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Abstract. The topic of this paper are nonlinear traveling waves occuring in a system of damped waves
equations in one space variable. We extend the freezing method from first to second order equations
in time. When applied to a Cauchy problem, this method generates a comoving frame in which the
solution becomes stationary. In addition it generates an algebraic variable which converges to the speed
of the wave, provided the original wave satisfies certain spectral conditions and initial perturbations
are sufficiently small. We develop a rigorous theory for this effect by recourse to some recent nonlinear
stability results for waves in first order hyperbolic systems. Numerical computations illustrate the
theory for examples of Nagumo and FitzHugh-Nagumo type.

Key words. Systems of damped wave equations, traveling waves, nonlinear stability, freezing method,
second order evolution equations, point spectra and essential spectra.
AMS subject classification. 65P40, 35L52, 47A25 (35B35, 35P30, 37C80).

1. Introduction
In this paper we study the numerical computation and stability of traveling waves in second order evolution
equations. Our model system is a nonlinear wave equation in one space dimension

(1.1) Mutt = Auxx + f(u, ux, ut), x ∈ R, t > 0, u(x, t) ∈ Rm.

Here we use constant matrices A,M ∈ Rm,m and a sufficiently smooth nonlinearity f : R3m → Rm. In the
numerical computations we have the simpler case where f is linear in ux and ut, i.e.

(1.2) f(u, v, w) = g(u) + Cv −Bw, B,C ∈ Rm,m, g : Rm → Rm smooth,

and B plays the role of a damping matrix. We also require M to be invertible and M−1A to be real
diagonalizable with positive eigenvalues (positive diagonalizable for short). This ensures that the principal
part of equation (1.1) is well-posed.
Our main concern are traveling wave solutions u? : R× [0,∞)→ Rm of (1.1), i.e.

(1.3) u?(x, t) = v?(x− µ?t), x ∈ R, t > 0,

such that

(1.4) lim
ξ→±∞

v?(ξ) = v± ∈ Rm and f(v±, 0, 0) = 0.
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Here v? : R → Rm is a non-constant function and denotes the profile (or pattern) of the wave, µ? ∈ R
its translational velocity and v± its asymptotic states. The quantities v? and µ? are generally unknown,
explicit formulas are only availabe for very specific equations. As usual, a traveling wave u? is called a
traveling pulse if v+ = v−, and a traveling front if v+ 6= v−.
We have two main aims for this paper. First, we want to determine traveling wave solutions of (1.1) from
second order boundary value problems and investigate their stability for the time-dependent problem.
Second, we will generalize the method of freezing solutions of the Cauchy problem associated with (1.1),
from first order to second order equations in time (cf. [4, 7]). The idea for approximating the traveling
wave u? is to determine the profile v? and the velocity µ? simultaneously. For this purpose, let us transform
(1.1) via u(x, t) = v(ξ, t) with ξ := x− µ?t into a co-moving frame

(1.5) Mvtt = (A− µ2
?M)vξξ + 2µ?Mvξt + f(v, vξ, vt − µ?vξ), ξ ∈ R, t > 0.

Inserting (1.3) into (1.1) shows, that v? is a stationary solution of (1.5), meaning that v? solves the
traveling wave equation

(1.6) 0 = (A− µ2
?M)v?,ξξ(ξ) + f(v?(ξ), v?,ξ(ξ),−µ?v?,ξ(ξ)), ξ ∈ R.

There are basically two different ways of determining the profile v? and the velocity µ? from the equations
above. In the first approach one solves (1.6) as a boundary value problem for v?, µ? by truncating to
a finite interval and using asymptotic boundary conditions as well as a scalar phase condition (see [8]
for a survey). This method requires rather good initial approximations, but has the advantage of being
applicable to unstable waves as well. The second approach is through simulation of (1.1) via the freezing
method which transforms the orginal PDE (1.1) into a partial differential algebraic equation (PDAE). Its
solutions converge to the unknown profile and the unknown velocity simultaneously, provided the initial
data lie in the domain of attraction of a stable profile. In Section 2.1 below we will investigate this approach
in more detail. For the numerical examples we will employ and specify a well known relation of traveling
waves for the hyperbolic system (1.1), (1.2) to those of a parabolic system, cf. [12, 16] and Section 2.2.
We are also interested in nonlinear stability of traveling waves. Some far-reaching global stability results
for scalar damped wave equations have been proved in [11, 12]. Here we consider local stability only. For
a certain class of first-order evolution equations it is well-known, that spectral stability implies nonlinear
stability, see [31], for example. Spectral stability of a traveling wave refers to the spectrum of the operator
obtained by linearizing about the profile in the co-moving frame. In the case (1.1) the linearization of
(1.5) at the wave profile v? reads

(1.7) Mvtt − (A− µ2
?M)vξξ − 2µ?Mvξt + (µ?D3f(?)−D2f(?))vξ −D3f(?)vt −D1f(?)v = 0,

where arguments are abbreviated by (?) = (v?, v?,ξ,−µ?v?,ξ). Applying separation of variables (or Laplace
transform) to (1.7) via v(ξ, t) = eλtw(ξ) leads us to the following quadratic eigenvalue problem
(1.8)
P(λ)w =

[
λ2M + λ (−D3f(?)− 2µ?M∂ξ)− (A− µ2

?M)∂2
ξ + (µ?D3f(?)−D2f(?))∂ξ −D1f(?)

]
w = 0,

for the eigenfunction w : R→ Cm and its associated eigenvalue λ ∈ C of P. As usual P has the eigenvalue
zero with associated eigenfunction v?,ξ due to shift equivariance. If one requires this eigenvalue to be
simple and all other parts of the spectrum, both essential and point spectrum, to be strictly to the left
of the imaginary axis, then one expects the traveling wave to be locally stable with asymptotic phase.
This expectation will be confirmed in Section 4 by transforming to a first order hyperbolic system and
using the extensive stability theory developed in [27, 28]. We will also transform the freezing approach
and the spectral problem to the first order formulation. In this way we obtain a justification of the
freezing approach, showing that the equilibrium (v?, µ?) of the freezing PDAE will be stable in the classical
Lyapunov sense (w.r.t. appropriate norms) provided the conditions on spectral stability above are satisfied.
Section 3 is devoted to the study of the spectrum of the operator P from (1.8). While there is always
the zero eigenvalue present, further isolated eigenvalues in the point spectrum are often determined by
numerical computations (see [2] and the references therein for a variety of approaches). The essential
spectrum can be analyzed by replacing v? in P by its limits v± and the operator ∂ξ by its Fourier symbol
iω, ω ∈ R. The essential spectrum then contains all values λ ∈ C satisfying the dispersion relation

(1.9) det
(
λ2M + λ(−D3f(±)− 2iωµ?M) + ω2(A− µ2

?M) + iω(µ?D3f(±)−D2f(±))−D1f(±)
)

= 0



3

for some ω ∈ R, where the argument is now (±) = (v±, 0, 0). In Section 3 we investigate the shape
of these algebraic curves for two examples: a scalar equation with a nonlinearity of Nagumo type and a
system of dimension two with nonlinearity of FitzHugh-Nagumo type. These examples will also be used for
illustrating the effect of the freezing method from Section 2 when applied to the second order system (1.1).

2. Freezing traveling waves in damped wave equations
In this section we extend the freezing method ([4, 7]) from first to second order evolution equations for
the case of translational equivariance. A generalization to several space dimensions and more general
symmetries is discussed in [6].

2.1. Derivation of the partial differential algebraic equation (PDAE). Consider the Cauchy
problem associated with (1.1)

Mutt = Auxx + f(u, ux, ut), x ∈ R, t ≥ 0,(2.1a)
u(·, 0) = u0, ut(·, 0) = v0, x ∈ R, t = 0,(2.1b)

for some initial data u0, v0 : R → Rm. Introducing new unknowns γ(t) ∈ R and v(ξ, t) ∈ Rm via the
freezing ansatz

(2.2) u(x, t) = v(ξ, t), ξ := x− γ(t), x ∈ R, t > 0,

we obtain (suppressing arguments)

ut = −γtvξ + vt, utt = −γttvξ + γ2
t vξξ − 2γtvξt + vtt.(2.3)

Inserting this into (2.1a) leads to the equation

(2.4) Mvtt = (A− γ2
tM)vξξ + 2γtMvξt + γttMvξ + f(v, vξ, vt − γtvξ), ξ ∈ R, t > 0.

It is convenient to introduce the time-dependent functions µ1(t) ∈ R and µ2(t) ∈ R via

µ1(t) := γt(t), µ2(t) := µ1,t(t) = γtt(t),

which transform (2.4) into the coupled PDE/ODE system

Mvtt = (A− µ2
1M)vξξ + 2µ1Mvξt + µ2Mvξ + f(v, vξ, vt − µ1vξ), ξ ∈ R, t > 0,(2.5a)

µ1,t = µ2, t > 0,(2.5b)
γt = µ1, t > 0.(2.5c)

The quantity γ(t) denotes the position, µ1(t) the translational velocity and µ2(t) the acceleration of the
wave v at time t. We next specify initial data for the system (2.5) as follows,

(2.6) v(·, 0) = u0, vt(·, 0) = v0 + µ0
1u0,ξ, µ1(0) = µ0

1, γ(0) = 0.

Note that, requiring γ(0) = 0 and µ1(0) = µ0
1, the first equation in (2.6) follows from (2.2) and (2.1b),

while the second condition in (2.6) can be deduced from (2.3), (2.1b), (2.5c). At first glance the initial
value µ0

1 can be taken arbitrarily and set to zero, for example. But, depending on the solver used, it can
be advantageous to define µ0

1 such that it is consistent with the algebraic constraint to be discussed below.
To compensate the extra variable µ2 in the system (2.5), we impose an additional scalar algebraic con-
straint, also known as a phase condition, of the general form

ψ2nd(v, vt, µ1, µ2) = 0, t > 0.(2.7)

Together with (2.5) this will lead to a partial differential algebraic equation (PDAE). For the phase
condition we require that it vanishes at the traveling wave solution

ψ2nd(v?, 0, µ?, 0) = 0.(2.8)

In essence, this condition singles out one element from the family of shifted profiles v?(· − γ), γ ∈ R.
In the following we discuss two possible choices for a phase condition:
Type 1: (fixed phase condition). Let v̂ : R→ Rm denote a time-independent and sufficiently smooth
template (or reference) function, e.g. v̂ = u0. Then we consider the following fixed phase condition

(2.9) ψ2nd
fix,3(v) := 〈v − v̂, v̂ξ〉L2 = 0, t > 0.
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This condition is obtained from minimizing the L2-distance of the shifted versions of v from the template
v̂ at each time instance

ρ(γ) := ‖v(·, t)− v̂(· − γ)‖2L2 = ‖v(·+ γ, t)− v̂(·)‖2L2 .

The necessary condition for a local minimum to occur at γ = 0 is

0
!
=

[
d

dγ
〈v(·, t)− v̂(· − γ), v(·, t)− v̂(· − γ)〉L2

]
γ=0

= 2 〈v(·, t)− v̂, v̂ξ〉L2 , t > 0.

To reduce the index of the resulting PDAE, we differentiate (2.9) w.r.t. t and obtain

(2.10) ψ2nd
fix,2(vt) := 〈vt, v̂ξ〉L2 = 0, t > 0.

Finally, differentiating (2.10) once more w.r.t. t and using equation (2.5a) yields the following condition

(2.11)
ψ2nd

fix,1(v, vt, µ1, µ2) :=〈(M−1A− µ2
1Im)vξξ + 2µ1vξt +M−1f(v, vξ, vt − µ1vξ), v̂ξ〉L2

+ µ2〈vξ, v̂ξ〉L2 = 0, t > 0.

Note that equation (2.11) can be explicitly solved for µ2, if the template v̂ is chosen such that 〈vξ, v̂ξ〉L2 6= 0
for any t > 0.
The numbers j = 1, 2, 3 in the notation ψ2nd

fix,j above indicate the index of the resulting PDAE (in a
formal sense) as the minimum number of differentiations with respect to t, necessary to obtain an explicit
differential equation for the unknowns (v, µ1, µ2) (cf. [17, Ch. 1], [9, Ch. 2]). In general, the value of this
(differential) index may depend on the system formulation. For example, if we do not introduce µ2, but
omit (2.5b) from the system and replace µ2 by µ1,t in (2.5a), then we need only two differentiations to
obtain an explicit differential equation for (v, µ1). Hence the index is lowered by one (this methodology is
described in the ODE setting in [9, Prop. 2.5.3]).
Let us note that the index 2 formulation (2.10) and the index 1 formulation (2.11) enforce constraints on
µ1(0) = µ0

1 and µ2(0) = µ0
2 in order to have consistent initial values. Setting t = 0 in (2.10) and using

(2.6) yields the condition

(2.12) µ0
1〈u0,ξ, v̂ξ〉L2 + 〈v0, v̂ξ〉L2 = 0,

from which µ0
1 can be determined. Further, setting t = 0 in (2.11) and using (2.6) leads to an equation

from which one can determine µ0
2 from the remaining initial data

(2.13) 0 = 〈(M−1A+ (µ0
1)2Im)u0,ξξ + 2µ0

1v0,ξ +M−1f(u0, u0,ξ, v0), v̂ξ〉L2 + µ0
2〈u0,ξ, v̂ξ〉L2 .

Type 2: (orthogonal phase condition). The orthogonal phase conditions read as follows:

(2.14) ψ2nd
orth,2(v, vt) := 〈vt, vξ〉L2 = 0, t > 0,

(2.15)
ψ2nd

orth,1(v, vt, µ1, µ2) :=〈(M−1A− µ2
1Im)vξξ + 2µ1vξt +M−1f(v, vξ, vt − µ1vξ), vξ〉L2

+ 〈vt, vξt〉L2 + µ2〈vξ, vξ〉L2 = 0, t > 0.

For first order evolution equations, condition (2.14) has an immediate interpretation as a necessary con-
dition for minimizing ‖vt‖L2 (cf. [4]). The same interpretation is possible here when applied to a proper
formulation as a first order system (cf. [5, (4.46)]). For the moment, our motivation is, that this condition
expresses orthogonality of vt to the vector vξ tangent to the group orbit {v(· − γ) : γ ∈ R} at γ = 0. For
a different kind of orthogonal phase condition that relies on the formulation as a first order system, see
[5, (4.45)]. The condition (2.14) leads to a PDAE of index 2 in the sense above. Differentiating (2.14)
w.r.t. t and using (2.5a) implies (2.15) which yields a PDAE of index 1. Note that equation (2.15) can be
explicitly solved for µ2, provided that 〈vξ, vξ〉L2 6= 0 for any t > 0.
Similar to the type 1 phase condition, we obtain constraints for consistent initial values when setting t = 0
in (2.14), (2.15). Condition (2.14) leads to an equation for µ0

1

(2.16) 0 = µ0
1〈u0,ξ, u0,ξ〉L2 + 〈v0, u0,ξ〉L2 ,

while (2.15), (2.1b), (2.2) give an equation for µ0
2

(2.17)
0 =〈2(µ0

1)2u0,ξξ + 3µ0
1v0,ξ +M−1 (Au0,ξξ + f(u0, u0,ξ, v0)) , u0,ξ〉L2

+ 〈v0, v0,ξ〉L2 + µ0
1〈v0, u0,ξξ〉L2 + µ0

2〈u0,ξ, u0,ξ〉L2 .
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Let us summarize the system of equations obtained by the freezing method from the original Cauchy
problem (2.1). Combining the differential equations (2.5), the initial data (2.6) and the phase condition
(2.7), we arrive at the following PDAE to be solved numerically:

Mvtt = (A− µ2
1M)vξξ + 2µ1Mvξ,t + µ2Mvξ + f(v, vξ, vt − µ1vξ),

µ1,t = µ2, γt = µ1,
t > 0,(2.18a)

0 = ψ2nd(v, vt, µ1, µ2), t > 0,(2.18b)

v(·, 0) = u0, vt(·, 0) = v0 + µ0
1u0,ξ, µ1(0) = µ0

1, γ(0) = 0.(2.18c)

The system (2.18) depends on the choice of phase condition ψ2nd and is to be solved for (v, µ1, µ2, γ)
with given initial data (u0, v0, µ

0
1). It consists of a PDE for v that is coupled to two ODEs for µ1 and γ

(2.18a) and an algebraic constraint (2.18b) which closes the system. A consistent initial value µ0
1 for µ1 is

computed from the phase condition and the initial data (cf. (2.12), (2.16)). Further initialization of the
algebraic variable µ2 is not needed for a PDAE-solver but can be provided if necessary (cf. (2.13), (2.17)).
The ODE for γ is called the reconstruction equation in [30]. It decouples from the other equations in
(2.18) and can be solved in a postprocessing step. The ODE for µ1 is the new feature of the PDAE for
second order systems when compared to first order parabolic and hyperbolic equations, cf. [7, 27, 4].
Finally, note that (v, µ1, µ2) = (v?, µ?, 0) satisfies

0 = (A− µ2
?M)v?,ξξ(ξ) + f(v?(ξ), v?,ξ(ξ),−µ?v?,ξ(ξ)), ξ ∈ R,

0 = µ2, 0 = ψ2nd(v?, 0, µ?, 0),

and hence is a stationary solution of (2.18a), (2.18b). Obviously, in this case we have γ(t) = µ?t. For a
stable traveling wave we expect that solutions (v, µ1, µ2, γ) of (2.18) show the limiting behavior

v(t)→ v?, µ1(t)→ µ?, µ2(t)→ 0 as t→∞,
provided the initial data are close to their limiting values. In Section 4 we will provide theorems that
justify this expectation under suitable conditions.

2.2. Traveling waves related to parabolic equations. The following proposition shows an important
relation between traveling waves (1.3) of the damped wave equation (1.1), (1.2) and traveling waves

u?(x, t) = w?(x− c?t), x ∈ R, t > 0,(2.19)

with nonvanishing speed c? of the parabolic equation

But = Ãuxx + C̃ux + g(u), x ∈ R, t ≥ 0.(2.20)

The matrices Ã, C̃ ∈ Rm,m in (2.20) may differ from A,C in (1.1), (1.2). This observation goes back to
[16] and has also been used in [12]. Note that in this case w? : R→ Rm solves the traveling wave equation

0 = Ãw?,ζζ + c?Bw?,ζ + C̃w?,ζ + g(w?), ζ ∈ R.(2.21)

Proposition 2.1. (i) Let (2.19) be a traveling wave of the parabolic equation (2.20). Then for every
0 6= k ∈ R and A,C,M ∈ Rm,m, satisfying Ã = k2A− c2?M , C̃ = kC, equation (1.3) with

v?(ξ) = w?(kξ), µ? =
c?
k

(2.22)

defines a traveling wave of the damped wave equation (1.1), (1.2).
(ii) Conversely, let (1.3) be a traveling wave of (1.1), (1.2). Then for every 0 6= k ∈ R equation (2.19)

with

w?(ζ) = v?(
ζ

k
), c? = µ?k(2.23)

defines a traveling wave of (2.20) with Ã = k2(A− µ2
?M), C̃ = kC.

Proof. (i) By assumption, w? satisfies (2.21). Let 0 6= k ∈ R and A,C,M ∈ Rm,m be such that Ã =

k2A− c2?M , C̃ = kC hold and define v?, µ? by (2.22). Then u?(x, t) = v?(x− µ?t) = w?
(
k(x− µ?t)

)
satisfies

−Mu?,tt −Bu?,t +Au?,xx + Cu?,x + g(u?) = Ãw?,ζζ + c?Bw?,ζ + C̃w?,ζ + g(w?) = 0.
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(ii) By assumption, v?, µ? from (1.3) satisfy (1.6). Let 0 6= k ∈ R and define Ã := k2(A − µ2
?M), C̃ :=

kC ∈ Rm,m and w?, c? by (2.23). Then u?(x, t) = w?(x− c?t) = v?
(
x−c?t
k

)
satisfies

−Bu?,t + Ãu?,xx + C̃u?,x + g(u?) = (A− µ2
?M)v?,ξξ + µ?Bv?,ξ + Cv?,ξ + g(v?) = 0.

�

According to Proposition 2.1, any traveling wave (2.19) of the parabolic equation (2.20) leads to a traveling
wave (1.3) of the damped wave equation (1.1),(1.2) and vice versa.

Remark 2.2. Note that the profiles v?, w? and the velocities µ?, c? coincide if k = 1. In this case
Ã = A− c2?M , and the matrices A and Ã are different (provided c? 6= 0). If we insist on A = Ã then the
profiles will be different.
In case C = 0 both systems (1.1), (1.2) and (2.20) share a symmetry property: if v?(ξ)(ξ ∈ R), c? resp.
w?(ζ)(ζ ∈ R), µ? is a traveling wave then so is the reflected pair v?(−ξ)(ξ ∈ R),−c? resp. w?(−ζ)(ζ ∈
R),−µ?. Thus, choosing k < 0 in (2.22) resp. (2.23) will not produce new waves other than those induced
by reflection symmetry. Therefore, we will assume k to be positive in the following.
It is instructive to consider two limiting cases of the transformation (2.22) when a traveling wave w? with
velocity c? 6= 0 is given for the parabolic equation (2.20).
First assume A = Ã and let M → 0. Then the relation Ã = k2A − c2?M implies k → 1 and v? → w?,
µ? → c?. Thus the profile and the velocity of the traveling waves (1.3) of the system (1.1), (1.2) converge
to the correct limit in the parabolic case. Second, consider the scalar case, fix A > 0 and let M → ∞.
Then the relation Ã = k2A− c2?M implies k → ∞ and µ? = c?

k → 0 . Thus a large value of M creates a
slow wave for the system (1.1), (1.2) which has steep gradients in its profile due to v?,ξ(ξ) = kw?,ζ(kξ).

2.3. Applications and numerical examples. In the following we consider two examples with nonlin-
earities of Nagumo and FitzHugh-Nagumo type. We use the mechanism from Proposition 2.1 to obtain
traveling waves of these damped wave equations. Then we solve the PDAE (2.18) providing us with wave
profiles, their positions, velocities and accelerations. All numerical computations in this paper were done
with Comsol Multiphysics 5.2, [1]. Specific data of time and space discretization are given below.

Example 2.3 (Nagumo wave equation). Consider the scalar parabolic Nagumo equation, [23, 24],

ut = uxx + g(u), x ∈ R, t ≥ 0, g(u) = u(1− u)(u− b),(2.24)

with u = u(x, t) ∈ R and some fixed b ∈ (0, 1). It is well known that (2.24) has an explicit traveling front
solution u?(x, t) = w?(x− c?t) given by

w?(ζ) =
(

1 + exp
(
− ζ√

2

))−1

, c? = −
√

2

(
1

2
− b
)
,

with asymptotic states w− = 0 and w+ = 1. Note that c? < 0 if b < 1
2 and c? > 0 if b > 1

2 . Proposi-
tion 2.1(i) implies that the corresponding Nagumo wave equation

εutt + ut = uxx + g(u), x ∈ R, t ≥ 0,(2.25)

has a traveling front solution u?(x, t) = v?(x− µ?t) given by

v?(ξ) = w?(kξ), µ? =
−
√

2
(

1
2 − b

)
k

, k =

(
1 + 2ε

(
1

2
− b
)2
)1/2

.(2.26)

Figure 2.1 shows a numerical approximation of the time evolution of the traveling front solution u of (2.25)
on the spatial domain (−50, 50) with homogeneous Neumann boundary conditions and initial data

u0(x) =
1

π
arctan(x) +

1

2
, v0(x) = 0, x ∈ (−50, 50).(2.27)

Further parameter values are ε = b = 1
4 . For the space discretization we used continuous piecewise linear

finite elements with spatial stepsize 4x = 0.1. For the time discretization we used the BDF method of
order 2 with absolute tolerance atol = 10−3, relative tolerance rtol = 10−2, temporal stepsize 4t = 0.1
and final time T = 150.
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(a) (b)

Figure 2.1. Traveling front of Nagumo wave equation (2.25) at different time instances
(a) and its time evolution (b) for parameters ε = b = 1

4 .

(a) (b) (c)

Figure 2.2. Solution of the frozen Nagumo wave equation (2.28): Approximation of
profile v(x, 150) (a) and time evolutions of velocity µ1 and acceleration µ2 (b) and of the
profile v (c) for parameters ε = b = 1

4 .

Next we solve with the same data the frozen Nagumo wave equation resulting from (2.18)

εvtt + vt = (1− µ2
1ε)vξξ + 2µ1εvξ,t + (µ2ε+ µ1)vξ + g(v),

µ1,t = µ2, γt = µ1,
t > 0,(2.28a)

0 =
〈
vt(·, t), v̂ξ

〉
L2(R,R)

, t > 0,(2.28b)

v(·, 0) = u0, vt(·, 0) = v0 + µ0
1u0,ξ, µ1(0) = µ0

1, γ(0) = 0.(2.28c)

Figure 2.2 shows the solution (v, µ1, µ2, γ) of (2.28) on the spatial domain (−50, 50) with homogeneous
Neumann boundary conditions, initial data u0, v0 from (2.27), and reference function v̂ = u0. For the
computation we used the fixed phase condition ψ2nd

fix,2(vt) from (2.10) with consistent intial data µ0
1, µ0

2,
c.f. (2.12) and (2.13). Note that v0 = 0 from (2.27) implies µ0

1 = 0 according to (2.12). Then, inserting
µ0

1 = 0, u0, v0 from (2.27), v̂ = u0, M = ε, A = B = 1, C = 0 and g from (2.24) into (2.13), finally implies
µ0

2 = −1.0312. The discretization data are taken as in the nonfrozen case. The diagrams show that after a
very short transition phase the profile becomes stationary, the acceleration µ2 converges to zero, and the
speed µ1 approaches an asymptotic value µnum

? which is close to the exact value µ? ≈ −0.34816, given by
(2.26). We expect |µ? − µnum

? | → 0 as the domain (−R,R) grows and stepsizes tend to zero.
Note that the unknown function γ(t) (not shown), t ∈ [0, 150], is obtained by integrating the last equation
in (2.28a). From its values one can still recover the position of the front in the original system (2.25). It
turns out that the wave hits the left boundary at x = −50 at time t ≈ 143.82 (cf. Figure 2.1(b)).
If we replace the phase condition ψ2nd

fix,2 in (2.28) by ψ2nd
fix,3 or ψ2nd

orth,2, we obtain very similar results as those
from Figure 2.2. The profile again becomes stationary, the acceleration µ2 converges to zero, and the
speed µ1 approaches to an asymptotic value. Since we expect vt(t)→ 0 and µ1,t(t)→ 0 as t→∞, we use
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(a) (b)

Figure 2.3. Comparison of the phase conditions for the frozen Nagumo wave equation
(2.28): Time evolution of ‖vt‖L2 (a) and |µ1,t| (b) for parameters ε = b = 1

4 .

these quantities as an indicator checking whether the solution has become stationary. Figure 2.3 shows
the time evolution of ‖vt‖L2 and |µ1,t| when solving (2.28) for different phase conditions. While the phase
conditions of index 2 and 3 behave as expected, the index 1 formulation yields small but oscillating values
for the norms of vt and µ1,t. We attribute this behavior to the fact, that our adaptive solver enforces the
differentiated conditions (2.11), (2.15), but does not control vt, µt directly. Further investigations show
that the consistency condition for µ0

2 does not really affect the numerical results for the different phase
conditions. Therefore, in the next example we do not compute the expression for µ0

2 but use the expected
limiting value as initial datum µ0

2 = 0.

Example 2.4 (FitzHugh-Nagumo wave system). Consider the 2-dimensional parabolic FitzHugh-Nagumo
system, [10],

ut = Ãuxx + g(u), x ∈ R, t ≥ 0, Ã =

(
1 0
0 ρ

)
, g(u) =

(
u1 − 1

3u
3
1 − u2

φ(u1 + a− bu2)

)
,(2.29)

with u = u(x, t) ∈ R2 and positive parameters ρ, a, b, φ ∈ R. Equation (2.29) is known to exhibit traveling
wave solutions in a wide range of parameters, but there are apparently no explicit formulas. For the values

(2.30) ρ = 0.1, a = 0.7, φ = 0.08, b = 0.8

one finds a traveling pulse with

w± ≈ (−1.19941, −0.62426)>, c? ≈ −0.7892.(2.31)

For the same ρ, a, φ but b = 3, there is a traveling front with asymptotic states and velocity given by

w− ≈ (1.18779, 0.62923)>, w+ ≈ (−1.56443, −0.28814)>, c? ≈ −0.8557.

Applying Proposition 2.1(i) with M = εI2 requires the equality Ã+ c2?M = k2A, i.e.

1 + c2?ε = k2A11, ρ+ c2?ε = k2A22, A12 = A21 = 0.

Setting A11 := 1 und using parameter values from (2.30), Proposition 2.1(i) shows that the corresponding
FitzHugh-Nagumo wave system

Mutt +But = Auxx + g(u), x ∈ R, t ≥ 0,(2.32)

with

M = εI2, B = I2, A = diag(1,
ρ+c2?ε
1+c2?ε

), k =
√

1 + c2?ε, ε > 0, ρ, c? given

has a traveling pulse (or a traveling front) solution with a scaled profile v?, limits v± = w±, and velocity
µ? = c?

k .
In the following we show the computations for the traveling pulse. Results for the traveling front are
very similar and are not displayed here. In the frozen and the nonfrozen case, we choose ε = 10−2 and
parameter value (2.30). Space and time are discretized as in Example 2.3. Figure 2.4 shows the time
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evolution of the traveling pulse solution u = (u1, u2)T of (2.32) on the spatial domain (−50, 50) with
homogeneous Neumann boundary conditions. The initial data are

u0(x) = ( 1
π arctan(x) + 1

2 , 0)> + v±, v0(x) = (0, 0)>, x ∈ R,(2.33)

where v± = w± is the asymptotic state from (2.31).

(a) (b)

Figure 2.4. Traveling pulse of FitzHugh-Nagumo wave system (2.32) at different time
instances for u1 (a) as well as its time evolutions (c) for parameters ε = 10−2, ρ = 0.1,
a = 0.7, φ = 0.08 and b = 0.8.

(a) (b) (c)

Figure 2.5. Solution of the frozen FitzHugh-Nagumo wave system (2.18): Approxima-
tion of profile components v1(x, 150), v2(x, 150) (a), and time evolutions of velocity µ1

and acceleration µ2 (b) and of the profile’s component v1 (c) for parameters ε = 10−2,
ρ = 0.1, a = 0.7, φ = 0.08 and b = 0.8.

Next consider for the same parameter values the corresponding frozen FitzHugh-Nagumo wave system

Mvtt +Bvt = (A− µ2
1M)vξξ + 2µ1Mvξ,t + (µ2M + µ1B)vξ + g(v),

µ1,t = µ2, γt = µ1,
t > 0,(2.34a)

0 =
〈
vt(·, t), v̂ξ

〉
L2(R,R)

, t > 0,(2.34b)

v(·, 0) = u0, vt(·, 0) = v0 + µ0
1u0,ξ, µ1(0) = µ0

1, γ(0) = 0.(2.34c)

Figure 2.5 shows the solution (v, µ1, µ2, γ) of (2.34) on the spatial domain (−50, 50), with homogeneous
Neumann boundary conditions, initial data u0, v0 from (2.33), and reference function v̂ = u0. For the
computation we used again the fixed phase condition ψ2nd

fix,2(vt) from (2.10) with consistent intial data for
µ0

1. Note that v0 = 0 from (2.33) implies µ0
1 = 0 according to (2.12). We further set µ0

2 = 0 which does not
satisfy the consistency condition (2.13). Time and space discretization are done as in the nonfrozen case.
Again the profile quickly stabilizes and the velocity and the acceleration reach their asymptotic values.
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(a) (b)

Figure 2.6. Comparison of the phase conditions for the frozen FitzHugh-Nagumo wave
system (2.34): Time evolution of ‖vt‖L2 (a) and |µ1,t| (b) for parameters ε = 10−2,
ρ = 0.1, a = 0.7, φ = 0.08 and b = 0.8.

Finally, Figure 2.6 shows that similar results are obtained if we replace the phase condition ψ2nd
fix,2 in the

frozen FitzHugh-Nagumo wave system (2.34) by ψ2nd
fix,3, ψ

2nd
fix,1, ψ

2nd
orth,2, or even by ψ2nd

orth,1. Contrary to our
first example, the fixed phase condition of index 1 provides good results in this case, while the index
1 formulation of the orthogonal phase condition ψ2nd

orth,1 continues to show small oscillations of the time
derivatives.

3. Spectra and eigenfunctions of traveling waves
In this section we study the spectrum of the quadratic operator polynomial (cf. (1.8))

(3.1) P(λ) := λ2P2 + λP1 + P0, λ ∈ C.

Here the differential operators Pj are defined by

(3.2) P2 = M, P1 = −D3f(?)− 2µ?M∂ξ, P0 = −(A− µ2
?M)∂2

ξ + (µ?D3f(?)−D2f(?))∂ξ −D1f(?),

where (?) = (v?, v?,ξ,−µ?v?,ξ) and v?, µ? denote the profile and velocity of a traveling wave solution
u?(x, t) = v?(x− µ?t) of (1.1). Note that Pj is a differential operator of order 2− j for j = 0, 1, 2. In the
following we recall some standard notions of point and essential spectrum for operator polynomials.

Definition 3.1. Let (X, ‖·‖X) and (Y, ‖·‖Y ) be complex Banach spaces and let P(λ) =
∑q
j=0 Pjλ

j , λ ∈ C
be an operator polynomial with linear continuous coefficients Pj : Y → X, j = 0, . . . , q.
(a) The resolvent set ρ(P) and the spectrum σ(P) are defined by

ρ(P) = {λ ∈ C : P(λ) is bijective and P(λ)−1 : X → Y is bounded}, σ(P) := C\ρ(P).

(b) λ0 ∈ σ(P) is called isolated if there is ε > 0 such that λ ∈ ρ(P) for all λ0 6= λ ∈ C with |λ− λ0| < ε.
(c) If P(λ0)y0 = 0 for some λ0 ∈ C and y0 ∈ Y \ {0}, then λ0 is called an eigenvalue with eigenvector y0.

The eigenvalue λ0 has finite multiplicity if dim(N (P(λ0))) < ∞ and if there is a maximum number
n ∈ N, for which polynomials y(λ) =

∑r
j=0(λ− λ0)jyj exist in Y satisfying

y0 6= 0, (Py)(ν)(λ0) = 0, ν = 0, . . . , n− 1.(3.3)

This maximum number n = n(λ0) is called the maximum partial multiplicity, and dim(N (P(λ0))) is
called the geometric multiplicity of λ0.

(d) The point spectrum is defined by

σpoint(P) = {λ ∈ σ(P) : λ is isolated eigenvalue of finite multiplicity}.

Points in ρ(P) ∪ σpoint(P) are called normal, and the essential spectrum of P is defined by

σess(P) := {λ ∈ C : λ is not a normal point of P}.
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Remark 3.2. There is no loss of generality in assuming the root polynomials in (c) to be of the form
y(λ) =

∑n−1
j=0 (λ − λ0)jyj. For if r < n − 1 we simply set yj = 0, j = r + 1, . . . , n − 1. And if r ≥ n we

subtract from y the term
∑r
j=n(λ − λ0)jyj which has λ0 as a zero of order at least n and thus does not

change the root property (3.3). The eigenvalue λ0 is simple iff the geometric and the maximum partial
multiplicity are equal to 1. In this case N (P(λ0)) = span(y0) for some y0 6= 0 and P ′(λ0)y0 /∈ R(P(λ0)).
For more details on root polynomials, partial and algebraic multiplicities we refer to [20, 21, 22]. Our
definition of essential spectrum follows [18].

By definition, the spectrum σ(P) of P can be decomposed into its point spectrum and its essential spectrum

σ(P) = σess(P) ∪̇σpoint(P).

The function spaces underlying the definition of spectra are subspaces of L2(R,Rm) which will be specified
in Section 4 and Appendix A. In this section we carry out formal calculations without reference to a specific
function space.

3.1. Point spectrum on the imaginary axis. Applying ∂ξ to the traveling wave equation (1.6), leads
to the equation

0 =(A− µ2
?M)v?,ξξξ +D2f(?)v?,ξξ +D1f(?)v?,ξ − µ?D3f(?)v?,ξξ = −P0v?,ξ, ξ ∈ R,

provided that v? ∈ C3(R,Rm) and f ∈ C1(R3m,Rm). Therefore, w = v?,ξ solves the quadratic eigenvalue
problem P(λ)w = 0 for λ = 0, and w = v?,ξ is an eigenfunction if the wave profile v? is nontrivial (i.e. not
constant). This behavior is to be expected since the original equation is equivariant with respect to the
shift, and the spatial derivative ∂ξ is the generator of shift equivariance.

Proposition 3.3 (Point spectrum of traveling waves). Let v? ∈ C3(R,Rm), µ? be a nontrivial classical
solution of (1.6) and f ∈ C1(R3m,Rm). Then λ = 0 is an eigenvalue with eigenfunction v?,ξ of the
quadratic eigenvalue problem P(λ)w = 0. In particular, 0 ∈ σpoint(P).

As usual, further isolated eigenvalues are difficult to detect analytically, and we refer to the extensive
literature on solving quadratic eigenvalue problems and on locating zeros of the so-called Evans function,
see e.g. [2, 32].

Example 3.4 (Nagumo wave equation). Recall from Example 2.3 that the Nagumo wave equation (2.25)
has an explicit traveling front solution u?(x, t) = v?(ξ), ξ = x − µ?t, with v? and µ? from (2.26), i.e. v?
and µ? solve the associated traveling wave equation

0 = (1− µ2
?ε)v?,ξξ(ξ) + µ?v?,ξ(ξ) + v?(ξ) (1− v?(ξ)) (v?(ξ)− b) , ξ ∈ R.

The quadratic eigenvalue problem for the linearization then reads as follows,

[P(λ)w](ξ) = ε (λ− µ?∂ξ)2
w(ξ)+(λ− µ?∂ξ)w(ξ)−wξξ(ξ)+

(
3v2
?(ξ)− 2(b+ 1)v?(ξ)− b

)
w(ξ) = 0, ξ ∈ R.

With k from (2.26), it has the solution

λ = 0, w(ξ) = v?,ξ(ξ) = k√
2

exp
(
− kξ√

2

)(
1 + exp

(
− kξ√

2

))−2

, ξ ∈ R.

3.2. Essential spectrum and dispersion relation of traveling waves. The essential spectrum of P
from (3.1), (3.2), is determined by the constant coefficient operators obtained by letting ξ → ±∞ in the
coefficient operators P0, P1 (recall (±) = (v±, 0, 0)),

(3.4)
P±(λ) =λ2P2 + λP±1 + P±0 , λ ∈ C,

P±1 =−D3f(±)− 2µ?M∂ξ, P±0 = −(A− µ2
?M)∂2

ξ + (µ?D3f(±)−D2f(±))∂ξ −D1f(±).

We seek bounded solutions w of P±(λ)w = 0 by the Fourier ansatz w(ξ) = eiωξz, z ∈ Cm, |z| = 1 and
arrive at the following quadratic eigenvalue problem

A±(λ, ω)z =
(
λ2A2 + λA±1 (ω) +A±0 (ω)

)
z = 0

with matrices
(3.5)
A2 = M, A±1 (ω) = −D3f(±)−2iωµ?M, A±0 (ω) = ω2(A−µ2

?M)+ iω(µ?D3f(±)−D2f(±))−D1f(±).
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Every λ ∈ C satisfying the dispersion relation

(3.6) det
(
λ2A2 + λA±1 (ω) +A±0 (ω)

)
= 0

for some ω ∈ R and either sign, belongs to the essential spectrum of P. A proof of this statement is
obtained in the standard way by cutting off w(ξ) at ξ /∈ [n, 2n] resp. ξ /∈ [−2n,−n] and letting n → ∞.
Then this contradicts the continuity of the resolvent at λ in appropriate function spaces. This proves the
following result:

Proposition 3.5 (Essential spectrum of traveling waves). Let f ∈ C1(R3m,Rm) with f(v±, 0, 0) = 0 for
some v± ∈ Rm. Let v? ∈ C2(R,Rm), µ? be a nontrivial classical solution of (1.6) satisfying v?(ξ)→ v± as
ξ → ±∞. Then, the dispersion set set

(3.7) σdisp(P) := {λ ∈ C | λ satisfies (3.6) for some ω ∈ R and some sign ±}

belongs to the essential spectrum σess(P) of P.

In the general matrix case it is not easy to analyze the shape of the algebraic set σdisp(P), since (3.6)
amounts to finding the zeroes of a polynomial of degree 2m. In view of the stability results in Theorem 4.8
and Theorem 4.10 our main interest is in finding a spectral gap, i.e. a constant β > 0 such that

(3.8) Reλ ≤ −β < 0 for all λ ∈ σdisp(P).

We discuss this condition for three subcases of the special structure (1.2).
(i) Parabolic case: (M = 0, B = Im, C = 0). The dispersion relation (3.6) reads

(3.9) det
(
λ̃Im + ω2A−Dg(v±)

)
= 0, λ̃ = λ− iωµ?,

and the corresponding eigenvalue problem may be written as

(3.10) λ̃z = −
(
ω2A−Dg(v±)

)
z, 0 6= z ∈ Cm, λ̃ = λ− iωµ?.

Let us assume positivity of A and −Dg(v±) in the sense that

(3.11) Re zHAz > 0, Re zHDg(v±)z < 0 for all z ∈ Cm.

Multiplying (3.10) by zH and taking the real part, shows that the solutions λ̃ of (3.9) have negative
real parts and the gap is guaranteed. This is still true if A is nonnegative but has zero eigenvalues.
Note that in this case, equation (2.1) is of mixed hyperbolic-parabolic type and the nonlinear stability
theory becomes considerably more involved, see [29].

(ii) Undamped hyperbolic case: (M = Im, B = 0, C = 0). The dispersion relation (3.6) reads

det
(
λ̃2Im + ω2A−Dg(v±)

)
= 0, λ̃ = λ− iωµ?

Whenever λ ∈ C, ω ∈ R solve this system, so does the pair −λ,−ω. Hence, the eigenvalues lie either on
the imaginary axis or on both sides of the imaginary axis. Therefore, a spectral gap cannot exist. This
is the Hamiltonian case, where one can only expect stability (but not asymptotic stability) of the wave.
We refer to the local stability theory developed in [14],[15] (see also [19] for a recent account). Note
that in this case the positivity assumption (3.11) only guarantees Re λ̃2 < 0, i.e. π

4 < |arg(λ̃)| 6 π
2 for

λ̃ = λ− iωµ? and all eigenvalues λ ∈ σ(A(·, ω)).
(iii) Scalar case: (M = 1, B = η, C = 0). It is instructive to discuss the dispersion relation (3.6) in the

scalar case with A = a, −Dg(v±) = δ and real numbers a, η, δ > 0

(3.12) λ̃2 + ηλ̃+ aω2 + δ = 0, λ̃ = λ− iωµ?.
This case occurs with the Nagumo wave equation below. The solutions are

λ = iωµ? −
η

2
±
(
η2

4
− δ − ω2a

)1/2

, ω ∈ R.

If η2 ≤ 4δ, then all solutions λ of (3.12) lie on the vertical line Reλ = −η2 < 0. A short discussion
shows that they actually cover this line under the assumption µ2

? < a, which corresponds to positivity
of the matrix A − µ2

?M occuring in (1.6). If η2 > 4δ then the solutions λ of (3.12) lie again on this
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line (resp. cover it if µ2
? < a) for values |ω| ≥ ω0 := ( 1

a (η
2

4 − δ))
1/2. But for values |ω| ≤ ω0 they form

the ellipse

(3.13)
(Reλ+ η

2 )2

p2
1

+
(Imλ)2

p2
2

= 1, with semiaxes p1 = a1/2ω0, p2 = |µ?|ω0.

The rightmost point of the ellipse −β := −η2 +
(
η2

4 − δ
)1/2

is still negative and therefore can be taken
for the spectral gap (3.8).

Example 3.6 (Spectrum of Nagumo wave equation). As in Example 2.3, consider the Nagumo wave
equation (2.25) with coefficients

M = ε > 0, A = B = 1, C = 0.

There is a traveling front solution u?(x, t) = v?(x − µ?t) with v?, µ? from (2.26). With the asymptotic
states v+ = 1, v− = 0 and g′(v+) = b− 1, g′(v−) = −b from (2.24), we find the dispersion relation

ελ̃2 + λ̃+ ω2 + b = 0 or ελ̃2 + λ̃+ ω2 − b+ 1 = 0.

The scalar case discussed above applies with the settings η = 1
ε = a, δ± = − g

′(v±)
ε . Thus the subset

σdisp(P) of the essential spectrum lies on the union of the line Reλ = − 1
2ε and possibly two ellipses

defined by (3.13) with ω0 = ω± =
(

1
4ε + g′(v±)

)1/2. The ellipse belonging to v+ occurs if 1− b < 1
4ε , and

the one belonging to v− occurs if b < 1
4ε . Since 0 < b < 1 both ellipses show up in σdisp(P) if ε ≤ 1

4 . In
any case, there is a gap beween the essential spectrum and the imaginary axis in the sense of (3.8) with

β =
1

2ε

(
1−

(
1− 4ε2 min(b, 1− b)

)1/2)
.

Figure 3.1(a) shows that piece of spectrum which is guaranteed by our propositions at parameter values
ε = b = 1

4 . It is subdivided into point spectrum (blue circle) determined by Proposition 3.3, and essential
spectrum (red lines) determined by Proposition 3.5. There may be further isolated eigenvalues. The
numerical spectrum of the Nagumo wave on the spatial domain [−R,R] and subject to periodic boundary
conditions, is shown in Figure 3.1(b) for R = 50 and in Figure 3.1(c) for R = 400. Each of them consists
of the approximations of the point spectrum (blue circle) and of the essential spectrum (red dots). The
missing line inside the ellipse in Figure 3.1(b) gradually appears numerically when enlarging the spatial
domain, see Figure 3.1(c). The second ellipse only develops on even larger domains.

(a) (b) (c)

Figure 3.1. Essential spectrum of the Nagumo wave equation for parameters ε = b = 1
4

(a) and the numerical spectrum on the spatial domain [−R,R] for R = 50 (b) and R = 400
(c).

Example 3.7 (Spectrum of FitzHugh-Nagumo wave system). As shown in Example 2.4, the FitzHugh-
Nagumo wave system (2.32) with coefficient matrices

M = εI2, A = diag(1,
ρ+c2?ε
1+c2?ε

), B = I2, C = 0
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and parameters from (2.30) has a traveling pulse solution u?(x, t) = v?(x− µ?t) with

µ? =
c?
k
, k =

√
1 + c2?ε, c? ≈ −0.7892.

The profile v? connects the asymptotic state v± = w± from (2.31) with itself, i.e. v?(ξ)→ v± as ξ → ±∞.
The profile v? and the velocity µ? are obtained from the simulation performed in Example 2.4. The
FitzHugh-Nagumo nonlinearity g from (2.29) satisfies

g(v±) =

(
0
0

)
and Dg(v±) =

(
1− (v±,1)

2 −1
φ −bφ

)
.

The dispersion relation for the FitzHugh-Nagumo pulse states that every λ ∈ C satisfying

(3.14) det

(
ελ2 + p(ω)λ+ q1(ω) 1

−φ ελ2 + p(ω)λ+ q2(ω)

)
= 0.

for some ω ∈ R belongs to σess(P), where we used the abbreviations

p(ω) = 1− 2iωµ?ε, q1(ω) = ω2(1− µ2
?ε)− iωµ? − (1− (v±,1)2), q2(ω) = ω2

(
ρ+ c2?ε

1 + c2?ε
− µ2

?ε

)
− iωµ? + bφ.

Note that (3.14) leads to the quartic problem

0 = a4λ
4 + a3λ

3 + a2λ
2 + a1λ+ a0

with ω-dependent coefficients

a4 = ε2, a3 = 2εp, a2 = ε(q1 + q2) + p2, a1 = p(q1 + q2), a0 = q1q2 + φ.

(a) (b) (c)

Figure 3.2. Essential spectrum of the FitzHugh-Nagumo wave system for parameters
from (2.30) and ε = 10−2 (a), the numerical spectrum (b) and both components of the
eigenfunction belonging to λ ≈ 0 (c).

Instead of this we solved numerically the quadratic eigenvalue problem (3.14) using parameter continuation
with respect to ω. In this way we obtain analytical information about the spectrum of the FitzHugh-
Nagumo pulse shown in Figure 3.2(a) (red lines) for ε = 10−2. Again part of the point spectrum (blue
circle) is determined by Proposition 3.3 and part of the essential spectrum (red lines) by Proposition 3.5.
Zooming into the essential spectrum shows that the parabola-shaped structure contains at both ends a
loop which is already known from the first order limit case, see [3]. From these results it is obvious
that there is again a spectral gap to the imaginary axis, but we have no analytic expression for this gap.
The numerical spectrum for periodic boundary conditions is shown in Figure 3.2(b). It consists of the
approximations of the point spectrum (blue circle) and of the essential spectrum (red dots). Figure 3.2(c)
shows the approximation of both components w1 and w2 of the eigenfunction w(ξ) ≈ v?,ξ(ξ) belonging to
the small eigenvalue λ = 1.311 · 10−10 which approximates the eigenvalue 0. Note that an approximation
of v? = (v?,1, v?,2)T was provided in Figure 2.5(a).
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4. First order systems and stability of traveling waves
In this section we transform the original second order damped wave equation (1.1) into a first order system
of triple size. To the first order system we then apply stability results from [28] and derive asymptotic
stability of traveling waves for the original second order problem and the second order freezing method.
Transferring regularity and stability between these two systems requires some care, and we will provide
details of the proofs in Appendix A.

4.1. Transformation to first order system and stability with asymptotic phase. In the following
we impose the smoothness condition

Assumption 4.1. The function f : R3m → Rm satisfies f ∈ C3(R3m,Rm)

and the following well-posedness condition

Assumption 4.2. The matrix M ∈ Rm,m is invertible and M−1A is positive diagonalizable.

Assumption 4.2 implies that there is a (not necessarily unique) positive diagonalizable matrix N ∈ Rm,m
satisfying N2 = M−1A. Let λ1 > · · · > λm > 0 denote the real positive eigenvalues of N .
We transform to a first order system by introducing U = (U1, U2, U3)> ∈ R3m via

(4.1) U1 = u, U2 = ut +Nux, U3 = ut −Nux + cu,

where c ∈ R is an arbitrary constant to be determined later. These variables transform (1.1) into the first
order system

(4.2) Ut = EUx + F (U),

with E ∈ R3m,3m and F : R3m → R3m given by

(4.3)
E =

N 0 0
0 N 0
0 0 −N

 , F (U) =

−cU1 + U3

f̃(U)

f̃(U) + cU2

 ,

f̃(U) :=M−1f(U1,
1

2
N−1(U2 − U3 + cU1),

1

2
(U2 + U3 − cU1)).

Thus we write the second-order Cauchy problem (2.1) as a first-order Cauchy problem for (4.2),

(4.4) Ut = EUx + F (U), U(·, 0) = U0 := (u0, v0 +Nu0,x, v0 −Nu0,x + cu0)>.

Remark 4.3. The transformation to a first order system has some arbitrariness and does not influence
the results for the second order problem (1.1). The current transformation to a system of dimension 3m
improves an earlier version [5] of our work which was limited to the semilinear case (1.2). There we
used U1 = u, U2 = ut − Nux to obtain a system of minimal dimension 2m. But for this transformation
the general nonlinear equation (1.1) does not lead to a semilinear system of type (4.2). The drawback
of the non-minimal dimension 3m is that extra eigenvalues of the linearized system appear which do not
correspond to those of the linearized second order system. The constant c above will be used in Section A.2
to control these extra eigenvalues.

We emphasize that system (4.2) is diagonalizable hyperbolic. More precisely, there is a nonsingular block-
diagonal matrix T ∈ R3m,3m, so that the change of variables W = T−1U transforms (4.2) into diagonal
hyperbolic form

(4.5) Wt = ΛEWx +G(W ), ΛE = T−1ET = diag(Λ,Λ,−Λ), G(W ) = T−1F (TW ),

where Λ = diag(λ1, . . . , λm). For systems of type (4.4), (4.5) we have local well-posedness of the Cauchy
problem in suitable function spaces such as (see e.g. [26, Sect. 6])

(4.6) CHk(J ;Rn) =

k⋂
j=0

Ck−j
(
J,Hj(R,Rn)

)
, J ⊆ R interval, k ∈ N0, n ∈ N.

Our regularity condition on the traveling wave is as follows:
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Assumption 4.4. The pair (v?, µ?) ∈ C2
b (R,Rm) × R satisfies v?,ξ ∈ H3(R,Rm) and is a non-constant

solution of the second order traveling wave equation (1.6) with

lim
ξ→±∞

v?(ξ) = v±, lim
ξ→±∞

v?,ξ(ξ) = 0, f(v±, 0, 0) = 0.

The first order system (4.2) then has a traveling wave

(4.7) U?(x, t) = V?(x− µ?t), V? :=

 v?
(N − µ?Im)v?,ξ

cv? − (N + µ?Im)v?,ξ

 ∈ C2
b (R,Rm)× C1

b (R,R2m).

The profile V? solves the equation

(4.8) 0 = (E + µ?I3m)V?,ξ + F (V?)

and satisfies

(4.9) lim
ξ→±∞

V?(ξ) = V± := (v±, 0, cv±) and F (V±) = 0.

Our next assumption is

Assumption 4.5. The matrix A− µ2
?M is nonsingular.

It guarantees that (1.6) is a regular second order system and that v? ∈ C5
b (R,Rm) which follows from

Assumptions 4.1 and 4.4. Further, from A− µ2
?M = M(N − µ?Im)(N + µ?Im) one infers that the matrix

E + µ?I3m in (4.8) is nonsingular. This will enable us to apply the stability results from [28] which hold
for hyperbolic systems where the matrix E+µ?I3m is real diagonalizable with nonzero but not necessarily
distinct eigenvalues. The condition also ensures that any solution V? ∈ C1

b (R,R3m) of (4.8) has a first
component in C2

b (R,Rm) which solves the second order traveling wave equation (1.6). Moreover, using
the limits from Assumption 4.4 one obtains from (1.6)

(4.10) lim
ξ→±∞

v?,ξξ(ξ) = 0.

Next, recall the dispersion set (3.6) for the original second order problem

(4.11) σdisp(P) =
{
λ ∈ C : det

(
λ2A2 + λA±1 (ω) +A±0 (ω)

)
= 0 for some ω ∈ R, and some sign ±

}
,

with A±0 , A
±
1 , A2 given in (3.5). We require

Assumption 4.6. There is δ > 0 such that Re (σdisp(P)) < −δ.

Finally, we exclude nonzero eigenvalues in the right half plane.

Assumption 4.7. The eigenvalue 0 of P is simple and there is no other eigenvalue of P with real part
greater than −δ with δ given by Assumption 4.6.

With these assumptions our first main result reads:

Theorem 4.8 (Stability with asymptotic phase). Let Assumptions 4.1 – 4.7 hold. Then, for all 0 < η < δ
there is ρ > 0 such that for all u0 ∈ v? +H3(R,Rm), v0 ∈ H2(R,Rm) with

(4.12) ‖u0 − v?‖H3 + ‖v0 + µ?v?,ξ‖H2 ≤ ρ,

the Cauchy problem (2.1) has a unique global solution u ∈ v? + CH2([0,∞);Rm). Moreover, there exist
ϕ∞ = ϕ∞(u0, v0) and C = C(η, ρ) satisfying

(4.13) |ϕ∞| ≤ C
(
‖u0 − v?‖H3 + ‖v0 + µ?v?,ξ‖H2

)
and

(4.14)
‖u(·, t)− v?(· − µ?t− ϕ∞)‖H2+‖ut(·, t) + µ?v?,ξ(· − µ?t− ϕ∞)‖H1

≤C
(
‖u0 − v?‖H3 + ‖v0 + µ?v?,ξ‖H2

)
e−ηt ∀t ≥ 0.

The proof will be given in Appendix A. Let us note that the loss of one derivative for the solution when
compared to initial data, is typical for hyperbolic stability theorems and results from the theory in [28].
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4.2. Stability of the freezing method. Let us first apply the freezing method to the first order system
(4.4). We introduce new unknowns γ(t) ∈ R and V (ξ, t) ∈ R3m via the ansatz

(4.15) U(x, t) = V (ξ, t), ξ := x− γ(t), x ∈ R, t ≥ 0.

This formally leads to

Vt = (E + µI3m)Vξ + F (V ),(4.16a)
γt = µ,(4.16b)

V (·, 0) = V0 := U0 = (u0, v0 +Nu0,ξ, v0 −Nu0,ξ + cu0)>, γ(0) = 0,(4.16c)

with E and F from (4.3). In (4.16) we introduced the time-dependent function µ(t) ∈ R for convenience.
As before, equation (4.16b) decouples and can be solved in a postprocessing step. One needs an additional
algebraic constraint to compensate the extra variable µ. To relate the second order freezing equation (2.5)
and the first order version (4.16), we omit the introduction of µ2 in (2.5) and write it in the form

Mvtt =(A− µ2M)vξξ + 2µMvξt + µtMvξ + f(v, vξ, vt − µvξ), ξ ∈ R, t > 0,(4.17a)
γt = µ,(4.17b)

v(·, 0) = u0, vt(·, 0) = v0 + µ(0)u0,ξ, γ(0) = 0.(4.17c)

Transforming (4.17) into a first order system by introducing V = (V1, V2, V3)> ∈ R3m via

(4.18) V1 = v, V2 = vt + (N − µIm)vξ, V3 = vt − (N + µIm)vξ + cv

we again find the system (4.16). As a consequence we obtain the equivalence of the freezing systems for
the first and the second order formulation. Henceforth we restrict to the fixed phase condition (2.9) for
which we require the following condition.

Assumption 4.9. The template function v̂ : R→ Rm belongs to v? +H1(R,Rm) and satisfies

〈v̂ − v?, v̂ξ〉L2 = 0,(4.19a)
〈v?,ξ, v̂ξ〉L2 6= 0.(4.19b)

Condition (4.19a) implies that (2.8) holds for the fixed phase condition (2.9), so that (v?, µ?, 0) is a
stationary solution of (2.18a), (2.18b) (skipping the γ-equation needed for reconstruction only). Condition
(4.19b) specifies some non-degeneracy used in the proof.
Now we are ready to state asymptotic stability (in the sense of Lyapunov) of the steady state (v?, µ?, 0)
for the freezing system (2.18) that belongs to the nonlinear wave equation.

Theorem 4.10 (Stability of the freezing method). Let Assumptions 4.1 – 4.7 hold and consider the phase
condition ψ2nd(v, vt, µ1, µ2) = 〈v − v̂, v̂ξ〉L2 with a template function v̂ which fulfills the non-degeneracy
Assumption 4.9. Then, for all 0 < η < δ there is ρ > 0 such that for all u0 ∈ v? + H3(R,Rm), v0 ∈
H2(R,Rm) and µ0

1 ∈ R which satisfy

(4.20) ‖u0 − v?‖H3 + ‖v0 + µ?v?,ξ‖H2 ≤ ρ

and the consistency conditions (2.12), (2.13), 〈u0 − v̂, v̂ξ〉L2 = 0 the following holds. The freezing system
(2.18) has a unique global solution (v, µ1, µ2, γ) ∈ (v? + CH2([0,∞);Rm)) × C1([0,∞)) × C([0,∞)) ×
C2([0,∞)). Moreover, there exists some C = C(ρ, η) > 0 such that the following exponential stability
estimate holds

(4.21) ‖v(·, t)− v?‖H2 + ‖vt(·, t)‖H1 + |µ1(t)− µ?| ≤ C
(
‖u0 − v?‖H3 + ‖v0 + µ?v?,ξ‖H2

)
e−ηt ∀t ≥ 0.

The proof builds on the fact that the original second order version (2.18) and the first order version (4.16)
of the freezing method for traveling waves in (1.1) are equivalent in suitable function spaces. This will be
detailed in Appendix A

Appendix A. Proof of Stability Theorems
In this Appendix we provide a detailed proof of Theorems 4.8 and 4.10.
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A.1. Results for first order systems. Let us recall the stability result from [28, Thm.2.5] for first
order systems of the general type

Wt = ΛEWx +G(W ), x ∈ R, t ≥ 0,W (x, t) ∈ Rl(A.1a)
W (·, 0) = W0.(A.1b)

The assumptions are
(i) The matrix ΛE ∈ Rl,l is diagonal.
(ii) The nonlinearity G belongs to C3(Rl,Rl).
(iii) There exists a traveling wave solution W (x, t) = W?(x − µ?t) of (A.1) such that W? ∈ C1

b (R,Rl),
W?,ξ ∈ H2(R,Rl).

(iv) The matrix function Y (ξ) = DG
(
W?(ξ)

)
satisfies limξ→±∞ Y (ξ) = Y± and limξ→±∞ Y ′(ξ) = 0.

(v) The matrix ΛE + µ?Il ∈ Rl,l is nonsingular.
(vi) There is δ > 0 such that Re {s ∈ C : s ∈ σ

(
iω(ΛE + µ?Il) + Y±

)
for some ω ∈ R} ≤ −δ.

(vii) The operator Y1st = (ΛE + µ?Il)∂ξ + Y (·) : H1(R,Rl) → L2(R,Rl) has the algebraically simple
eigenvalue 0 and satisfies σpoint(Y1st) ∩ {Re s > −δ} = {0}.

Then for every 0 < η < δ there is ρ0 > 0 so that for all W0 ∈ W? + H2(R,Rl) with ‖W0 −W?‖H2 ≤ ρ0

the Cauchy problem (A.1) has a unique global solution W ∈ W? + CH1([0,∞);Rl). Moreover, there is
ϕ∞ = ϕ∞(W0) ∈ R and C = C(η, ρ0) > 0 such that

(A.2) |ϕ∞| ≤ C‖W0 −W?‖H2 ,

(A.3) ‖W (·, t)−W?(· − µ?t− ϕ∞)‖H1 ≤ C‖W0 −W?‖H2e−ηt ∀t ≥ 0.

In [28, Thm.2.5] the eigenvalues of ΛE are assumed to be in decreasing order. However, this was done for
convenience of the proof only, and the result holds verbatim without this ordering. Our goal is to apply
the stability result to the system (4.5) where ΛE is diagonal but the eigenvalues are not ordered. In the
following we show the assumptions (ii)-(vii) for the system (4.5). Our first observation is that instead of
checking assumptions (ii)-(vii) for the transformed data W? = T−1V?, ΛE = T−1ET and G = T−1FT , it
is sufficient to check them for the data V?, E and F of the original system (4.2).
Condition (ii) follows from Assumption 4.1. Moreover, conditon (iii) is a consequence of (4.7) and As-
sumption 4.4. From (4.3) we obtain (recall (?) = (v?, v?,ξ,−µ?v?,ξ))

(A.4) Z = DF (V?) =

−cIm 0 Im
Φ1 Φ2 Φ3

Φ1 Φ2 + cIm Φ3

 ,

Φ1

Φ2

Φ3

 :=

 M−1D1f(?)− cΦ3
1
2M

−1(D2f(?)N−1 +D3f(?))
1
2M

−1(−D2f(?)N−1 +D3f(?))

 .

By Assumption 4.4 the limit is given by (recall (±) = (v±, 0, 0))
(A.5)

Z± = lim
ξ→±∞

Z(ξ) =

−cIm 0 Im
Φ±1 Φ±2 Φ±3
Φ±1 Φ±2 + cIm Φ±3

 ,

Φ±1
Φ±2
Φ±3

 :=

 M−1D1f(±)− cΦ±3
1
2M

−1(D2f(±)N−1 +D3f(±))
1
2M

−1(−D2f(±)N−1 +D3f(±))

 .

Differentiating (A.4) w.r.t. ξ and using Assumption 4.4 as well as (4.10) then shows Z ′(ξ)→ 0 as ξ → ±∞.
Further, condition (v) follows from Assumption 4.5 as has been noted in Section 4. The conditions (vi)
and (vii) are discussed in the next subsection.

A.2. Spectral relations of first and second order problems. We transfer the spectral properties of
the original second order problem (1.1) to the first order problem (4.2) and vice versa. Throughout this
section we impose Assumptions 4.1, 4.2, 4.4 and define V? by (4.7).
By Definition 3.1, the spectral problem for the second order problem (1.1), considered in a co-moving
frame, is given by the solvability properties of

P(λ) : H2(R,Cm)→ L2(R,Cm), defined by (3.1).

The analog for the first order formulation (4.2) is the first order differential operator

(A.6)
P1st(λ) : H1(R,C3m)→ L2(R,C3m) given by
P1st(λ) = λI3m −Z1st, Z1st = (E + µ?I3m)∂ξ + Z(·),
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obtained by linearizing (4.2) in the co-moving frame about the traveling wave V?. Introducing the first
order operators

(A.7) P−N (λ) = λ− (N + µ?Im)∂ξ, P+N (λ) = λ+ (N − µ?Im)∂ξ,

we may write P1st(λ) as a block operator

(A.8) P1st(λ) =

P−N (λ) + cIm 0 −Im
−Φ1 P−N (λ)− Φ2 −Φ3

−Φ1 −Φ2 − cIm P+N (λ)− Φ3

 .

Finally, it is convenient to introduce the normalized operator polynomial

P̃(λ) = M−1P(λ), λ ∈ C,

which has exactly the same spectrum as P(λ). The key to the relation of spectra is the following factor-
ization
(A.9) 0 0 Im

0 Im −Im
Im 0 0

P1st(λ) =

P̃(λ) −Φ2 − cIm P+N (λ)− Φ3

0 P−N (λ) + cIm −P+N (λ)
0 0 −Im

 Im 0 0
−P+N (λ) Im 0

−P−N (λ)− cIm 0 Im

 .

This follows from (A.4) and (A.8) by a straightforward but somewhat lengthy calculation. The factorization
(A.9) is motivated by the equivalence notion for matrix polynomials (see e.g. [13, Chapter S1.6]).
Let us recall a well-known result on Fredholm properties for first order operators from Palmer [25]:

Proposition A.1. Consider a first order system

(A.10) (∂ξ −Q(ξ))V = R ∈ L2(R,CN ),

where the matrix-valued function Q : R→ CN,N is continuous and has limits

(A.11) Q± = lim
ξ→±∞

Q(ξ).

Further assume that Q± have no eigenvalues on the imaginary axis. Then the operator

Q = ∂ξ −Q(·) : H1(R,CN )→ L2(R,CN )

is Fredholm of index dimEs+ − dimEs−, where Es± ⊆ CN is the stable subspace of Q± (i.e. the maximal
invariant subspace associated with eigenvalues of negative real part).

A consequence of this result for parametrized systems is the following

Proposition A.2. Consider a first order system

(A.12) Q(λ)V = (∂ξ −Q(ξ, λ))V = R ∈ L2(R,Cl),
with a matrix polynomialQ(ξ, λ) =

∑q
j=0Qj(ξ)λ

j , Qj ∈ C(R,Cl,l). Assume that the limits limξ→±∞Qj(ξ) =

Q±j exist and let Q±(λ) =
∑q
j=0Q

±
j λ

j . Then the dispersion set

(A.13) σdisp(Q) = {λ ∈ C : det(iωI −Q±(λ)) = 0 for some ω ∈ R and some sign ±}
is contained in the essential spectrum σess(Q). For λ /∈ σdisp(Q), the operator Q(λ) : H1(R,Cl) →
L2(R,Cl) is Fredholm of index dimEs+(λ)−dimEs−(λ) where Es±(λ) denotes the stable subspace of Q±(λ).

This result may be found in [19, Theorem 3.1.13] (note that the dispersion set is called the Fredholm
border there).
If we replace ∂ξ by iω and let ξ → ±∞ in (A.9) then the left and right factors in (A.9) are λ-dependent
matrices with a constant determinant (see the equivalence notion of matrix polynomials in [13, Chapter
S1.6]). Hence the dispersion set of the first order operator P1st(λ) is completely determined by the
dispersion set (3.7) of the second order operator P̃(λ) and the first order operator P−N (λ) + cIm. Since
N + µ?Im has nonzero real eigenvalues λj + µ?, j = 1, . . . ,m by (4.5) we find from Propositions A.1 and
A.2

σ(P−N + cIm) = σdisp(P−N + cIm) = {c+ (λj + µ?)iω : ω ∈ R, j = 1, . . . ,m} = c+ iR.
This yields the following result.
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Proposition A.3. The dispersion sets satisfy

(A.14) σdisp(P1st) = σdisp(P) ∪ (c+ iR).

This proposition leads to a proper choice of the shift parameter c. Taking c < −δ , condition (vi)
immediately follows from Assumption 4.6. The following proposition relates the point spectra of the
second order operator P and the first order operator P1st to each other.

Proposition A.4. The following assertions hold:
(a) There exists a λ? > c such that σdisp(P1st) ∩ [λ?,∞) = ∅.
(b) Let ρ+ be the connected component of {λ ∈ C : Reλ > c} \σdisp(P1st) containing [λ?,∞). Then the

operator P1st(λ) : H1(R,C2m)→ L2(R,C2m) is Fredholm of index 0 for all λ ∈ ρ+.
(c) The point spectra of P1st and P(λ) : H2(R,Cm)→ L2(R,Cm) in ρ+ coincide, i.e.

(A.15) σpoint(P) ∩ ρ+ = σpoint(P1st) ∩ ρ+.

Eigenvalues in these sets have the same geometric and maximum partial multiplicity.

Let us first note that this proposition implies condition (vii). For the choice c < −δ the set ρ+ contains
{Reλ > −δ} by Assumption 4.6 and Proposition A.3. Condition (vii) is then a consequence of Assumption
4.7 and assertion (c) of Proposition A.4.

Proof. Using Assumption 4.5 we can rewrite the operator from (A.6) as follows

P1st(λ) = −(E + µ?I3m)(∂ξ − (E + µ?I3m)−1(λI3m −DF (V?))).

The matrix (E + µ?I3m)−1 is hyperbolic by Assumption 4.5 and this property persists for the matrix
(E + µ?I3m)−1(λI3m −DF (V±)) for λ ≥ λ? sufficiently large, independently of the sign ± and with the
same number of stable and unstable eigenvalues. Therefore P1st(λ) is Fredholm of index 0 by Proposition
A.2 for λ ∈ [λ?,∞). Since the Fredholm index is continuous in ρ+ and can only change at σdisp(P1st) or
at c+ iR, assertion (b) also follows.
Consider an eigenvalue λ0 ∈ σpoint(P1st) ∩ ρ+ with eigenfunction V = (V1, V2, V3)> ∈ H1(R,C3m), V 6= 0.
The first block equation reads (P−N (λ0) + cIm)V1 = V3 ∈ H1 from which we infer V1 ∈ H2(R,Cm). In
the following let us write the factorization (A.9) in the short form

T1P1st(λ) = R(λ)T2(λ)(A.16)

and apply it to V . ThenW (λ0) := T2(λ0)V satisfies R(λ0)W (λ0) = 0, and from the triangular structure of
R and the invertibility of P−N (λ0)+cIm we obtainW3 = 0,W2 = 0 as well as P̃(λ0)V1 = P̃(λ0)W1 = 0. If
V1 = 0 then V2 = 0, V3 = 0 follows fromW2 = 0,W3 = 0, hence V1 6= 0. In a similar manner, if P̃(λ0)W1 =

0 for some W1 ∈ H2(R,Cm),W1 6= 0 then P1st(λ0)V = 0 and V 6= 0 for V = T2(λ0)−1
(
W1 0 0

)>. By
the same argument the null spaces N (P1st(λ0)) and N (P̃(λ0)) have equal dimension.
Finally, consider a root polynomial V (λ) =

∑n
j=0 V[j](λ− λ0)j with V[j] ∈ H1(R,C3m) satisfying

V (λ0) = V[0] 6= 0, (P1stV )(ν)(λ0) = 0, ν = 0, . . . , n− 1.

As above we find V[0],1 ∈ H2(R,Cm), V[0],1 6= 0 and then by induction V[j],1 ∈ H2(R,Cm), j = 1, . . . , n
from the equations

ν! P1st(λ0)V[ν] = −
ν∑
`=1

(
ν

`

)
P(`)

1st(λ0)V (ν−`)(λ0).

Note that the right-hand side is in H1(R,C3m) since the λ-derivative of P1st is I3m. Setting W (λ) =
T2(λ)V (λ) then leads via (A.16) to

(RW )(ν)(λ0) = 0, ν = 0, . . . , n− 1.

Working backwards through the components of this equation gives W (ν)
k (λ0) = 0, ν = 0, . . . , n − 1 for

k = 3, 2, and therefore,

0 = (P̃W1)(ν)(λ0), ν = 0, . . . , n− 1,

with W1(λ0) = V1(λ0) 6= 0.
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Conversely, let W1(λ) =
∑n−1
j=0 (λ − λ0)jW[j],1 be a root polynomial of P̃ in H2(R,Cm) with W[0],1 6= 0.

Then we set W (λ) =
(
W1(λ) 0 0

)> and find that

V (λ) = T2(λ)−1W (λ) =
(
W1(λ) P+N (λ)W1(λ) (−P−N (λ) + cIm)W1(λ)

)> ∈ H1(R,C3m)

satisfies V (λ0) 6= 0 and

T1(P1stV )(ν)(λ0) = (RW )(ν)(λ0) = 0, ν = 0, . . . , n− 1.

�

A.3. Stability for the second order system. In the following we consider the Cauchy problem (4.4)
and recall the function spaces (4.6). We need two auxiliary results. The first one is regularity of solutions
with respect to source terms taken from the theory of linear first order systems (see [26, Cor.2.2.2]).

Lemma A.5. Consider a first order system

(A.17) ut = A1ux +B1u+ r, u(x, 0) = u0(x), x ∈ R, t ≥ 0,

where A1 ∈ Rl,l is real diagonalizable and B1 ∈ Rl,l. If u0 ∈ Hk(R,Rl) for some k ≥ 1 and r ∈
CHk−1([0,∞);Rl) then the system (A.17) has a unique solution in u ∈ CHk([0,∞);Rl).

The second one concerns commuting weak and strong derivatives with respect to space and time.

Lemma A.6. For u ∈ C1([0,∞);H1(R,Rl))) let d
dtu ∈ C

0([0,∞);H1(R,Rl))) be its time derivative and
let ∂

∂xu(·, t) be its weak space derivative pointwise in t ∈ [0,∞). Then ∂
∂xu ∈ C

1([0,∞);L2(R,Rl)) and its
time derivative agrees with the weak spatial derivative of d

dtu evaluated pointwise in t ∈ [0,∞), i.e.

(A.18)
d

dt
(
∂

∂x
u) =

∂

∂x
(
d

dt
u).

Proof. Let t, t+ h ∈ [0,∞) with h 6= 0 and note that

‖ 1

h
(
∂

∂x
u(·, t+ h)− ∂

∂x
u(·, t))− ∂

∂x
(
d

dt
u(·, t))‖L2 ≤ ‖ 1

h
(u(·, t+ h)− u(·, t))− d

dt
u(·, t)‖H1 ,

where the right-hand side converges to zero as h → 0 by assumption. Therefore, the derivative d
dt (

∂
∂xu)

exists in L2(R,Rl) for all t ∈ [0,∞) and coincides with ∂
∂x ( ddtu) ∈ C0([0,∞);L2(R,Rl)). �

Remark A.7. In a loose sense we may write (A.18) as commuting partial dervatives uxt = utx. However,
this equality has to be interpreted with care since time and space derivatives are taken with respect to
different norms.

We proceed with the proof of Theorem 4.8 by using the stability statements from (A.2),(A.3). From (4.7)
and (4.16c) we obtain

V0 − V? = (u0 − v?, v0 + µ?v?,ξ +N(u0,ξ − v?,ξ), v0 + µ?v?,ξ −N(u0,ξ − v?,ξ) + c(u0 − v?))>.(A.19)

Therefore, we have a constant C? = C?(c, ‖N‖) with

‖V0 − V?‖H2 ≤ C?(‖u0 − v?‖H3 + ‖v0 + µ?v?,ξ‖H2) ≤ C?ρ,(A.20)

and we take ρ such that C?ρ ≤ ρ0. Let V ∈ V? + CH1([0,∞);R3m) be the unique solution of (4.4) for
‖V0 − V?‖H2 ≤ ρ0. The first component V1 satisfies

V1,t = NV1,x − cV1 + V3, V1(·, 0) = u0,(A.21)

so that Ṽ1 = V1 − v? solves the Cauchy problem

Ṽ1,t = NṼ1,x − cṼ1 + V3 − V?,3 − µ?v?,x, Ṽ1(·, 0) = u0 − v?.

Then Lemma A.5 applies with k = 2, A1 = N,B1 = −cIm, r = V3−V?,3−µ?v?,x and yields Ṽ1 = V1−v? ∈
CH2([0,∞);Rm). By Lemma A.6 we obtain Ṽ1,x ∈ C1([0,∞);L2(R,Rm)) as well as Ṽ1,tx = Ṽ1,xt ∈
C0([0,∞);L2(R,Rm)). Since v? does not depend on t we also have V1,tx = Ṽ1,tx = Ṽ1,xt = V1,xt. For
the same reason Ṽ1,tt = V1,tt ∈ C0([0,∞);L2(R,Rm)), and Ṽ1,xx = (V1 − v?)xx ∈ C0([0,∞);L2(R,Rm))
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implies V1,xx ∈ C0([0,∞);L2(R,Rm)) since v?,xx ∈ H2(R,Rm) by Assumption 4.4. Thus we can take
space and time derivative of equation (A.21) and obtain from the third row of (4.4)

(A.22)

f̃(V ) =V3,t +NV3,x − cV2

=V1,tt −N2V1,xx −NV1,xt + cV1,t +NV1,tx + cNV1,x − cV2

=V1,tt −N2V1,xx − c(V2 − V1,t −NV1,x).

Next introduce the functions

(A.23) W2 = V2 − V1,t −NV1,x, W3 = V3 − V1,t +NV1,x − cV1.

Using (A.22), the last two rows of (4.4) and Lemma A.6 again, these functions solve the hyperbolic system

(A.24)

W2,t −NW2,x =V2,t − V1,tt −NV1,xt −NV2,x +NV1,tx +N2V1,xx = −cW2

W3,t +NW3,x =V3,t +NV3,x − V1,tt −NV1,tx +NV1,xt +N2V1,xx − cV1,t − cNV1,x

=f̃(V ) + cV2 − (f̃(V ) + cW2)− c(V1,t +NV1,x) = 0.

Using from (4.4) the initial data and the differential equation at t = 0 one finds that W2(·, 0) = 0,
W3(·, 0) = 0. Since (A.24) with homogeneous initial data has only the trivial solution we conclude
W2 ≡ 0,W3 ≡ 0. Therefore, by setting u = V1, equations (A.22) and (A.23) finally lead to

utt −N2uxx = f̃(V ) = M−1f(V1,
1

2
N−1(V2 − V3 + cV1),

1

2
(V2 + V3 − cV1)) = M−1f(u, ux, ut).

Applying (A.2) and using (A.20) we obtain that the asymptotic phase ϕ∞ satisfies an estimate

|ϕ∞| ≤ C‖V0 − V?‖H2 ≤ CC?(‖u0 − v?‖H3 + ‖v0 + µ?v?,x‖H2).

Further, we have for t ≥ 0 the stability estimate

‖V (·, t)− V?(· − µ?t− ϕ∞)‖H1 ≤ CC?(‖u0 − v?‖H3 + ‖v0 + µ?v?,x‖H2)e−ηt,

where C depends only on η, ρ. From this we retrieve the estimate (4.13) for the original variables by taking
the H1-norm of the equation

V (·, t)− V?(· − µ?t− ϕ∞) =

 Im 0 0
0 N Im
cIm −N Im

 u(·, t)− v?(· − µ?t− ϕ∞)
ux(·, t)− v?,x(· − µ?t− ϕ∞)
ut(·, t) + µ?v?,x(· − µ?t− ϕ∞)

(A.25)

and using that the left factor of the right-hand side is invertible.

A.4. Lyapunov stability of the freezing method. Let us first recall from [28, Thm.2.7] the stability
theorem for the freezing method associated with the first order formulation (A.1)

Wt = ΛEWx +G(W ) + µWx, x ∈ R, t ≥ 0,W (x, t) ∈ Rl(A.26a)
W (·, 0) = W0,(A.26b)

Ψ(W − Ŵ ) = 0.(A.26c)

Here, Ψ : L2(R,Rl)→ R is a linear functional and Ŵ : R→ Rl is a template function for which we assume
(viii) Ψ(W?,ξ) 6= 0, Ψ is bounded,
(ix) Ŵ ∈W? +H1(R,Rl) and Ψ(W? − Ŵ ) = 0.
Under the combined assumptions of (i)-(vii) and (viii), (ix) the result is the following. For every 0 < η < δ
there exists ρ0 > 0 such that for all initial data W0 ∈W? +H2(R,Rl) with ‖W0−W?‖H2 ≤ ρ0 the system
(A.26) has a unique solution (W,µ) in

(
W? + CH1([0,∞);R3m)

)
× C([0,∞),R). Moreover, there is a

constant C = C(η) such that the solution satisfies

(A.27) ‖W (t)−W?‖H1 + |µ(t)− µ?| ≤ C(η)‖W0 −W?‖H2e−ηt, t ≥ 0.

We apply this to the frozen version of (4.5) with the functional Ψ and the function Ŵ defined by

(A.28)
V̂ =

(
v̂ 0 0

)>
, Ŵ = T−1V̂ ,

Ψ(W − Ŵ ) =〈T (W − Ŵ ), T Ŵξ〉L2 .
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While conditions (i)-(vii) have already been verified, the conditions (viii) and (ix) easily follow from
Assumption 4.9 and the settings W? = T−1V? and (4.7). Thus the above result applies. By (W,µ) we
denote the unique solution of (A.26) for ‖W0 − W?‖H2 ≤ ρ0, and we let (V = TW,µ) be the unique
solution in

(
V? + CH1([0,∞);R3m)

)
× C([0,∞),R) of the transformed equation

Vt = EVξ + F (V ) + µVξ, ξ ∈ R, t ≥ 0,(A.29a)
V (·, 0) = V0,(A.29b)
〈V1 − v̂, v̂ξ〉L2 = 0.(A.29c)

We impose two conditions on the radius ρ appearing in (4.20). The first one is C?ρ ≤ ρ0 as in the argument
following (A.20). The second one is to ensure for some constant C > 0

(A.30) |〈V1,ξ(·, t), v̂ξ〉L2 | ≥ C, ∀t ≥ 0

for all solutions satisfying (4.20). In fact, from (A.27), (A.20) and Assumption 4.9 we obtain

|〈V1,ξ(·, t), v̂ξ〉L2 | ≥|〈v?,ξ, v̂ξ〉L2 | − ‖V1(·, t)− v?‖H1‖v̂ξ‖L2

≥|〈v?,ξ, v̂ξ〉L2 | − C(η)e−ηt‖T‖‖W0 −W?‖H2‖v̂ξ‖L2

≥|〈v?,ξ, v̂ξ〉L2 | − ρC(η)‖T‖‖T−1‖C?‖v̂ξ‖L2 .

Our next step is to prove regularity of the solution in the sense that

V1 ∈ v? + CH2([0,∞);Rm), µ ∈ C1([0,∞),R).(A.31)

For this we define γ ∈ C1([0,∞),R) by γ(t) =
∫ t

0
µ(s)ds and return to the original variables via U(x, t) :=

V (x− γ(t), t) for x ∈ R, t ≥ 0. Then we have that U ∈ V? +CH1([0,∞);R3m) solves the first order system
(4.4). Hence the regularity U1 ∈ v? + CH2([0,∞);Rm) is obtained via Lemma A.5 by the same arguments
as those following (A.21). In particular, U1,x ∈ CH1([0,∞);Rm) and thus V1,ξ ∈ CH1([0,∞);Rm) since
V1,ξ(·, t) = U1,x(· + γ(t), t) and γ ∈ C1([0,∞),R). For the smoothness of µ we differentiate the phase
condition (A.29c) with respect to t and use (A.29a)

0 =〈V1,t, v̂ξ〉L2 = 〈NV1,ξ − cV1 + V3, v̂ξ〉L2 + µ〈V1,ξ, v̂ξ〉L2 .

By (A.30) this can be solved for µ and yields µ ∈ C1([0,∞),R) since the other terms are known to be
C1-smooth. Thus we have γ ∈ C2([0,∞),R) and then finally V1 ∈ v? + CH2([0,∞);Rm) from V (ξ, t) =
U(ξ + γ(t), t) and U1 ∈ v? + CH2([0,∞);Rm).
Retrieving the frozen second order equation (4.17) now uses the same arguments as in the nonfrozen case.
Therefore we only indicate the revised equations and leave out computations. Equation (A.22) is replaced
by

f̃(V ) = V1,tt −N2V1,ξξ + µ2V1,ξξ − 2µV1,tξ − µtV1,ξ + c(V1,t − V2 + (N − µIm)V1,ξ).(A.32)

In view of (4.18) the analogous functions of (A.23) are defined as follows

(A.33) W2 = V2 − V1,t − (N − µIm)V1,ξ, W3 = V3 − V1,t + (N + µIm)V1,ξ − cV1.

They solve the hyperbolic homogeneous Cauchy problem

W2,t − (N + µIm)W2,ξ =− cW2, W2(·, 0) = 0,

W3,t + (N − µIm)W3,ξ =0, W3(·, 0) = 0,

hence vanish identically. Inserting this in (A.32) shows that v = V1 ∈ v? + CH2([0,∞);Rm) and µ solve
the frozen second order system (4.17).
Concerning the estimate (4.21), we note the following relation which replaces (A.25)

V (·, t)− V? =

 Im 0 0
0 N Im
cIm −N Im

 v(·, t)− v?
vξ(·, t)− v?,ξ

vt(·, t) + µ?v?,ξ − µ(t)vξ(·, t)

 .(A.34)

Taking theH1-norm of this equation and using the estimate (A.27) with V, V?, V0 instead ofW,W?,W0 then
gives the exponential estimate in (4.21) for ‖v(·, t)− v?‖H2 , |µ−µ?| and ‖vt(·, t) +µ?v?,ξ−µ(t)vξ(·, t)‖H1 .
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Using the estimates for the first two terms and the triangle inequality on the last term then yields an
exponential estimate for ‖vt(·, t)‖H1 . This finishes the proof.
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