Università Politecnica delle Marche Corso di Laurea in Ingegneria Informatica e dell'Automazione Anno Accademico 2005/2006

Matematica 1 Appello del 14 gennaio 2006

		Ancona, 14 gennaio 2006
Domand	e di sbarramento.	
	$z=a+ib$ un numero complesso e \bar{z} il suo cormazioni è vera?	mplesso coniugato. Quale di queste
1 2 3 4	z/\bar{z} è un numero reale; z/\bar{z} è un numero immaginario; $z+\bar{z}$ è un numero reale; $z\bar{z}$ è un numero immaginario.	
2. Sia è ve	$f:(0,\infty)\to\mathbb{R}$ la funzione $f(x)=x^{\alpha}$, con α ra?	$lpha \in \mathbb{R}$. Quale di queste affermazioni
1 2 3 4	f è strettamente crescente per $\alpha < 0$; f è strettamente decrescente per $\alpha > 0$; f è strettamente crescente per $\alpha > 0 \iff$ f è strettamente crescente per $\alpha > 0$.	$ \alpha \in \mathbb{N}; $
	no $f:[a,b] \to \mathbb{R}$ e $g:[a,b] \to \mathbb{R}$ due funzion $f(x)g(x)$ sia decrescente in (a,b) . Quale di	
1 2 3 4	deve essere $f' < 0$ e $g' < 0$ in (a,b) ; f e g possono essere entrambe crescenti in almeno una delle funzioni, f o g , deve ess almeno una delle funzioni, f o g , deve ess	ere decrescente in (a, b) ;

Teoria.

Fornire con la massima precisione possibile la definizione di limite finito di una funzione f(x), definita su un dominio D, per x che tende ad un punto x_0 .

Esercizi.

- 1. Determinare parte reale e parte immaginaria di numeri complessi $z=1/(2+3i)^2$ e $z=2/(3-2i)^2$.
- 2. Calcolare il limite

$$\lim_{n\to\infty} 2^{\sqrt{n}} \sin n.$$

3. Calcolare la derivata delle funzione

$$f(x) = e^{-x}|\sin x|,$$

considerando tutti i possibili punti di non derivabilità.

4. Calcolare l'integrale indefinito

$$\int \sqrt{2^x - 1} dx$$

5. Studiare la funzione

$$f(x) = \frac{\log^2 x + \log x - 2}{\log^2 x - \log x - 2}$$