], U, VeR".

Of course to make this work, one usually needs up to N additional ‘matching’ conditions
U(0) = V(0) to ensure that the solutions are continuous at x =0 and to provide enough boundary
conditions. Since the projective, centring and matching conditions all occurat x=0and x=L, we
have reduced the problem to a two-point BVP, for which several numerical packages exist (e.g.
[47-49]).

A common issue is that the wave speed s or some other system parameter may be unknown.
To remedy this, we can add another dimension to the system, for example s’ = 0. This results in a
two-point BVP solver on the (2N + 1)-dimensional system

u\" (fw
v|=|-fv)|, xel0L], U VeRY,
s 0

subject to the (2N + 1) boundary conditions. Typically, we need at least as many conditions as
we have variables for the two-point boundary value solver packages. The final step is typically
an initial guess for the solution as most solvers rely on some kind of Newton-like optimization
method, where an initial guess is needed to achieve convergence. For fronts and pulses, typical
guesses are the hyperbolic tangent and secant functions, respectively. In some cases, finding a
suitable initial guess is too difficult in the parameter regime of interest, and so one instead solves
the problem in a simpler regime and then uses continuation to find the solutions in the desired
regime; see [17] for details.

(b) The polar-coordinate method

The polar-coordinate method [32] works by computing orthogonal bases for the stable and
unstable manifolds using the continuous orthogonalization method of Drury [33] and multiplying
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their determinant (evaluated at x = 0) by a complex function that comes from a certain first-order
scalar ODE that restores analyticity. This approach reduces the complexity of Evans function
computation to cubic complexity and has been used successfully in many studies (e.g. [16-18,50]).
Further improvements and generalizations have since been developed as well (e.g. [36,37]).

Assume for each fixed A that there exist k x k and (n — k) x (n — k) smooth matrix-valued
functions «—(x; 1) and a4 (x; 1), respectively, such that

W_(x;1)=2_(x; A)a—(x;2) and Wi(x;A)= 24(x; 2 )aw(x; 1), (3.2)

where 2% (x;A1)2+(x;1)=1 for all x € R. These orthogonal decompositions can be computed
with any one of several methods including the Drury method [33], the Davey method [51], QR
decomposition [52-55] and the polar decomposition [56,57].

Substituting the decomposition (3.2) into the Evans system (1.1) (and hereafter suppressing the
independent variables for convenience) gives

Q'=AR -R2g, o =g, (3.3)

where the choice of g corresponds to the various methods cited above. A necessary condition to
enforce orthogonality in £2 is given by g + g* = 22*(A + A*)$2. We note that the Drury method
[33], given by g= 2*A$2, satisfies this condition and is equivalent to setting £2*£2' =0. Thus,
any change in £2 is orthogonal to the space spanned by the columns of £2; this choice is also
associated with the shortest arc length distance on a Stiefel manifold; see [58] for details. With
Drury’s method, (3.3) becomes

L o i S

2 =(-20MAR (3.4a)

and
o =(2*AR)a. (3.4b)

Bringing it all together in block matrix form, we have

. e ) . a_(x; 1) 0
[W— (x, A') W+(x, A')] = [Q— (xr A') 94— (xr A')] [ 0 a+(x; A.)] .
Hence by taking the determinant, the Evans function takes the form
D) = det([W-(x; M)W (x; 1)) lx=0 = ¥—(0; )74+ (0; 1) det([2-(x; 1) 24(x; 1)])|x=0,

where y.(0; 1) = deta+(0; ).

Note that to compute the Evans function, we do not actually need to solve for «; we only
need its determinant y. An appeal to Abel’s equation® allows us to replace (3.4b) with the ODE
y’' =tr(g)y. Thus we compute the Evans function by solving the system

Q' =(1-202%AR (3.5a)

and
vy =tr(2*AQ)y. (3.5b)

For initial conditions, we take the polar decomposition V(i) = £24(£L; A)a(£L; 1) and then set
y(£L; ) =deta(xL; A).

Remark 3.1. The scalar ODE (3.5b) can be transformed into exponentially weighted coordinates
by setting y(x) = exp(Ftr(2 A+ £24)x)y(x) and solving

VP =tr(RFAQ — Q1AL Q.1)7.

Thus, when |x| is large, the right-hand side is zero and an adaptive solver can take relatively large
steps; this offers a significant speed-up to the solver.

31f a system of ODE is «'(x) = M(x)e(x) and the determinant of «(x) is denoted by y(x), then Abel’s equation says that y'(x) =
tr(M(x))y (x).
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Remark 3.2. It is conventional wisdom in the continuous orthogonalization literature that
Drury’s method is numerically unstable and one should use Davey’s method [51] or any one of
several other methods studied in the literature (e.g. [59,60]). However, Drury’s method is stable
when integrating the unstable manifold in forward time or the stable manifold in backward time,
which is what is done in Evans function computation with the polar-coordinate method; see [61]
for details.

(c) Adjoint version of the polar-coordinate method

As described in §2b, we may define the Evans function by using the adjoint formulation. We
begin with the decomposition W_(x; 1) = £2_(x; A)@ (x; ), where £_(x; 1) is an continuous 1 x
(n — k) matrix with orthonormal columns and @_(x; 1) is a continuous (n — k) x (n — k) matrix.
Again, we do not need to integrate a(x; 1), rather we only need its determinant; that is, y}(x;1) =
det@_(x; A)*. The matrix £2_(x; 1) and the scalar function 71 (x; 1) are obtained by integrating from
x=—L to x =0 the ODE (3.5) where A(x; 1) is replaced with —A(x; A)*.

When using the left adjoint formulation (2.7), the Evans function takes the form

D(x) = det(W* (x; A)W.i.(x; 1))lx=0
= det(@" (x; A)$2* (x; 1) 2+ (x; A)er+ (; 1)) lx=0
= 7% (0;1)y+(0; ) det(2* (x; )24 (x; 1)) lx=0.

0L 3260 3 Sl i G BuaindsponBlore

Remark 3.3. As with the regular construction of the Evans function, one should also employ
the use of exponentially weighted coordinates for the left-adjoint formulation, as described in
remark 3.1.

(d) Initialization with Kato’s method

In order for the Evans function D(X) to be analytic in A, the bases V1. (A) at the numerical end states
need to be chosen analytically. Recall from §2 that there are analytic eigenspaces E" (1) and ES (1)
describing how the unstable and stable subspaces of A+(A) evolve as A varies. Let { vj_ }}‘=1 and
{v].+ }]'.'=k 1 be, respectively, bases for E¥ (1o) and E% (29) for some fixed 2. By using the method of
Kato [62, p. 99] (see also [29,30,63]), we find the (unique) analytically varying bases {v” (A)}’»;1 and
{vj+ (») };’= «+1 Yielding analytically varying matrices V(1) in (2.4).

Specifically, the analytic basis vectors must satisfy the ordinary differential equation

L) = (PL0) P 0) 36)

subject to the initial condition v:*(1g) = v].i, where [, -] represents the commutator and P(z) denotes
the analytic projection onto the range of its appropriate subspace, along its complementary
subspace. We can numerically approximate (3.6), following [64], by using the second-order

scheme
U]~i()~j+1) = vji () + 3(Px(rjs1) = Pe(A)(Pe(Aj1) + l’i()»/))v;t (),

where {)‘f}jm=1 is a discretization of the contour being computed.

(e) Executing the shooting method

In order to use the Evans function to definitively determine the existence of eigenvalues, one
must have a bound on the modulus of permissible unstable spectra thus reducing the problem
to looking for zeros of the Evans function on a compact subset A C {z€ C|Rez >0}. By the
assumptions made in §2, the Evans function D is analytic on A. According to the argument
principle, if the Evans function does not vanish on the boundary 94, which is assumed to be
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a Jordan curve, then we may determine the number of zeros n of D in A by a winding number
computation,

o 1lf D@
271 Je9a D(2) ’

As 0€dA, and since the derivative of the travelling wave profile is an eigenfunction with
eigenvalue zero corresponding to translational invariance of the profile [65], the winding number
contour integral cannot be computed on dA without modification. If the region on which the
Evans function is analytic includes a ball centred at the origin, then A can be modified to make
zero an interior point. As long as the resulting winding number matches the multiplicity of the
zero eigenvalue, then no unstable eigenvalues exist. When one must exclude a small ball around
the origin from A in order to compute the winding number due to an eigenvalue at zero, A
typically takes the form of the right half of an annulus centred at the origin.

(3.7)

Remark 3.4. If the system is a conservation law in one spatial dimension; for example, the
constant viscosity system U; + f(U)y = BUyy, then the eigenvalue problem

AU — sU' + (Df(yuy = BU, 3.8)

(U is the profile) can be expressed in integrated coordinates [42]. More precisely, by letting U = V'
and integrating in x, the resulting eigenvalue problem

AV —sV' 4+ Df()V' = BV”

0L 3260 3 Sl i G BuaindsponBlore

has the same eigenvalues (with the same multiplicity) as (3.8), except that the zero corresponding
to translational invariance is removed. We note that for multi-dimensional planar waves in
conservation laws, the eigenvalue corresponding to zero can be removed from the Evans function
by using balanced flux coordinates [66]. In these scenarios, A is often taken to be the right half of
a circle with centre at the origin.

(f) Rouché bounds and winding numbers

Once A is appropriately determined, we proceed to the computation of the Evans function. The
Evans function defined in (2.3) uses the manifolds W. (x; 1), which satisfy (1.1) and asymptotically
approach zero tangent to an analytic bases V(1) of the unstable and stable subspaces of A,
respectively. The numerically approximated matrix functions W% (x; 1) solve the initial value
problem (1.1) with initial condition WX (£L; 1) = V4 (1). One then defines

EL(A) :=det(IWE(x;4) W (% )])lx=o-

It follows that Ej (1) is an analytic function, but in general the roots of E; and D are not exactly
the same due to numerical and approximation error. However, Rouché’s theorem guarantees that
Ep and D have the same number of roots inside A as long as

ID() — EL(})| < [EL(M)| 3.9)

forall A € 3A.If D(A) does not vanish on 3 A, one may guarantee that equation (3.9) holds by taking
L sufficiently large. Indeed, one may show by a contraction mapping that W:’; (£L; A)/| W:Lt (£L; 2)|
approaches W4 (£L;1)/|W4(£L;A)| uniformly in A at exponential rate as L — oo [42], thus it
follows that WL(0;1)/|WL(0; A)| — W(0;1)/|W(0; A)| at exponential rate. Hence, for fixed ig € A
and L e A,
D(20)
EL(%0)
uniformly at exponential rate as L — oo [61].
Finally, we must appropriately choose the mesh along 34 on which we compute the Evans
function. The image E(3A) should not vary in argument by more than 7= between mesh points
to ensure that the correct sign is attributed to the change in argument. Alternatively, the relative
distance between mesh points on the image should be less than one. In practice, it is common

Er(x) = D(»)
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to require the relative error be smaller, like 0.2, in order to minimize the chance that the Evans
function has undetected rapid variation between mesh points. One may then determine the
winding number of E(d A) by summing the signed changes in angle between consecutive mesh
points.

(g) Root finding with the method of moments

Once it is determined that a contour contains roots of the Evans function, one may want to locate
those roots and track them as parameters in the system vary. Root finding can be performed in
various ways [60,67,68]. If the root is on the real axis, then D(A) is real-valued and any standard
root solver should work reasonably well; for example, the secant method. For complex roots,
Muller’s method has been used with reasonable success.

A nice approach for root finding follows the method of moments as described in [17,68,69]. This
follows from the argument principle in complex analysis. Assume that f is analytic inside and on a
simple positively oriented closed curve A. If f is non-zero on A and zj, .. ., z, are the roots of f(z)
inside A, then the pth moment of f about z, (which is usually the origin) is

Mp(zs) = 5— ff - ;Zz);f @) —Z(zk—z Y. (3.10)

By computing the first n + 1 moments, we locate the 1 roots precisely as long as n is small (due
to poor conditioning). For example, My(0) =n gives the number of roots inside A; that is, Mp(0) is
the winding number, M (0) =z + 2, + - - - + 2 gives the sum of the roots, and M(0) = z3 + z3 +

-+ + 22 is the sum of the squares of the roots. If many roots are present, it is a good idea to slice
up the domain with smaller contours and repeat the process (e.g. [18]). Numerically, the integral
(3.10) can be computed with any reasonable method of numerical integration along the contours.

0L 3260 3 Sl i G BuaindsponBlore

Remark 3.5. To track a single root as parameters in the system vary, one can integrate around
a contour that contains exactly one root, then the first-order moment returns an approximate
location of that root, and doing this for increasingly small contours yields increasingly accurate
results. This is a rather inefficient approach for tracking roots. A more efficient and elegant
approach is to use continuation and follow the Evans solution; see [70] for details.

4. One-dimensional example: isentropic Navier—Stokes shocks

As our first example, we consider the p-system with real viscosity. This system is also known
as the isentropic compressible Navier-Stokes equations in one spatial dimension. In Lagrangian
coordinates, these equations read

w—e=0, u+pe=(2) (4.1)

x

where v is the specific volume, u is the velocity and p(v) is the pressure law which we assume to
satisfy p(v) =apv™",a0 >0and y > 1.

(a) Travelling waves
We seek travelling-wave solutions to (4.1) with end states (vi,u4), satisfying 0 <vy <wv_.
Equivalently, by translating (x, t) — (x — st, t), we consider stationary solutions of

— Ux
vi—Svy —uUx=0, u—sux+ (@agv 7 )x= (7) .
X

Rescaling by (x, t, v, u) — (—e&sx, es’t,v/e, —u/(es)), where £ = v_ yields

Uu
vt v =0, w i+ @ e=(2) 42)
F 4
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Figure 1. The profile (a) and Evans function output (b) for the p-system as v — 0. : :
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E

where a =age =7 ~1s72. The profile (i, 9) thus satisfies, : B
v, wray=(LY, 8

with boundary conditions ((£00), #i(£00)) = (v+, u+), where 0 < v4+ < v— =1. Simplifying, we
obtain

AW
0+ @) = (3) . 4.3)
Integrating (4.3) from —oo to x, we obtain the profile equation
V=00 —14a@7 —1)). (44)

Clearly v— =1 is an equilibrium for (4.4). The necessary (for the existence of a connection)
condition that v+ also be an equilibrium leads to the following definition of a:

vy —1 yl—vg

=v .
- +
v, -1 1-)

a=-—

Since the profile equation (4.4) is scalar, the existence of travelling-wave solutions is
straightforward to prove, and these solutions can be easily approximated using the technique
described in §3a; see the left-hand panel in figure 1a.

(b) Eigenvalue equation

We linearize (4.2) about the profile (9, 1) to find the eigenvalue problem,

~ ’ N
Mw+v—u'=0 and Au+u — fz(v) v) = uT , (4.5)
dr+l D

where h(d)=—9"*! +a(y —1)+ (a+1)3”. As in remark 3.4, we can change to integrated
coordinates, (#, v) > (#,v’), yielding

h@) ,_w
pr+17 T

wH+v —u'=0 and Au+4u - 4.6)
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We then write (4.6) as a first-order system, and we obtain the Evans system W’ = A(x; A\) W where

0 2 1 u
Ax;A)=] 0 0 1 and W=|v]|, '
A AU f(D)—A v

d
=& 4.7)
Here, f(0) =0 — 07 h(?), with h as before.

In figure 1, we observe the numerical profile and the Evans function output as v, — 0.
We note that in this limit, the Evans function approaches a limiting contour also pictured in
figure 1. Humpherys et al. discovered this limiting behaviour numerically which led them to
prove stability analytically in the limiting case [50] demonstrating the power of employing the
Evans function to study shock wave stability; see [42] for additional information.

Remark 4.1. We remark that the numerical investigations in this paper were performed by
via Stablab: a Matlab-based numerical library for Evans function computation [71]. This specific
example considered above is built in to the package.

5. Multidimensional example: planar viscous detonation waves

Detonation waves are particular, shock-like solutions of models for chemically reacting mixtures
of compressible gases. Generally speaking, they are known to have delicate stability properties.
Here, to illustrate the computational techniques described in this paper, we present new Evans-
function computations for planar detonation-wave solutions of system (5.1).

L o i S

(a) Background

Classical models for detonation phenomena typically neglect diffusive effects (viscosity, heat
conductivity and species diffusion) [18,72]; that is, these effects are treated as negligible relative
to the advective and reactive effects that are believed to principally drive behaviour.? The
paradigmatic example is the well-known Zel'ldovich-von Neumann-Déring (ZND) model
developed in 1940s; this model consists of the first-order (inviscid) equations for conservation
of mass, momentum and energy coupled to an equation modelling the progress of the chemical
reaction. In this model, detonation waves have the structure of an ideal (invisicid) gas-dynamical
shock which compresses the gas, heating it and initiating a chemical reaction. The stability
program for detonation waves in the ZND setting was initiated by Erpenbeck [73] in the 1960s,
and a variety of authors have continued and built on that program in the following years
(e.g. [74]).

More recently, there has been a growing effort to incorporate diffusive effects into the models
and to understand their impact on the existence and behaviour of solutions. Indeed, as noted
by Powers & Paolucci [75], diffusive length scales are the same order of magnitude as included
reaction length scales so that any logically consistent model must include both effects. For
example, Majda [76] proposed a scalar model for detonation waves that incorporated the second-
order effects, and he conjectured that his simplified model—intended to retain the most basic
coupling between the nonlinear motion of the gas (shock waves) and the chemical reaction—
might exhibit the kind of stability /bifurcation behaviour known to belong to the physical system.
His question has recently been answered in the negative [77,78], but see the related work of
Faria et al. [79].

Around the same time, Gardner [80] used Conley index techniques to prove the existence of
travelling-wave solutions (viscous detonation profiles) for the Navier-Stokes equations; see also
[81] for an alternative proof. The Evans-function program for the stability of viscous detonation
waves was initiated by Lyng & Zumbrun [82,83] (see also [77,78,84-86]) and computational
Evans-function techniques were first applied in the physical setting by Barker et al. [18]
Notably, this study led to the discovery of a previously unknown phenomenon—termed viscous

#We refer to detonation waves in models which feature second-order diffusive effects as ‘viscous detonation waves’.
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Table 1. Navier—Stokes variables and parameters. n
P density .
p pressure &
K=
u=(u,...,u) fluid velocity -
-]
T temperature : %
~ . . . N
3 specific internal energy : g_
z mass fraction of reactant L=
w,n viscosity coefficients '3
=
K heat conductivity s
I
B species diffusion C =
k reaction rate : §
: 8
q heat release T >
..........................................................................................................................................................................................................  oa
C R
Lo
hyperstablization; that is, in the large-activation-energy limit, there is a return to stability as T o
unstable eigenvalues retreat from the right half plane. At a spectral level, this behaviour is =
completely distinct from that of the ZND model. Here, we extend these calculations to the S
multidimensional setting. This extension results in a substantial increase in computational effort. ®

In particular, after linearizing about a planar strong detonation wave, we take the Fourier
transform in the transverse spatial directions. This leads to a first-order eigenvalue equation of
the form

W =A(x1;2,E)W,

where x1 is the direction of propagation, A € C is dual to time and £ € R?~! is dual to the transverse
spatial directions. The goal then, is to use the numerical techniques described in this review to
search the half space {z € C | ReA > 0} x R9-1 for zeros of the associated Evans function. We begin
by introducing the Navier-Stokes equations for a reacting mixture of gases in d-space dimensions.
For our computations, we shall take d =2. In contrast to the computations reported in [18], we
work in Eulerian coordinates. This introduces additional difficulties with the computation; see
[87] for a detailed discussion of this point. For a reacting gas mixture with a one-step exothermic
reaction in d space dimensions, the equations in Eulerian coordinates are

pt + div(pu) =0, (5.1a)
(puj)t + div(puju) + px; = pAuj + (n + n)div(uy), j=1,...d, (5.1b)
2
(pE)¢ + div[(oE + plu]l=A (KT + u%) + udiv((Vu)u)
+ ndiv((divu)u) + div(gpBVz) (5.1¢)
and (pz); + div(pzu) = div(pBVz) — kpze(T). (5.14)

Here, we denote time by ¢ and the spatial coordinates by x = (xy, ..., x;). The other labels are
given in table 1.

This system has (d + 3) unknowns (p, u, T, z). In (5.1c) Vu is the Jacobian matrix of the velocity
vector with respect to the spatial variables. We write

S u?
=e+ -, E=etqz

and we take the simplest possible equations of state; that is, we suppose that

p=TIpe, e=cT,
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where I' is the Gruneisen constant and c, is the specific heat at constant volume. Finally, we
assume that the ignition function ¢ will have the form

Ea .
o(T) = exp (— [oo(T — Tig)]) if T>Tyg,

0 otherwise,

where Ej is the activation energy and Tjg is the ignition temperature. Given the simple, linear
relationship between e and T, we sometimes find it convenient to write the ignition function as a
function of e, with ¢g(e) = ¢(T).

Henceforth, we write u= (1, v), x=(x,y). After straightforward manipulations, system (5.1)
can then be written as

pt+ (pu)x + (pv)y =0, (5.20)
(pu)e + (pu? + Pz + (puv)y = (2 + Mtz + pityy + (1 + vy, (5.2b)
(pV)t + (puv)x + (0V* + Ply = vxe + 21+ Nvyy + (1 + Ny, (5:20)

(PE)t + (puE + up)x + (ovE + vp)y = (kTx + (21 + n)utiy + pv(vye + uy) + nuvy)x
+ (kTy + 2 + n)vvy + pu(vy + uy) + nuiy)y
+ gkpze(T) (5.2d)
and (p2)t + (puz)x + (pvz)y = (0Pzx)x + (PBzy)y — kpze(T), (5.2¢)

L o i S

where E = E — gz = e 4+ u2/2 + v?/2. The next step is to rescale; for completeness, details about the
rescaling are posted in appendix Aa.

(b) Travelling waves

We now look for a travelling wave solution

AAAAA

By Galilean invariance, we may consider standing profiles (s = 0). Evidently, such waves satisfy

() =0, (5.3a)
(BY + (I pe) = @u + n)it”, (5.3b)
(piid) = pud”, (5.3¢c)
an
(PRE + 0558 = + u + mil) + k@D + k525@) (5.3d)
v
and (piiz) = (pBZ) — kp2g(@). (5.3¢)

From (5.34), we conclude that the mass flux m := il is constant along the profile. Thus, (5.3c)
simplifies to md’ = ud”, whose only bounded solution is § = constant. By an additional coordinate
change if necessary, we may assume ¢ = 0. Further details are given in appendix Ab, from which
we have p = 1/i1. Then setting {=—pB% and using (5.44) in the derivation of (5.4b), we obtain the
first-order system for profiles:

i =Qu+n) " @-1)+Ir@'e—e)), (5.40)

N 1)2
¢ =1 ((é —e)— @ 21) +Te_(i—1)+q¢ +2- 1)) , (5.4b)

https://royalsocietypublishing.org/doi/epdf/10.1098/rsta.2017.0184 Pagina 4 di 10



Evans function computation for the stability of travelling waves 13/05/22, 20:05

¢ =B ug — ki '2¢ () (5.4¢)
and ¥ =—pliz. (5.4d)

Here, we have used the shorthand v = «/c,. Thus, the first step in the computational process will
be to approximate solutions of (5.4) that connect the given end states. A necessary condition for a
connection is that the end states must be equilibria for (5.4). This leads to the Rankine-Hugoniot
jump conditions. We note that when q = 0 the profile equations (5.4) reduce to the Navier-Stokes
profile equations, with e_ < ey [88]. This corresponds to end states z_ =1, z; =0, and a leftward
moving travelling wave. The jump conditions are then easily computed to be

(s — 1)+ I(uiley —e ) =0, (5.5a)
(uy — 1)2
(e —e-) — ————+4Te_(uy —1)+4q(+ +2z+ —1)=0, (5.5b)
B Uty —kuilzigles)=0 (5.5¢)
and —uyly=0. (5.5d)

Since ¢4 = —Bz/, /u; =0=2z,, equations (5.5c,d) are trivially satisfied.

0L 3260 3 Sl i G BuaindsponBlore

(c) Computation of the travelling wave

We approximate the wave profiles numerically as described in §3a. The associated Jacobian is

given by
Qu+n)'a-ru?) Qu+n'ru! 0 0
vl —u+re) vl vlg v 1lg
Duf = Bt + ku=2z¢(e) —ku=1z¢'(e) B lu  —kulge) |’ (56)
-7t 0 —Blu 0

which we use to improve the performance of the boundary value solver. The end states, needed
for the projective boundary conditions, are as follows. We have z_ =1 and z; =0 are the end
states for the mass fraction of the reactant, u_ =1 from the rescaling given in appendix Ab, e, and
uy depend on the variables e_, I and g as determined from the Rankine-Hugoniot conditions,
and ¢+ =0 because z has constant end states and u+ #0.

Substituting (u+, e+, {+,z+) into the Jacobian (5.6), we find that there are two growth and
two decay modes at x = +oc0 and three growth and one centre mode at x = —o0. Requiring the
detonation to approach its end states orthogonal to the centre mode at x = —o0 and to the growth
modes at x = +oo leads to three projective conditions at x = -00. Let P and P, be matrices whose
columns are bases for the growth eigenspace at x =+o00 and the centred eigenspace at x = —oo0.
The boundary conditions for the detonation profiles are

Py(U(1) — (u+,e+,84,2+)") =0, (5.7)
PH(V(1) - (u_,e_,¢-,z)") =0, (5.8)
u() — v(0)=0 (5.9)
and U, (0) =c, (5.10)

where c is the constant ¢ = (U3 (—00) + U1 (+00))/2.
The system parameters for the profile are I',(2u +n),v,k,q,8,EA and e_. We note that
Evans function computation requires both viscous parameters i and 7, rather than the single
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Figure 2. A left-moving travelling wave solution (strong detonation) of (5.1) in Eulerian coordinates, with activation energy
Ex=27, Qu + n)=01,e_=0.0623, I" = 0.2 and g = 0.623. This is the same profile computed in [18], although
computed in Eulerian coordinates and oriented towards the left.

YRI0/107 9LE ¥ 205§ subij g BioBulysiqndkranosiefor-ers

parameter (2u + n) required for the wave profile. An approximation of a profile is shown in
figure 2.

(d) The Evanssystem

The linearized eigenvalue problem may be written in the form W'=A(x;1,&)W where W=
[wy, @y, w3, Wy, ws,u,v,¢,z]" and the matrix A(x; , £) is given by

( —xp 0 0 0 0 —ap? i£p 0 0

Iy 0 0 0 0 AP+ ut? 0 0 0

—i€p 0 0 0 0 —iEpp AP+ pE?  iETp 0
—ex+2p —xy 0 0 0 Azf> i£f1 fa )

Pz 0 0 0 0  —p%f iEpz  kpzg'(@e) ABE*+f) |- (B11)

-7 @t 0 0 0 a'(1-pp) —iplem AT'rp 0

0 0o w1 0 o0 —ip~lER wl 0 0

0 0 0 v 0 (p—jin)/v 0 vl 0
\Z&x—#2/p 0 0 0 pli P2y 0 0 B~ 1lu

A sketch of the derivation of A(x; A, §) is given in appendix Ad. Here A € C is dual to time, and the
real frequency parameter £ arises from a Fourier transform in the y-direction.

The 9 x 9 Evans matrix (5.11) provides a first-order formulation of the linearized eigenvalue
problem. And, with the profile in hand, this is precisely the framework described in §3. Unstable
detonations in the multidimensional RNS equations correspond to values of (A, &) with ReA > 0
for which there are non-trivial bounded solutions W of

W' =A(x; 1, §)W. (5.12)
A non-trivial bounded solution W must grow along the four-dimensional unstable eigenspace of

A_(A, &) near x =—o0, and decay along the five-dimensional stable eigenspace of A4 (A,&) near
x =+00. We use the adjoint, polar-coordinate method described above to compute D(3, £).
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Figure3. In (a), we show the Evans function output for £, = 2.7 on a semicircular contour of radius R = 0.1. The inset in (a) is
magnified in (b), where it is easy to see that the winding number changes between £, = 2.7 (solid) and £, = 2.8 (dotted) asa
Hopf bifurcation occurs. The other independent parametersare £ = 0,e_ = 0.0623, I" = 0.2and ¢ = 0.623. (Online version
in colour.)

(e) Parameter values

L o i S

For our numerical computations, we set u =n=1/30, 8 =0.1, Tig =0.06641, and c, = 1. To better
compare our results with those in [18], we have chosen k as a function of activation energy Ea.
This choice of k regulates the scale length of the reaction, thereby simplifying the solution of the
detonation profiles. After setting I" = 0.2, g = 0.623 and e_ = 0.0623, parameters e =0.9706, u, =
0.2569 are determined by the Rankine-Hugoniot condition.

Detonations are known to experience a cascade of Hopf-like bifurcations at higher values
of ImA as activation energy increases. Our experiments have focused on the smallest pair
of eigenvalues as they enter the right half-plane, and eventually return and restabilize. Our
parameters of interest are activation energy Ea and the joint parameter v. The first experiment
(figure 3) describes these instabilities as E varies between 1.6 and 7.1 with v fixed. The second
experiment fixes E54 and allows v to vary. This helps us observe the nature of the unstable
manifold of eigenvalues present in the multidimensional RNS system; see [18] for comparison
(figure 4).

(f) Fixed v and varying activation energy

For v=0.1, we allowed E, to vary from 1.6 to 7.1 and tracked the first pair of eigenvalues seen
crossing into the right half-plane. Since § =0 corresponds to the standard 1D RNS Evans function,
we were able to verify our results by comparing with those found in [18]. In both systems (&§ =0)
instability occurs around Ex = 2.7 and the system restabilizes around E5 =7.1. Those eigenvalues
also restabilize as & increases. Because instabilities in planar detonations correspond to a location A
in the right half-plane and a Fourier frequency £, varying activation energy Ex defines a manifold
of instabilities (ReA,Ima, &).

(g) Fixed activation energy with varying v

These experiments focus on the effect of increasing heat conductivity on the smallest pair of
unstable eigenvalues, for several fixed values of activation energy. In general, as heat conductivity
increases the unstable pair of eigenvalues returns to the left half-plane and restabilize. This effect
is illustrated in figure 5 by plotting the Evans function output on a semicircular contour with
radius 0.4 in the right half-plane. As the heat conductivity increases from v=0.1 to 0.8, the
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Figure 4. Unstable eigenvalues as heat conductivity v varies. Each line is parametrized by Fourier frequency &. Eigenvalues
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Figure 5. Evans function output for several Fourier frequencies & € [0, 0.8] on a semicircular contour with radius 0.4. (@) v =

1/10,(b) v =2/5and (c) v = 8/5. (Online version in colour.)

https://royalsocietypublishing.org/doi/epdf/10.1098/rsta.2017.0184

13/05/22, 20:05

L 2 i i S

Pagina 8 di 10



Evans function computation for the stability of travelling waves 13/05/22, 20:05

Evans contours can be seen to unwind from the origin, indicating that the eigenvalue pair has
restabilized.

6. Conclusion

Computational Evans-function techniques are useful for a variety of purposes. First and foremost,
because these techniques allow one to count the number of eigenvalues in the unstable complex
half plane, they allow one to identify instabilities (e.g. [18]). Indeed, these computations can
give insight into the nature of bifurcations (onset of instability), the ensuing dynamics and other
behaviour. For example, evidence from Evans-function computations provided the impetus for
the proof of stability in the strong-shock limit [50]. Additionally, because winding number counts
can also rule out the possibility of unstable eigenvalues, the computational techniques described
here can play a key role in determining spectral stability. These calculations are convincing when
it is possible to rule out the possibility of large unstable eigenvalues through energy estimates [35,
42,77,78] or other analytical means [50,88]. In these analyses, the computational component is thus
restricted to a finite part of the unstable half plane. Because it is often possible to prove a theorem
to the effect that spectral stability implies nonlinear stability (in an appropriate sense), these
calculations can provide convincing evidence of nonlinear stability. Indeed, these computations
also provide the framework for numerical proofs of spectral stability [41]. Finally, we note that, as
shown here, these techniques can be applied to physically relevant, multidimensional models for
complex phenomena. The computations are naturally parallelizable, and this suggests that these
computational Evans-function techniques are likely to be the major conduit for taking the large
body of theoretical mathematical results about the stability of travelling waves and connecting it
with meaningful applications.
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Appendix A. Additional details for multidimensional detonation profiles

(a) Rescaling

The rescaling for the Navier-Stokes equations (5.1) is given below. Here, m is the constant value
of the mass flux in the x-direction, and € is chosen to normalize the density at the left end state to
one. The simple equations of state used here are invariant under this scaling.

u T
(xlleI t; P, U, v, le) - mxllmeIszt; €p, —, Lr 5 52

em’ em” €2m? A1)
B 9 q k Ea

and - = 1 k-
A €’ e2m?’ em?’

(b) Travelling-wave equation

Let e =1/p_; then in the rescaled coordinates p— =u_ =1, pit =1, and we obtain the system

U +p =Qu+nu’, (A2a)
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e/l
E'+ (up) =" + @u+ muadY + gkpzis©) (A20)
and Z' = (pBZ) — kpzg(e). (A20)

Substitute (A 2c) into (A 2b) to get

u +p'=Qu+nu’,
Ke” ’ ’ J
E'+ @up) = —— +@u+ ) +q(ppz) — 42,
v
z' = (pBz) —kpzg(e).

Integrating from —oo to x yields

=)+ (p—p)=@u+ )i, (A3)
E~E)+@p—up)="5 + @u+mul +qop7 — gtz —2.) (A3)
and Z' =(pBz') — kpzg(e). (A3c)

0L 3260 3 Sl i G BuaindsponBlore

Setting v =k /c, and using E =e + u?/2, we can substitute the first equation into the second to

obtain

W=@Qu+n) " (u—u)+@-p)

(e—e-)— w +p-(u—u_)=ve +qppz' — gz — z-)
and 7' =(pBZ) —kpzg(e).

Since u_ = p_ =z_ =1, after applying the pressure law p = I"pe the system becomes

w'=Qu+n)"(u—1)+ I'pe—e.)),

d=v! ((e —e_)— (u _21)2 +Te_(u—1)—qpBz +q(z — 1))

and z' = (pBz') —kpzg(e).

From here, the final form reported in (5.4) follows immediately.

(c) Parametrization of end states

Solving (5.5a) for e; and substituting into (5.5b) allows us to parametrize e, and u as functions
of e_, I' and g, where

ey =ure— + I us(l—uy) (A 4a)

and

(' +1)(Ie_ +1) — ‘/(1" +1)2(le— +1)2 = I'(I" +2)(1 + 2e_(I" + 1) + 29)
- r+2

ity (A 4b)

The negative square root above is the parameter regime for strong detonations.
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(d) The linearized eigenvalue equations

To be more concise, we write

The linearized eigenvalue problem comes from linearizing (5.2) about the travelling wave and
taking the Fourier transform in the y-direction, resulting in

Ap + (Pu+ tip) +iEpv=0, (A 5a)
Mpu +1ip) + Qu+ #Pp + I'(@p + pe)) = " — £ pu + i& (' — v), (A5b)
APY 4V +IETEp + pe) = uv" — E2fiv + iEfu, (A5c)

. . B2 ) ol . . 1 .5 3.7
rMpe+u+ple+ 5 +itv | ype+ 3 + | y(eup + e +epu) + HPU + U
= (ve' + a(ii'u + ') + iEniv) — £2ve
+ (g’ — £2i) + iEnilev + gk(p2¢' @)e + pP@E)z + 2¢(2)p), (A5d)
MEp + pz) + (1Zp + pzZu + z)' + & p2v

AR )

= B((37 +2p) — £%62) — k(p25 @)e + pF(@z + 25(D)p)- (ASe)

L 2 5 i 1 BB

We rewrite the system in flux coordinates, building off the work done in [88]; see also Barker et al.
[66] for a more systematic derivation of flux variables and a discussion of their computational
advantages. Defining flux variables

w1 = —pu — iip, (A 6a)
wy = jiu’ — Qu + #2p) — I'(ep + pe) + i, (A 6b)
w3 =pv' — v+ iéqu, (A 6c)
wy = f(teu + uu') + ve' — y(e + tiép + épu) — (gflu + %ﬁ:’p) +iEqi (A 6d)
and ws = (P2 + Zxp) — (Zp + p2u +z), (A 6e)

we then adjust with
Wy :=wy — flwy = i’ — u — I'(€p + pe) + iEqu (A 7a)

and

Wy = wy — iy — Ewy = ve' + fiflu — e — pu. (A7b)

In this coordinate system, the eigenvalue equations become

wy = —Apwy — Ap%u + i€ pu, (A 8a)

Wh = —iywy + (AP + p€)u, (A 8b)

wh = —iEpwy — iEppu + (AP + EXA)v + i€ T pe, (A8c)

Wy = (—&x + 2fa)wr — i@y + if1(i, dh)v (A8d)

+fae + p2fou — foz, (A 8e)

wy =i p2v — pfswr — pP2fsu + P(BE” + f3)z + kib2g (P)e, (A8f)

fiu' = —pwy + Wy + (1 — pp)u — i&fjv + I'pe, (A8g)
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wv' =ws — iEfju + v, (A 8h)
ve' =y + (p — fill)u + e (A 8i)
Bz’ =iws + Wiz + BpZyu + (BZy — 1Z)w,, (A 8))

where

fisp+w—nin, fr=qki¢@), H=r+k§@), fa=rp+vE* —qkp2¢'@).

The 9 x 9 matrix A can be read off of this system.
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