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Any transformation of a matrix having the form of Eq. (4-41) is known as a
similarity transformation.

It is appropriate at this point to consider the properties of the determinant
formed from the elements of a square matrix. As is customary, we shall denote
such a determinant by vertical bars, thus: |A]. It will be noticed that the definition
of matrix multiplication is identical with that for the multiplication of
determinants (cf. Bocher, Introduction to Higher Algebra, p. 26). Hence

|AB| = |A[-[B|.

Since the determinant of the unit matrix is 1, the determinantal form of the
orthogonality conditions, Eq. (4-36), can be written

Al-|A] = 1.

Further, as the value of a determinant is unaffected by interchanging rows and
columns, we can write

AP =1, (4-42)

which implies that the determinant of an orthogonal matrix can only be +1 or
— 1. (The geometrical significance of these two values will be considered in the next
section.)

When the matrix is not orthogonal the determinant does not have these
simple values, of course. It can be shown however that the value of the
determinant is invariant under a similarity transformation. Multiplying the
equation (4-41) for the transformed matrix from the right by B, we obtain the
relation

A'B = BA,
or in determinantal form
|A’-|B] = |B|-|A].
Since the determinant of B is merely a number, and not zero,* we can divide by |B|
on both sides to obtain the desired result:
|A’] = |A]

In discussing rigid body motion later, all these properties of matrix
transformations, especially of orthogonal matrices, will be employed. In addition,
other properties are needed, and they will be derived as the occasion requires.

4-4 THE EULER ANGLES

It has already been noted (cf. p.131) that the nine elements g; are not suitable as
generalized coordinates because they are not independent quantities. The six

*1f it were zero there could be no inverse operator B~ ' (by Cramer’s rule), which is
required in order that Eq. (4-41) make sense.
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relations that express the orthogonality conditions, Egs. (4-9)or Egs. (4-15), of
course reduce the number of independent elements to three. But in order to
characterize the motion of a rigid body there is an additional requirement the
matrix elements must satisfy, beyond those implied by orthogonality. In the
previous section it was pointed out that the determinant of a real orthogonal
matrix could have the value + 1 or — 1. The following argument shows however
that an orthogonal matrix whose determinant is — | cannot represent a physical
displacement of a rigid body.
Consider a simple matrix with the determinant —1:

= 0 0
S = 08 =il 0)==1
0 0 =l

The transformation 8 has the effect of changing the sign ofeach of the components
or coordinate axes (cf. Fig. 4-6). Such an operation transforms a right-handed
coordinate systeminto a left-handed one and is known as an inversion or reflection
of the coordinate axes.

2 FIGURE 4-6
z Inversion of the coordinate axes. |

From the nature of this operation it is clear that an inversion of a right-
handed system into a left-handed one cannot be accomplished by any rigid
change in the orientation of the coordinate axes. An inversion therefore never
corresponds to a physical displacement of a rigid body. What is true for S is
equally valid for any matrix whose determinant is — 1, for any such matrix can be
written as the product of § with a matrix whose determinant is + 1, and thus
includes the inversion operation. Consequently it cannot describe a rigid change
in orientation. Therefore, the transformations representing rigid body motion
must be restricted to matrices having the determinant + 1. Another method of
reaching this conclusion starts from the fact that the matrix of transformation \
must evolve continuously from the unit matrix, which of course has the
determinant + 1. It would be incompatible with the continuity of the motion to
have the matrix determinant change suddenly from its initial value + 1 to — 1 at
some given time. Orthogonal transformations with determinant + 1 are said to
be proper, so naturally those with the determinant — 1 are called improper.

Inorder to describe the motion of rigid bodies in the Lagrangian formulation
of mechanics, it will therefore be necessary to seek three independent parameters
specifying the orientation of a rigid body in such a manner that the corresponding
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orthogonal matrix of transformation has the determinant + 1. Only when such
generalized coordinates have been found can one write a Lagrangian for the
system and obtain the Lagrangian equations of motion. A number of such sets of
parameters have been described in the literature, but the most common and
useful are the Euler angles.* We shall therefore define these angles at this point,
and show how the elements of the orthogonal transformation matrix can be
expressed in terms of them.

One can carry out the transformation from a given cartesian coordinate
system to another by means of three successive rotations performed in a specific
sequence. The Euler angles are then defined as the three successive angles of
rotation. Within limits, the choice of rotation angles is arbitrary. The main
convention that will be followed here is used widely in celestial mechanics,
applied mechanics, and frequently in molecular and solid state physics. Other
conventions will be described below.

The sequence employed here is started by rotating the initial system of axes,
xyz, by an angle ¢ counterclockwise about the z axis, and the resultant coordinate
system is labeled the &1 axes. In the second stage the intermediate axes, cng, are
rotated about the ¢ axis counterclockwise by an angle 6 to produce another
intermediate set, the ¢'5'(" axes. The &’ axis is at the intersection of the xyand ¢'p’
planes and is known as the line of nodes. Finally the ¢'n’¢’ axes are rotated
system of axes. Figure 4-7 illustrates the various stages of the sequence. The
counterclockwise by an angle i about the ¢’ axis to produce the desired x'y'z’
Euler angles 0. ¢, and  thus completely specify the orientation of the Xz
system relative to the xyz and can therefore act as the three needed generalized
coordinates.t

The elements of the complete transformation A can be obtained by writing
the matrix as the triple product of the separate rotations, each of which has a
relatively simple matrix form. Thus, the initial rotation about = can be described
by a matrix D:

€ = Dx,

where € and x stand for column matrices. Similarly the transformation from &;¢
to ¢'n'(’" can be described by a matrix C,

¢ =Cg,
and the last rotation to x'y'z' by a matrix B
x' = B¢

* Also denoted. interchangeably, as Eulers angles, or Eulerian angles.

TA number of minor variations will be found in the older literature even within this
convention. The differences are not very great, but they are often sufficient to frustrate easy
comparison of the end formulae, such as the matrix elements. Greatest confusion, perhaps,
arises from the occasional use of left-handed coordinate systems (as by Osgood and by
Margenau and Murphy). Some European authors agree with the practice given here
except that the meanings of ¢ and  are interchanged.




- s = £ 4 > o O CTHO”GL C0O® T a®m.E 0T e 0¥ N
© — =
“ <
= g 3
S i = =
R =
= <
= g
IS o
© =
@ e
= =
° 2
2 .
o L
Q ~—
= 5 -
o) — Sl =—u
5 o8- o SR
= s 38
) N g ©F 3
= - < S 2 2
: = el =) =
3 £ g 8 & § -
Z = X O OIS m
5 s <« . O = = S o
— “— 2 m %)
5 . Z B T o S < S o & .85
b= = o S & = 0%
© < -~ = | = \un) o
- W 5 X = b= S=me = ﬁ
A & s L 8 ? 2
2 =g £ s | 2
2 & |5} = g -~ o O
: g = 2 a 2
= = 2 o I o
2 b g 2 2 b
5 E 2 L I
9 = w 19} = - =
¢
- ol S S s ©
. e 2 = = c
e = = Z = &
8 o) o Q m” =]
= ) o] = =y =
R = ©; ‘T =
B = > o =t =
< e g S} £ J £
w o] — MA. =
z o < s iR o
Z 2 g S bl z
= ~ g o o Qm =
= = = o oo
= =2 = g 25 o
W = = 2
- = 2 8 o o
© = = = Wm 5]
= o = ] =2 o o R
&~ T Bz Z L =




1ence has a matrix of the

(4-43)

it &, with the matrix

(4-44)

4-4 THE EULER ANGLES 147

and finally B is a rotation about (" and therefore has the same form as D:

cosyy siny 0
B=|—siny cosy O] . (4-45)
0 0 1

The product matrix A = BCD then follows as

cos iy cos ¢ — cos ) sin¢p sinyy costf sin¢h + cos () cos ¢ siny siny sin ()
A = | —siny cos¢$ — cosl) sin¢ cosy =sinyysin ¢ + cos () cos ¢ cos costy sinf |. (4 46)
sin () sin ¢ —sin () cos ¢ cos ()

The inverse transformation from body coordinates to space axes
x=A'x

is then given immediately by the transposed matrix A:

CosY cosh — costlsing siniy —siny cos¢p — coslsing cosy sin()sin ¢

Y | }

A ' =A = | cosysing + costcossiny —sinysing + cosl cos¢ cosy sinflcos¢ | . (4-47)
sin()siniy sinf) cosyy cos()

Verification of the multiplication, and demonstration that A represents a proper,
orthogonal matrix will be left to the exercises.

It will be noted that the sequence of rotations used to define the final
orientation of the coordinate system is to some extent arbitrary. The initial
rotation could be taken about any of the three Cartesian axes. In the subsequent
two rotations, the only limitation is that no two successive rotations can be about
the same axis. A total of twelve conventions is therefore possible in defining the
Euler angles (in a right-handed coordinate system). The two most frequently used
conventions differ only in the choice of axis for the second rotation. In the Euler’s
angle definitions described above, and used throughout the book, the second
rotation is about the intermediate x axis. We will refer to this choice as the x-
convention. In quantum mechanics, nuclear physics, and particle physics, the
custom has arisen to take the second defining rotation about the intermediate y
axis,* and this form will be denoted as the y-convention.

A third convention is commonly used in engineering applications relating to
the orientation of moving vehicles such as aircraft and satellites. Both the x- and
y-conventions have the drawback that when the primed coordinate system is only
slightly different from the unprimed system, the angles ¢ and  become
indistinguishable, as their respective axes of rotation, z and z' are then nearly
coincident. To get around this problem all three rotations are taken around
different axes. The first rotation is about the vertical axis and gives the heading or
vaw angle. The second is around a perpendicular axis fixed in the vehicle and

* The usage of Wigner in Group Theory and Its Applications to the Quantum Mechanics of
Atomic Spectra and of Rose in Elementary Theory of Angular Momentum appears to have
been decisive in this regards.
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normal to the figure axis; it is measured by the pitch or attitude angle. Finally the
third angle is one of rotation about the figure axis of the vehicle and is the roll or
bank angle. Because all three axes are involved in the rotations it will be
designated as the xyz-convention (although the order of axes chosen may actually
be different). This last convention is sometimes referred to as the Tait-Bryan
angles.

While only the x-convention will be used in the text, for reference purposes
Appendix B lists all the formulas involving Euler’s angles, such as rotation
matrices, in both the y- and xyz-conventions.

4-5 THE CAYLEY-KLEIN PARAMETERS AND RELATED QUANTITIES

We have seen that only three independent quantities are needed to specify the
orientation of a rigid body. Nonetheless, there are occasions when it is desirable
to use sets of variables containing more than the minimum number of quantities
to describe a rotation even though they are not suitable as generalized
coordinates. Thus, Felix Klein introduced the set of four parameters bearing his
name to facilitate the integration of complicated gyroscopic problems. The Euler
angles are difficult to use in numerical computation because of the large number
of trigonometric functions involved, and the four-parameter representations are
much better adapted for use on computers. Further, the four-parameter sets are
of great theoretical interest in branches of physics beyond the scope of this book,
wherever rotations or rotational symmetry are involved. It therefore seems
worthwhile to devote some space to describe these enlarged parameter sets.
However, none of the results of this section will be directly used in the discussion
of rigid body motion in the following chapter.

In the previous sections we employed on occasion a two-dimensional real
space with axes x; and x, to illustrate the properties of orthogonal trans-
formations. We shall now consider a different two-dimensional space, this

time having complex axes denoted by uand v. A general linear transformation in
such a space appears as

u' = ou + B,
- (4-48)
v = yu + dv,
with the corresponding transformation matrix
o f
Q:( q. (4-49)
¥ C

As it stands Q has eight quantities to be specified, since each of the four elements
is complex. To reduce the transformation to three independent quantities,
additional conditions must be imposed on Q. For much of the following
discussion, it is sufficient to require that the transformation be such that Q is
unitary:

Q' =1=0QQ". (4-50)

The un
must b

In exp:

The firs
compri
indeper
that th

Equati
the uni
magnit
Thus o
already
called 1
unitary
indepet
rigid be

Sor
much ¢

which -

The fir:

It follo

* The d¢
but app




