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1. Introduction

Over the past 15 years, the original proposal of Bender and co-
workers that systems with PT -symmetry may constitute relevant ex-
tensions of the usual Hermitian quantum mechanical models has gained
considerable traction. Part of the reason for the interest in this theme
has been the theoretical proposal [2, 3, 4], but perhaps especially so
the experimental implementation [5, 6] in linear and nonlinear optics
of systems that follow the proposed PT -symmetric dynamics. More
recently, similar systems have been implemented in electrical [7, 8] and
mechanical [9] linear systems, as well in the realm of whispering-gallery
microcavities [10] and in a PT -symmetric dimer of Van-der-Pol oscil-
lators in [11].
In numerous ones among these systems (e.g. in [7, 8, 9, 10, 11]), the

underlying linear dynamics is of the oscillator type i.e., it involves a
dimer of two oscillators, one with loss and one with gain, typically in
the form of a linear dashpot. The relevant oscillator pair reads (at the
linear level):

ü = −ω2u− ǫv − γu̇(1)

v̈ = −ω2v − ǫu+ γv̇(2)

where ω represents the frequency of the oscillators, ǫ their coupling,
while γ is strength of the loss/gain in the two oscillators u and v. This,
in turn, has motivated a number of studies that considered both the
discrete [12], as well as the long-wavelength continuum [13, 14] general-
ization of such models in the realm of Klein-Gordon partial differential
equations of the form (now for the field u(x, t)):

utt = uxx + g(u) +W (x)ut(3)

where W (x) is anti-symmetric in order to enable regions of loss (with
W (x) < 0) and gain (with W (x) > 0); g(u) contains the nonlinearity
potentially present in the model.
Here, we explore the long-wavelength limit of a modified form of the

oscillator problem whereby the oscillation of u involves a dashpot ef-
fect from v and that of v a gain effect from u. This type of velocity
dependent coupling has been argued, for instance, to exist in the cou-
pling of pendula in the recent experiments and associated modeling
of [15]. Our own investigation, however, is chiefly motivated by the the
continuum properties of the corresponding long-wavelength limit math-
ematical system which in this case will be of the following Klein-Gordon
form, again for the field u(x, t):

(4) utt + iβW (x)ut −∆u+ u− f(|u|2)u = 0, (t, x) ∈ R1
+ ×Rd
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where W is a real-valued and bounded potential and β is a real param-
eter. We will give general stability conditions involving W , although
our interest will be chiefly towards the PT -symmetric case, whereby
the invariance under x → −x and t → −t, as well as i → −i clearly
indicates that W (−x) = W (x) and W should be an even function to
ensure PT -symmetry. An alternative way of thinking of this partial
differential equation (PDE) is as a Schrödinger model with an added
inertial term. This, in turn, suggests the underlying conservative na-
ture of this PDE, which we will not explore further below but which
will be somewhat implicit in our spectral considerations.
In what follows, we will be interested in standing wave solutions in

the form eiωtϕ(x), with real-valued carrier ϕ, which naturally satisfy

(5) −∆ϕ + (1− ω2)ϕ− βωWϕ− f(ϕ2)ϕ = 0, x ∈ Rd.

The equation (5) will have homoclinic orbit, pulse-like solutions under
appropriate conditions on the nonlinearity f and the function W (x).
For example, if f(z) = z(p−1)/2 for some p > 1 and W is a bounded
function, one can show that a (positive) solution to (5) may be obtained
as a (multiple of) the solution to the following constrained minimization
problem

{ ∫

Rd[|∇h(x)|
2 + (1− ω2)h2(x)− βωW (x)h2(x)]dx → min

∫

Rd h
p+1(x)dx = 1.

In all these cases, the present work will focus on the spectral stability
of such solutions. In order to study this question, we linearize (4) by
u = eiωt[ϕ+v(t, x)]. By keeping the linear terms and ignoring all higher
terms O(v2), we arrive at
(6)
vtt+i(2ω+βW )vt+[−∆v+(1−ω2)v−βωWv−f(ϕ2)v−2ϕ2f ′(ϕ2)ℜv] = 0.

Furthermore, introducing the vector v

(7) vtt + Jvt +Hv = 0,

where

J = J(β) =

(

0 −(2ω + βW )
(2ω + βW ) 0

)

,H =

(

L+ 0
0 L−

)

L+ = L+(β) = −∆+ (1− ω2)− βωW − f(ϕ2)− 2ϕ2f ′(ϕ2)

L− = L−(β) = −∆+ (1− ω2)− βωW − f(ϕ2).

We now give a definition for stability/instability of such linearizations.

Definition 1. We say that the linearized problem (7) is spectrally un-
stable, if there is λ : ℜλ > 0 and Ψ ∈ D(H), so that

(8) λ2Ψ+ λJΨ+HΨ = 0.
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Otherwise, we say that the linearized problem (7) is spectrally stable.

We should mention that eigenvalue problems of this type have been
considered in the literature; see e.g. [16] and references therein. In fact,
they are frequently referred to as operator pencils. This is due to the
quadratic dependence on the eigenvalue parameter in (8). The following
general result helps us decide about the stability of such pencils.

Theorem 1. [16] Assume that the operators J,H satisfy the following
assumptions:

(A) L2 = X+ ⊕X−, so that

Hu = Hū, H : X± ∩D(H) → X±, H∗ = H

(B)

Ju = Jū, J : X± → X∓, J∗ = −J, ∀τ >> 1 : J(H + τ)−1 ∈ B(L2)

(C)






Hφ = −δ2φ,H|{φ}⊥ ≥ 0; σa.c.(H) ⊂ [κ2,∞), κ > 0
Ker[H] = span[ψ0, . . . , ψl], ‖ψj‖ = 1, j = 0, . . . , l
ψ0 ∈ X−; {φ, ψ1, . . . , ψl} ∈ X+; 〈ψi, ψj〉 = 0, j 6= k;

(D)

〈ψj , Jψ0〉 = 0, j = 1, . . . , n.

Then,

• the pencil (8) is spectrally unstable if
〈

H−1[Jψ0], Jψ0

〉

> −1

• the pencil (8) is spectrally stable, if
〈

H−1[Jψ0], Jψ0

〉

≤ −1

Note: For the parameter l ≥ 0, l = 0 is allowed. That is, the kernel
of H may be one dimensional, in which case, (D) is vacuous.

Our aim in the present work is to quantify this general theorem in
the special case of the operator pencils discussed above in (7). More
specifically, in Section 2, we give the precise condition that is relevant
to our operator pencil. In section 3, we give a series of specific examples
for power law nonlinearities and particular forms of W (x). In section
4, we consider some typical ones among these examples numerically
and corroborate the prediction of the theorem. Finally, in section 5, we
present our conclusions and propose some possibilities for future work.
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2. Main results

Let us start by saying a few words on how our principal example of
(7) satisfies the requirements of Theorem 1. First, ifW is appropriately
decaying1, the essential spectrum ofH is [1−ω2,∞) by Weyl’s theorem.
The split L2 = X+ ⊕ X− is then not hard to guess, namely X+ =
{(

f

0

)

: f ∈ L2(R1)

}

, X− =

{(

0
g

)

: g ∈ L2(R1)

}

. Clearly, the

requirements (A), (B) are satisfied, since the operators L± are self-
adjoint with a domainH2(R1) and J : X± → X∓, whileH : X±∩H2 →
X±. If the wave ϕ > 0 (as is the case for the prototypical ground-state
pulse that will interest us herein), we have that L−[ϕ] = 0. Thus, in
the 1 D case by Sturm-Liouville theory, it follows that L− ≥ 0, with
a (normalized) eigenfunction ψ0 := ‖ϕ‖−1ϕ. The requirement that L+

satisfies the condition (C) is non-trivial. Namely, we need L+ to have at
most one negative eigenvalue (counting multiplicities) and Ker[L+] be
empty or Ker[L+] = span[ψ1, . . . , ψl]. If the second possibility occurs,
then we need to make sure, by (D), that 〈ψj , Jϕ〉 = 0. This will actually
turn out to be automatic in our case.
The following is the main result of the present contribution.

Theorem 2. Let ω ∈ (−1, 1) and assume the problem (5) has a positive
smooth solution (in both x and ω variables) ϕω(x), lim|x|→∞ ϕω(x) = 0.
Assume

(9) n(L+) = #{λ ∈ σ(H) : λ < 0} = 1.

Next assume that either d = 1 or if d ≥ 2, then Ker[L−] = span[ϕ]
Then, the wave ϕω is spectrally stable if and only if

(10) ∂ω[

∫

(2ω + βW )ϕ2
ω(x)dx] ≤ 0.

Remark: For f(z) = z
p−1

2 , we have that L+ ≤ L−, and in fact
〈L+ϕ, ϕ〉 = −(p − 1)

∫

ϕ2(x)dx < 0, so L+ always has negative point
spectrum. The requirement (9) is therefore asking for such spectrum
to be reduced to a single point.

Proof. We first show that it suffices to require only (9) and then our
pencil (7) satisfies the assumptions of Theorem 1. Next, let us dis-
cuss the conditions on Ker[L+]. If Ker[L+] = ∅, there is nothing else
to do, this is the case l = 0 in Theorem 1. If however Ker[L+] =
span[ψ1, . . . , ψl], we need to have that 〈ψj , Jψ0〉 = 0. That is, we need
to have (2ω + βW )ϕ ⊥ Ker[L+]. To prove this, take the equation (5)

1We will also consider the example W (x) = 1 in which case this will change, but
we discuss this separately.
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defining our standing wave and take a derivative with respect to ω. We
obtain

L+[∂ωϕ]− 2ωϕ− βWϕ = 0.

It follows that L+[∂ωϕ] = (2ω + βW )ϕ., whence ∂ωϕ = L−1
+ [(2ω +

βW )ϕ].
Taking dot product of the last identity with ψj , j = 1, . . . , l, we get

〈ψj , (2ω + βW )ϕ〉 = 0, which is the condition (D) in Theorem 1.
It now remains to compute the quantity 〈H−1(Jψ0), Jψ0〉. We have

H−1Jψ0 = −
1

‖ϕ‖
H−1

(

(2ω + βW )ϕ
0

)

= −
1

‖ϕ‖
L−1
+ [(2ω + βW )ϕ],

whence
〈

H−1Jψ0, Jψ0

〉

=
1

‖ϕ‖2
〈

L−1
+ [(2ω + βW )ϕ], (2ω + βW )ϕ

〉

=

=
1

‖ϕ‖2
〈∂ωϕ, (2ω + βW )ϕ〉 =

∂ω[
∫

ωϕ2(x) + βW (x)
2

ϕ2(x)dx]− ‖ϕ‖2

‖ϕ‖2
.

Thus, for stability it is necessary and sufficient to have that the last
expression is less than −1, so we arrive at (10).

�

It is also relevant to note here that this condition appears to be a
natural generalization for the present setup of the famous Vakhitov-
Kolokolov condition [17] for the stability of ground state solitary waves
of the nonlinear Schrödinger equation.

3. Examples

In this section, we consider several examples which fall within the
framework of Theorem 2.

3.1. The case W (x) = 1. Our first example is for f(z) = z
p−1

2 , p >
1 and the potential is a constant function, that is W (x) = 1. The
dimension d ≥ 1 is arbitrary. Fix β. In the case of d = 1, (5) becomes

(11) − ϕ′′ + (1− ω2 − βω)ϕ− ϕp = 0.

Note that in this case, we actually have solutions in the set {ω : 1 −
ω2 − βω > 0}. The same condition is required for the spectral gap
condition to hold, so we assume it. That is

(12)
−β −

√

β2 + 4

2
< ω <

−β +
√

β2 + 4

2

All positive solutions to (11) are then in the form

(13) ϕω(x) = (1− ω2 − βω)
1

p−1φd,p(x
√

1− ω2 − βω).
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where φ is a fixed function depending on d, p only. This is the unique-
ness result of [18]. Next, the operator L+ has one simple negative
eigenvalue, while L− has only ϕ in its kernel, and in fact Ker[L+] =
span[∂1ϕ, . . . , ∂dϕ] - this was shown in a series of papers by Weinstein,
[19], Shatah, [20] and Kwong, [18]. It remains to compute the quantity
in (10) and to solve the inequality. We have

∂ω[(2ω + β)‖ϕω‖
2] = (1− ω2 − βω)

2

p−1
− d

2

(

2−
(2ω + β)2( 2

p−1
− d

2
)

1− ω2 − βω)

)

.

Setting cp := 2
p−1

− d
2
, we can rewrite the stability condition ∂ω[(2ω +

β)‖ϕω‖
2] ≤ 0 as follows

2 ≤ cp
(2ω + β)2

(1− ω2 − βω)
.

Clearly, if cp ≤ 0 (corresponding to p ≥ 1 + 4
d
), the inequality fails

leading to instability. Otherwise, we reduce to a quadratic inequality
for ω, which has the solutions

−
β

2
−

1

2

√

β2 + 4

2cp + 1
≤ ω and ω ≥ −

β

2
+

1

2

√

β2 + 4

2cp + 1

Intersecting with the solutions of (12), we obtain

Theorem 3. Let ϕω in (13) be the solutions to (11), which exists for all
ω as in (12). These solutions of (4) are spectrally stable if and only if

ω ∈

(

−β −
√

β2 + 4

2
,−

β

2
−

1

2

√

β2 + 4

2cp + 1

]

∪

[

−
β

2
+

1

2

√

β2 + 4

2cp + 1
,
−β +

√

β2 + 4

2

)

.

Note that when β = 0, we arrive at the classical result that stability

holds if and only if p < 1 + 4
d
and 1 > |ω| ≥

√

p−1
4−(p−1)(d−1)

.

3.2. The case of |β| << 1. In this section, we fix a decaying potential

W , take a power nonlinearity f(z) = z
p−1

2 and general d ≥ 1. We use β
as a bifurcation parameter. We first need to investigate the condition
(9). We have

L+(β) = −∆+ (1− ω2)− βωW − pϕ
p−1
ω,β .

Our reference will be of course the operator L+(0), which is L+(0) =
L+ = −∆+ (1− ω2)pϕp−1

ω,0 . Here, ϕ
p−1
ω,0 = ϕ0 is nothing but the unique

even solution of −∆ϕ+(1−ω2)ϕ−ϕp = 0. If we look for an asymptotic
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expansion for ϕω,β, we should take it in the form ϕω,β = ϕ0 + βψω +
O(β2). We have the defining equation

−∆ϕ + (1− ω2)ϕ− βωWϕ− ϕp = 0.

Taking a derivative in β yields L+(β)[∂βϕ] = ωWϕ. Setting β = 0
yields L+[ψ] = ωWϕ0. Now, ifWϕ0 ⊥ Ker[L0] = span[∂1ϕ0, . . . , ∂dϕ0]
(this is certainly the case, if W is an even function, which we assume
henceforth) this last equation has a solution, which is in the form

ϕω,β = ϕ0 + βL−1
+ [Wϕ0] +O(β2).

With the formula ϕω,β = ϕ0 + βωL−1
+ [Wϕ0] + O(β) in hand, let us

now derive an asymptotic formula for L+(β) for |β| << 1. We have

L+(β) = −∆+ (1− ω2)− βωW − p(ϕ0 + βωL−1
+ [Wϕ0] +O(β))p−1

= L+ − βω(W + p(p− 1)L−1
+ [Wϕ0]) +O(β2)

How can we ensure that L+(β) will have exactly one negative eigen-
value for small values of β ? We are perturbing off L+ which has exactly
one negative eigenvalue and d vectors in its kernel. By using the qua-
dratic form characterization of the eigenvalues, we conclude that after
the perturbation by β, L+(β) will still have at least this (perturbed)
eigenvalue, but it is possible that some of the zero e-values will (after
the perturbation) turn into negative ones as well. Clearly then, the
criteria for n(L+(β)) = 1 for small β and ω > 0 are in the form

β(〈W∂jϕ0, ∂jϕ0〉+ p(p− 1)
〈

L−1
+ [Wϕ0]∂jϕ0, ∂jϕ0

〉

) < 0, j = 1, . . . , d.

At this point, we require that W is radial (this in addition to the fact
that ϕ0 is radial). In this way, the expressions above are equal, for all
values of j = 1, . . . , d. Thus, if we impose the non-degeneracy condition

〈W∂jϕ0, ∂jϕ0〉+ p(p− 1)
〈

L−1
+ [Wϕ0]∂jϕ0, ∂jϕ0

〉

6= 0

and let |β| << 1, so that sgn(β) = −sgn(〈W∂1ϕ0, ∂1ϕ0〉 + p(p −
1)
〈

L−1
+ [Wϕ0]∂1ϕ0, ∂1ϕ0

〉

) we will have ensured that n(L+(β)) = 1.
This is because we have made sure that the zero eigenvalues bifurcated
to become small positive eigenvalues. We can now state the perturba-
tion result, whose proof we just outlined.

Theorem 4. Let d ≥ 1, p < 1 + 4
d
and W = W (|x|) be a decaying

potential. Let ϕ0 be the unique radial solution of −∆ϕ + (1 − ω2)ϕ −
ϕp = 0. Assume the following non-degeneracy condition holds for some
interval ω ∈ I ⊂ (0, 1):

(14)

∫

Rd

(W + p(p− 1)L−1
+ [Wϕ0])|∂1ϕ0(x)|

2dx 6= 0 for ω ∈ I
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Then, there exists β0 : 0 < β0 << 1, so that for all β : |β| < β0 and

sgn(β) = −sgn(

∫

Rd

(W + p(p− 1)L−1
+ [Wϕ0])|∂1ϕ0(x)|

2dx)

the Klein-Gordon equation (4) has a standing wave solution eiωtϕω,β.
This solution is stable for ω ∈ I if and only if

(15) ∂ω[

∫

(2ω + βW )|ϕω,β(x)|
2dx] ≤ 0, ω ∈ I.

Moreover, the solution to the inequality (15) is in the form

ω ∈ I ∩ (ω(p, d, β), 1), ω(p, d, β) =

√

p− 1

4− (p− 1)(d− 1)
+O(β).

Remark: Note that if we choose β with the same sign as
sgn(

∫

Rd(W+p(p−1)L−1
+ [Wϕ0])|∂1ϕ0(x)|

2dx), we will have for |β| << 1
a total of d+1 negative eigenvalues for L+, in which case Theorem 1 is
inapplicable. We conjecture that generically we will observe instability
in this case.

4. Numerical Results

To conclude this brief contribution, we will test the main result of
the analysis, namely Theorem (2) through a numerical case example.
In the numerical computation, we consider the discrete variant of the
model
(16)

üm+ iβW (xm)u̇m−
1

(∆x)2
(um+1−2um+um−1)+um− f(|um|

2)um = 0

for a sufficiently small ∆x (typically ∆x = 0.2) is used such that the
continuum model is well approximated by um(t) ≡ u(xm, t), where
xm = m∆x. We will present the stability results of the standing wave
solutions in the form eiωtϕm which satisfy
(17)

−
1

(∆x)2
(ϕm+1−2ϕm+ϕm−1)+(1−ω2)ϕm−βωWϕm−f(ϕ2

m)ϕm = 0.

The numerical solution to this problem is identified via a Newton-type
fixed point method.
Once the relevant standing wave is obtained, following the prescrip-

tion of Section 1, we linearize around it, obtaining a discrete analogue
of Eq. (7). An equivalent formulation of this as a first order system
reads:

V̇m = LVm
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where Vm =

(

vm

v̇m

)

and L =

(

0 1
−H −J

)

.

As a case example of the even function W (x), we use W (x) = ae−bx2

while f(z) = z (i.e., we explore the cubic nonlinearity) and d = 1. A
typical result of the numerical computations is illustrated in Figure 1
(for the case of β = 0.06, i.e., for small values of β). In panel (a),
we plot the function I(ω) =

∫

(2ω + βW )ϕ2
n,ω for ω ∈ [0, 1], a = 0.1,

b = 1. Based on the analytical prediction of Theorem (2), there exists
ω∗ ∈ (0.705, 0.706) such that I(ω) increases on (0, ω∗) and decreases on
(ω∗, 1). Accordingly, the theorem predicts a change of stability as ω∗

is crossed. In order to see the spectral picture, we pick two ω values,
one slightly below ω∗ (ω = 0.7) and one slightly above ω∗ (ω = 0.71).
Figure 1 (b) clearly shows that there exists a real eigenvalue pair of L
when ω = 0.7. This holds true for any ω < ω∗. However in Figure 1 (c)
we see that all the eigenvalues lie on the imaginary axis when ω = 0.71,
i.e., the standing wave is now neutrally stable, as theoretically predicted
for ω > ω∗. Numerical results also show that as β increases, the value
of ω∗ decreases. Hence, our numerical computations indeed illustrate
the sharpness of the relevant criterion.

5. Conclusions and Future Challenges

In the present work, we have considered, motivated by PT -symmetric
considerations and perturbations respecting the parity and time-reversal
symmetries, to explore a variant of the recently explored PT -symmetric
Klein-Gordon systems, which also can be thought of as a Schrödinger
type equation with additional inertial terms. For this PDE, we have
explored the general stability criterion of [16] in order to derive a more
precise/specific stability condition. The latter has the natural form of
an extension to the well-known Vakhitov-Kolokolov criterion of non-
linear Schrödinger type models. The relevant inequality has not only
been theoretically proposed and directly computed in some simple case
examples (such as W (x) = 1), but its sharpness has been numerically
corroborated in analytically intractable forms of the relevant function.
Nevertheless, there are numerous extensions of the present setting

that may still be relevant to explore. While, partially also due to space
restrictions, here we constrained ourselves and our numerical study to
the prototypical cubic case, it would be interesting to explore more gen-
eral (power or other e.g. saturable) nonlinearities that may well impart
additional instabilities, as well as provide settings where the setup of
the theorem will not apply. Here, the numerical computations may pro-
vide insights towards suitable generalizations. Also, considering more
complex forms of W (x) may provide multiple changes of monotonicity
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Figure 1. (a) shows the relation between ω and I(ω)
when β = 0.06. The red circle on the graph corresponds
to ω = 0.7 and the green one corresponds to ω = 0.71.
(b) shows the spectral plane (λr, λi) of the eigenvalues
λ = λr+iλi of L when ω = 0.7 and (c) shows the spectral
plane (λr, λi) of the eigenvalues λ = λr + iλi of L when
ω = 0.71.
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(of the relevant quantity of the theorem), and it would be interesting
to seek the corresponding stability reversals. Finally, in the case of one
or more of these instabilities, it would be useful to dynamically inves-
tigate the fate of the resulting dynamical evolutions. Such studies are
presently in progress and will be reported in future studies.
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