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Abstract 

We derive a general, self-consistent, reduced equation that describes the nonlinear evolution of electrostatic perturbations 
in marginally stable plasma equilibria. The equation is universal in the sense that it is independent of the equilibrium, and 

it contains as special cases the beam-plasma, the bump-on-tail, and the two-stream instability problems, among others. In 
particular, the present work offers a systematic justification of the O’Neil-Winfrey-Malmberg single-wave beam-plasma 
model. But more importantly, the analysis shows that the single-wave model has a wider range of applicability: it can be 

applied to localized perturbation in any marginally stable equilibrium. We discuss the linear theory, and construct families 

of exact nonlinear solutions. @ 1998 Elsevier Science B.V. 

PACS: 52.35.F~; 52.25.Dg; 52.35.M~; 47.20.Ft 

1. Introduction 

A fundamental problem in plasma physics is the 
nonlinear evolution of perturbations of an equilibrium 
state. The objective of this Letter is to study this 
problem for a collisionless plasma. Previous works 

have considered the beam-plasma instability [ 11, and 

the bump-on-tail instability [ 21. Recently, the prob- 
lem has been addressed by constructing the ampli- 
tude equation for a weakly unstable mode [ 31. Here 
we present a new approach: using a matched asymp- 
totic expansion, we derive from the Vlasov-Poisson 
equation a general, self-consistent, reduced equation 
that describes the nonlinear evolution of perturbations 
in marginally stable plasma equilibria. This reduced 
equation is universal in the sense that it is indepen- 

dent of the equilibrium, and it contains as special 
cases the beam-plasma, the bump-on-tail, and the two- 
stream instability problems, among others. In partic- 
ular, the present work offers a systematic derivation 
of the O’Neil-Winfrey-Malmberg [ 1 ] single-wave, 
beam-plasma model. But more importantly, the anal- 
ysis shows that the single-wave model have a much 

wider range of applicability: it can be applied to study 

localized perturbations in any marginally stable equi- 
librium. Compared with the amplitude equation ap- 

proach proposed in Ref. [3], the approach followed 
here has the advantage that it is not restricted to per- 
turbations along the unstable manifold. 

The starting point of our analysis is the dimen- 
sionless Vlasov-Poisson system for the electron dis- 
tribution 

ground, 
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function in a uniform neutralizing ion back- 
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&-F + U&F + 4, (Fo+F)&@=O, 

00 

-I p(k,u,T)du, G(k) &k,T) = - 

(I) 

(2) 

where the tilde denotes Fourier transform, G(k) = k’, 
and F( X, u, T) is the departure from the equilibrium 

Fe(u). 
Recently, it has been shown that the two- 

dimensional Euler equation describing the dynamics 
of localized vorticity perturbations in shear flow, 

can be reduced to the vorticity defect equation [4] 
which is the same as Eqs. ( 1) and (2) with G(k) = 
2kcoth k, if one identifies (X, u) with the (n, y), f 
with the vorticity, and q!~ with the streamfunction. 
Because of this, plasma physics concepts like Landau 
damping, and BGK modes, and techniques like the 
Nyquist method, have an analogue in fluid dynamics 
[4]. In particular, the reduced equation derived here, 
describes the nonlinear evolution of vorticity pertur- 
bations in marginally stable shear flows. Also, the 

reduced equation bears similarities with models used 

to study globally coupled oscillators. 
The key assumption we make is that the equilibrium 

is linearly stable and that it has a stationary inflection 
point at u = CO, that is F;(Q) = F:(Q) = 0. From 
linear theory [5] it is known that F;(Q) = 0 implies 
the existence of a neutral mode with wave number 
ko (which we will assume to be different from zero) 

given by the dispersion relation D( ko, co) = 0, where 

D(k,c) E G(k) - 
cc F; .I - du . 

11 - c 
(3) 

We consider a domain periodic in X, and of size L M 
2n-/ko. Using the Nyquist method, it can be shown that 
the condition L Z=S 2n-/ko, together with the stationary 
inflection point condition, 

F;(co) = F;(co) = 0, 

implies that the system is marginally stable [ 61. That 
is, that the equilibrium FO (u; ,u) is stable for ,u = ,uuc, 
but it is unstable for ,u = ,uu, +Sp, where p is a control 
parameter, and 6~ CC 1. Some examples of marginally 
stable equilibria for which ko # 0, are shown in Fig. 1. 

Cc) F. 

f M co ” 

Fig. 1. Examples of marginally stable equilibria. Panels (a). (b), 

and (c) show the equilibria, &I, used in the beam-plama. the 

bump-on-tail, and the two-stream instability problems respectively. 

The reduced Vlasov-Poisson equation ( 18)-( 20) describes the 

nonlinear evolution of a perturbation, f, localized around the 

stationary inflection point at co. 

2. Derivation 

Our goal is to derive from ( 1) and (2) a self- 
consistent equation for perturbations localized around 

the stationary inflection point, as those shown in Fig. 1. 

To do this we look for solutions of the form 

F=~~f(x,u,t), Q=~~+(~J), (4) 

where 1 > E > 0, x E (27r/L) (X - COT), t E 
(25-/L) ET. and L = 27r( 1 + EA)/kg. The construc- 
tion in (4) represents a slowly varying, small per- 
turbation, propagating on the background Fo( u) . The 
scaling in (4) corresponds to the trapping scaling [ l- 
31 according to which E N y2, where y is the growth 
rate of the instability, and E is the amplitude of the 

electric field after the linear instability has saturated. 
However, contrary to what is typically assumed, we 
consider the more general situation in which there is 
an O(E) detuning between the domain length, L, and 
the wavelength, 2rr/ko, of the linear mode. The pa- 
rameter A determines if L is larger (A > 0), smaller 
(A < O), or equal (A = 0) to 2r/ko. 

In terms of the variable x, the domain has period 27r, 
and we write 4(x, t) = C, $(n, t)einx. Substituting 
(4) into (1) and (2) we get 

l 4.f + (u - co) &f + (F; + c2&f) 13x4 = 0, 

(5) 
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03 

G [nko(l +Ul-‘1 &(n,t> = - 
s 

f( k, U, t)du . 

--oo 

(6) 

Eqs. (5) and (6) are exact, and our goal is to simplify 
them using E as a small parameter. The method we 

follow is inspired by the technique used in the study 
of critical layers in shear flows [ 71. In fact, the scaling 
(4) is the critical layer scaling, and the critical layer 

singularity is mathematically similar to the singularity 
created by the resonant particles in a plasma. 

We write 4(x. t) = $0 + E 41 + . . ., and following 

the method of matched asymptotic expansions [8], 
we divide the (x, U) space into two regions: an inner 
region where u - CO = O(E), and an outer region 
where u - CO = 0( 1) . In each region we solve (5) by 
expanding f in powers of E, and then we match the 

solutions in the intermediate region E < u - CO < 1. 
Once f is found, 4 is determined self-consistently 
from (6). The end result of this is the reduced system 

(18)-(20) below. 

2.1. Inner region 

Consider first the inner region. Introducing the 

stretched coordinate II = (U - CO) /E, and substituting 
f (x, ti, t) = fb + l f’; + . . ,, into (5) we get at 0( 1)) 

a,fb+L‘d,fb+a,~oa,.f~=o, (7) 

and at O(E), 

where we have used F;(Q) = F”(Q) = 0, and have 

defined r = -40 #‘(co) /2. 

2.2. Outer region 

In the outer region, u - CO = 0( l), we substitute 
J(n,u,t)=~~+;t~JP+...into(5),andgetatO(l), 

(9) 

p_I 6 
n (u - c~)~ 

440 - - FA (5,. (10) 
u - co 

Because FA( CO) = F: ( CO) = 0, there are no singular- 
ities in (9) and ( 10): the stationary inflection point 
condition smooths the singularity created by the res- 
onant particles at O(E), and moves the singularity to 
0( E’) in the expansion. 

2.3. Matching 

We have constructed two asymptotic expansions for 
f: f’in (7) and (8) w K h’ h 1s valid in the inner region, 
U-CO = O(E); and f” in (9) and (10) which is valid 

in the outer region u - CO = 0( 1) . The approximation 
will be consistent provided the solutions match in the 
overlap, or intermediate, region E << u - CO < 1. To 

check this, it is convenient to introduce the interme- 
diate variable 7 = (U - CO)/E’/’ = l 2i3v. To guaran- 
tee the matching, we impose the boundary condition 

fb N l/v’ (or smaller) as u + 00 on Eq. (7), and 
get from (8) the following asymptotic expression for 

f’ is the intermediate region, 

f’(x,qt) =&T-E 
s 

a,rdx+0(e4’3). (11) 

On the other hand, from (9) and ( lo), in the matching 

region, 

P(?,, r], t) = A3 7g + E i a,i’ + O( #) (12) 
n 

After taking the Fourier transform of ( 11) we con- 
clude that at O(E) in the intermediate region p, = 7. 
Therefore, as required, the two solutions match. 

2.4. Self-consistent potential 

The next step is to determine the potential 4 self- 
consistently from the Poisson equation (6). Expand- 

ing both sides of (6) in powers of E, we get at 0( 1) , 

cc 

G (nko) +(I = - 
s 

j;ddu, (13) 

-cu 

and at O(E), 

G (do) $1 - n/+4 G’ (nko) 40 

=- s”fldu- J&dv. 

-lx --03 

(14) 
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Because s _?du = E j’ Fdu, the zeroth-order term in 
the inner field, fi, contributes to the first-order term of 
4. This is the reason why & appears in ( 14) and not in 

( 13). Note also that F;f( CO) = F/( co) = 0 guarantees 
that the integrals in ( 13) and ( 14) are not singular. 

Substituting (9) into ( 13), and using D( ka, CO) = 
0 in (3). we conclude n = fl, and 

$0 = $0 ( 1, t) ei-’ + $0 ( .- I, 1) e-‘.* . (15) 

That is, the single-wave spatial structure of the poten- 
tial arises naturally from the leading-order balance in 

(6). To determine the time evolution of $0, we sub- 
stitute (10) into (14) and get 

where ( ) denotes average over x and u, 

(16) 

(17) 

--03 0 

y = c7,D(ka,ce), and h = Z4kt&D(ko,co), where 

D (c, k) is the dispersion function (3). 

2.5. Reduced Vlasov-Poisson equation 

Eqs. (7) and (16) form a closed, self-consistent 

system of equations describing the nonlinearly sat- 
urated state in the vicinity of the stationary in- 

flection point. To simplify the notation we define 
c = sign ( y), ! = sign (A), and use the conven- 

tion sign (0) = 0. Also, we rescale u --) /h/r/ u, 

r + /r/h/ t, define f = /y//A2 f& a E (y/A)' $0, 
and rewrite (7) and (16) as 

a,f + u d, f + a&J a,. f = 0 3 (18) 

p=a(t)ei”+a*(f)e-iX, (19) 

*$ + iLa= i (evixf). (20) 

The reduced system (18)-(20) is universal in the 
sense that it has no free parameters, and it is inde- 
pendent of the equilibrium Fe. The only requirements 
are that Fe has a stationary inflection point at CO, that 
.%a # 0, and that the pe~urbation is localized around 

co. These requirements are satisfied for the beam- 
plasma, the bump-on-tail, and the two-stream instabil- 
ity problems, among others. In particular, discretizing 
the distribution function f as a finite number of point 

charges, and assuming Q = 0, we recover as an special 
case the single-wave beam-plasma model [ 11. Com- 

pared with the approach followed in Ref. [ 31, the re- 

duced equation ( 18)-(20) has the advantage that it is 
not restricted to perturbations along the unstable man- 

ifold. Also, the amplitude equation in Ref. [ 31, con- 
tains an infinite number of terms which make difficult 
to draw conclusions on the nonlinear saturation of the 
perturbation. 

The reduced equation ( 18)-(20) has the same 
structure as an equation derived by Churilov and 
Shukhman [9] for the nonlinear evolution of the criti- 
cal layer in a marginally stable shear flow. The reason 

for this lays in the analogy between the Vlasov- 
Poisson equation, and the vorticity defect equation 

f4]. In fact, one can conceive the derivation of the 
critical layer equation in Ref. [9] as consisting of 
two steps: in the first step, one reduces the 2D Eu- 

ler equation to the vorticity defect equation, as done 

in Ref. [4] ; and in the second step, as it is shown 
here, one reduces the vorticity defect equation to the 
critical layer equation. Another example in which an 
advection equation of the form (18) is coupled to an 

amplitude equation of the form (20), is the system 

derived by Warn and Gauthier [ lo] in the study of 
marginalIy unstable baroclinic waves in a fluid. 

Recently, there has been a great deal of interest in 
the study of the collective behavior of globally coupled 
oscillator systems, and some similarities between the 

Vlasov-Poisson system, and couple oscillator mod- 
els have been noted [ 131. It is interesting to observe 
that the reduced system ( 18)-( 20) can be viewed 
as the kinetic equation for a distribution of identical, 
nonlinear Hamiltonian oscillators coupled through a 
mean field. What is important about this system is that 
the mean-field coupling of the oscillators comes from 
the self-consistent dynamics, and not from an ad-hoc 
model. The ideas discussed above, are to some extent 
independent of the specific form of the coupling, and 
therefore they can be applied to coupled oscillators 
Hamiltonian models in general. 

We have neglected dissipative effects. However, the 
Krook collision model, ac/-laT = -BF, can be incor- 
porated into the analysis. Assuming that Cu = e2 cr, it 



is easy to see that to O(E), collisions are only impor- 

tant in the inner region, and that the right-hand side 
of ( 18) becomes --(Y f. 

The system ( 18)-( 20) inherits all the conservation 
laws of the Vlasov-Poisson system ( l)-(2); it con- 

serves (C(f)) for any function C(f), and it has the 
momentumlike, and the energy-like invariants 

P = (l:‘t’) + +I2 , 

E = ((P’/:! - p) f) + tiui". (21) 

3. Linear theory and exact nonlinear solutions 

The linear theory of equilibrium solutions of the 
form f = fo( p), a = 0, is straightforward. Substituting 

f = fo( 11) + C Xn( u) einir--cf) , a = peeincf 
I,=--ix1 

(22) 

into ( 18)-( 20), and neglecting the nonlinear terms, 
we get the dispersion relation d(c) = 0, where 

d(c) E pc - t? - s Ado, 
11 - c 

--ixI 

(23) 

As expected, (23) is the leading-order part of the 

dispersion relation (3) for the equilibrium F’(U) + 
e2 fo( (u - CO) /E). In the same way as is done for the 

Vlasov-Poisson system, the linear initial value prob- 

lem can be solved using Laplace transforms, and Lan- 
dau damping, both linear and non-linear [ II], can be 
studied in the context of the reduced system. Also, us- 
ing the Nyquist method, necessary and sufficient con- 
ditions for the instability can be derived. 

The reduced system admits a large class of exact 
nonlinear solutions which are the analogue of the BGK 
modes [ 121 for the Vlasov equation. These solutions 
are useful to model coherent structures, and to under- 
stand the nonlinear saturation of instabilities. To con- 

struct them, we substitute f = f (<, u), with l= X-C t, 
and n = pe”-“” into ( 18) and (20), and get 

2fff*f) =. 
a(S,u) ’ 
(fe-‘()= (Gac)p, 

(24) 

(25) 

where H = $ ( u - c)’ - 2p cos 6, and the integral in 
(.) is taken oier u and 5. Any function of the form f = 
f ( II) is a solution of Eq. (24). However, f = f(H) 
will he a self-consistent solution of ( 18) and (20), 
only if (25) is also satisfied. For example, f(H) = 
exp( -H) will be a solution provided 2J;i;Ir (2~) = 

v”&(e - UC), where Ii (z) is the modified Bessel 
function of order one. It is interesting to observe that 
in the small amplitude limit, p + 0, Eq. (25 ), which 

determines the speed of the wave c in terms of its 
amplitude p, becomes the linear dispersion relation 

(23); and the nonlinear solution f = f(H) becomes 
the neutral mode, 

f =f((u-CP) -2& cos(x - ct) . (26) 

4. Concluding remarks 

We conclude with some remarks on the problem of 
integrability and chaos in plasma and fluid systems. 
In an integrable Hamiltonian, particles move on KAM 

( Kolmogorov-Arnold-Moser) tori, and the problem 
of transition to chaos is to determine the fate of these 
tori when a perturbation is added. Since the pioneer- 
ing work of Poincare, important advances, including 
the well-known KAM theorem, have been done in the 
study of this problem in the case of finite degrees-of- 

freedom (d.o.f.) systems. However, the case of infinite 
d.o.f. systems has proved to be considerably harder to 

study. From the Lagrangian point of view, the exact 

solution (24) and (25) correspond to an infinite d.o.f. 
integrable Hamiltonian system in which the “particles” 

(i.e. electrons in the plasma physics context, or vor- 
ticity elements in fluid dynamics) move on the level 
sets of ff H) which are in fact the KAM tori of the 
Hamiltonian H = i ( L’ - c)’ - 2pcos5. Following 
the intuition of finite d.o.f. systems, one expects that, 
when a perturbation is added, some of the tori will be 
destroyed whereas others will persist in some sense. 
This picture is supported by recent numerical simula- 
tion of the beam plasma instability with a finite, but 
large ( lo”), number of particles [ 141. In these sim- 

ulations, it is observed that a fraction of particles is 
trapped in what seems to be time-dependent invariant 
surfaces. The characterization of these KAM-like tori 
in the infinite d.o.f. limit, and the general problem of 
chaos and integrability in the reduced system are prob- 
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lems that we plan to address in a future publication. 
These problems are closely related to the problem of 
self-consistent chaotic vorticity mixing. 

Another interesting problem is the relation be- 
tween negative energy modes and instability. The re- 
duced system applies to linearly stable equilibria with 
F&(Q) = /$‘(~a) = 0, and it is known [6] that such 

equilibria can support neutral modes with negative 
energy which can lead to instability via dissipation or 

nonlinearity. 

I thank W.R. Young for many valuable conversa- 
tions. and for important suggestions to early versions 
of this manuscript. Also, it is a pleasure to acknowl- 

edge conversations with J.M. Greene, N.J. Balmforth, 

and T. Warn. This work is supported by the National 
Science Foundation Grant No. NSF OCE 9529824. 

References 

W.E. Drummond, J.H. M&t&erg. T.M. O’Neil, J.R. 

Thompson, Phys. Fluids 13 ( 1970) 2422; 

T.M. O’Neil. J.H. Winfrey, J.H. Malmberg, Phys. Fluids 14 

(1971) 1204; 

1.N. Onischenko, A.R. Linetskii, N.G. Matsiborko, V.D. 

Shapiro, V.I. Shevchenko. JETP Lett. 12 ( 1970) 281. 

R.L. Dewar, Phys. Fluids 16 (1973) 431; 

A. Simon, M. Rosenbluth, Phys. Fluids 19 (1976) 1567: 

P. Janssen, Rasnussen, Phys. Fluids 24 ( 1981) 268; 

C. Burnap, M. Miklavcic. B. Willis. P. Zweifel, Phys. Fluids 

28 (1985) 110; 

J. Denavit, Phys. Fluids 28 ( 1985) 2773. 

J.D. Crawford, Phys. Rev. Lett. 73 (1994) 6%; 

Phys. Plasmas 2 (1995) 97. 

D. del-Castillo-Negrete, W.R. Young, N.J. Balmforth. in: 

Proc. 1995 Summer Study Program in Geophysical Fluid 

Dynamics, ed. R. Salmon. Woods Hole Oceanog. Inst. Tech. 

Rept., WH01-96-09 ( 1996); 

N.J. Balmforth. D. del-Castillo-Negrete, W.R. Young, J. Fluid 

Mech. 333 (1997) 197. 

K. Case. Ann. Phys. (NY) 7 ( 1959) 349: Phys. Fluids 21 

(1978) 249. 

B.A. Shadwick, P.J. Morrison, Phys. Len. A 184 ( 1994) 

277; 

J.D. Crawford, Phys. Len. A 209 ( 1995) 356. 

K. Stewartson. Geophys. Astrophys. Fluid Dyn. 9 ( 1978) 

185; 

T. Warn, H. Warn, Stud. Appl. Math. 59 (1978) 37, 

CM. Bender, .%A. Orszag. Advanced Mathematical Methods 

for Scientists and Engineers (McGraw-Hill, New York, 

1978). 

S.M. Churilov, G. Shukhman, J. Fluid Mech. 318 ( 1996) 

189. 

T. Warn, P Gauthier, Tellus A 41 ( 1989) 1 IS. 

M.B. Isichenko. Phys. Rev. Len. 78 (1997) 2369. 

I.B. Bernstein. J.M. Greene, M.D. Kruskal, Phys. Rev. 108 

( 1957) 546. 

S.H. Strogatz, R.E. Mirollo, P.C. IMatthews, Phys. Rev. Len. 

68 ( 1992) 2730; 

P. Smereka, preprint ( 1997). 

1141 J.L. Tennyson. J.D. Meiss, P.J. Morrison, Physica D 71 

(1994) I. 


