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The electric field computed by numerically solving the one-dimensional Vlasov-Poisson system is used to
calculate Lagrangian trajectories of particles in the wave-particle resonance region. The analysis of these
trajectories shows that, when the initial amplitude of the electric field is above some threshold, two populations
of particles are present: a first one located near the separatrix, which performs flights in the phase space and
whose trajectories become ergodic and chaotic, and a second population of trapped particles, which displays a
nonergodic dynamics. The complex, nonlinear interaction between these populations determines the oscillating
long-time behavior of solutions.
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The Landau conjecturef1g that wave-particle interactions
in a plasma can give rise to wave damping also when colli-
sions are absent represents a milestone in physics not only by
its impact on laboratory and space plasma, but also as a
paradigm for processes that occur in different systemsf2g. In
unmagnetized plasmas, Landau damping is described, in the
framework of the kinetic theory, by the one-dimensional
nonlinear Vlasov-Poisson system of equations
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where f is the electron distribution functionsthe ions are
considered as a motionless back-ground of neutralizing posi-
tive charge with densityn0d andE is the self-consistent lon-
gitudinal electric field.

In the linear theoryf1g, the damping is produced by the
interaction between a wave with phase velocityvf and par-
ticles with velocityv.vf. The physical content of the linear
interaction is conceptually quite simple: particles whose ve-
locity is just below the wave phase velocity in theirtail-on
collision with the wave gain some energy, while particles
whose velocity is just above lose itshead-on collisionsd.
When the former particles are more numerous than the latter
the wave exhibits exponential damping.

The nonlinear regime of the plasma oscillations was first
studied by O’Neil f3g, who found that after a timetp

.Îm/ seEkd sk is the wave vectord, particles have time to
make both tail-on and head-on collisions with the wave so
that the net energy exchange between wave and particles
when averaged in time is null. O’Neilf3g predicted then a
damping rate that, after oscillating with a period of the order
of tp, becomes asymptotically zero through a phase mixing
process, thus stopping the wave dissipation.

In 1996 Isichenkof4g reconsidered the long-time evolu-
tion of generic initial perturbations in a Vlasov plasma and
suggested that an algebraic asymptotic damping for one-
dimensionals1Dd plasma should occur, in spite of the non-
linear interaction effects. These conclusions are based on the
idea that the motion of the resonant particles is not simply
oscillatory, but there are a significant number of them that
escape from the potential well; so the energy balance be-
tween wave and particles is not kept. The Isichenko theory
requires then particles which, aftercolliding with the wave,
perform long flights in the space.

At variance with Isichenko’s theory, numerical simula-
tions f5g show that when starting with a sufficiently large
initial wave amplitude, in the final asymptotic state the wave
energy displays an oscillatory behavior and wave damping is
stopped. The results of numerical simulations have also been
substantiated by Lancellotti and Dorningf6g, who showed
that there exists a critical threshold value of the initial elec-
tric field amplitude above which the Landau damping is as-
ymptotically stopped, and by Danielsonet al. f7g, who ex-
perimentally observed asymptotic oscillation in the electric
field amplitude.

We have faced the Landau damping problem from a dif-
ferent point of view: we have followed and analyzed La-
grangian trajectories of resonant particles in a self-consistent
way. Our analysis is basedsid on the integration of the equa-
tions of motion in the phase space
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where E is the self-consistent electric field, calculated by
solving numerically the Vlasov-Poisson systems1d and s2d,
and sii d on the calculation of the Lyapunov exponents asso-
ciated with the phase space trajectories for a large number
sabout 4000d of initial conditions corresponding to particles
which, in the wave reference, are trapped in the wave poten-
tial well. The numerical integration of the Vlasov equation
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has been performed using the splitting method in the electro-
static approximationf8g, coupled with a finite difference up-
wind schemef9g. In the physical space we have imposed
periodic boundary conditions. In solving Eqs.s1d and s2d,
time is normalized to the inverse of the electron plasma fre-
quencyvpe and velocity to the initial equilibrium thermal
velocity vth; consequently,E is normalized tomvpevth/e
wheree is the electron charge. Finally, the distribution func-
tion f is normalized to the equilibrium particle densityn0.

The initial distribution function is a Maxwellian in the
velocity space, over which a modulation in the physical
space with amplitudeA and wave vectork is superposed:

fsx,v,t = 0d =
1

Î2p
e−v2/2f1 + A cosskxdg. s4d

The simulation domain in the phase space is given byD
=f0,Lxg3 f−vmax,vmaxg, whereLx=2p /k and vmax=6. Out-
side the velocity simulation interval the distribution function
is put equal to zero. Typically a simulation is performed us-
ing Nx=512 grid points in the physical space andNv=1600
grid points in the velocity space. The time stepDt
.0.005–0.001 has been chosen in such a way that the
Courant-Friedrichs-Lewy conditionssee, for example, Ref.
f12gd is satisfied. An energy conservation equation has been
used to control numerical accuracy. The total energy varia-
tions remain always 10−2 times smaller with respect to typi-
cal electric and kinetic energy fluctuations, throughout the
simulation.

We have performed numerical simulations, with a wave
numberk.0.4 sLx=l=15.5d, which corresponds to a phase
velocity of the wavevf.3.162, and the asymptotic evolu-
tion of the resonant particle trajectories has been investigated
for a set of initial perturbation amplitudes larger than the
threshold valueA* predicted inf6g. The time evolution of the
electric field has been followed up tot.1200 and the pre-
viously observedf5g phenomenology has been correctly re-

produced. In the following the results are presented forA
=0.05, but the described physical behavior remains the same.

Solving s3d coupled tos1d ands2d, two different kinds of
motion have been observed as shown in Fig. 1. The trajecto-
ries are described in the wave reference frame, in which each
sign change of the velocity represents a wave-particle inter-
action. At the top in the figure, a trapped trajectory is shown:
the characteristic length of the particle oscillation is of the
order of the wavelength of the initial sinusoidal perturbation
sl=15.5d. In the trajectory at the bottom the resonant par-
ticle, initially trapped in the potential well, performs a long
flight in the phase space, before being retrapped by the wave
potential well. The length of this flight is larger than 6–7
wavelengths.

In Fig. 2, we show Poincaré sections that have been ob-
tained by following a small number of initial conditionssten
particlesd, uniformly distributed in a domain somewhat larger
than the resonant region. Points on thex-v phase space have
been plotted separated by a time interval equal to 2p /v,
wherev is the oscillation frequency of the wave, which has
been accurately determined by performing a time Fourier
spectral analysis on the electric field signal. Only points cor-
responding to times larger than 450 have been plotted.

In the asymptotic regime, i.e., fortù450, the electric field
envelope displays more or less regular oscillations in time,
which we have reported in Fig. 3 by previously separating
the contribution due to the two counterpropagating waves,
that are present in our simulation. As a consequence, the
separatrix in phase space, defined in terms of the single par-

FIG. 1. Trapped particle phase space trajectorysat the topd; es-
caped particle phase space trajectorysat the bottomd.

FIG. 2. Poincaré sections in the phase space.

FIG. 3. Time evolution of the electric field amplitudessolid lined
and of the difference between head-on and tail-on collisions for unit
time sdashed lined.
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ticle Hamiltonian, also oscillates in time. In Fig. 2, we then
reported the position of the separatrix corresponding to the
maximum and the minimum values of the electric field en-
velope. It is worth noting that the behavior of the particles
remains nonergodic outside the exterior dashed lines and in-
side the interior ones, but, in the region in between the tra-
jectories diffuse, displaying an ergodic behavior. The main
differences between the domain delimited by the dashed
lines and the region where trajectories display an ergodic
behavior are localized around thex point of the separatrix.
Actually, in a time dependent Hamiltonian particle energy is
not conserved, so that the boundary between trapped and
untrapped trajectories is only approximately represented by
the separatrix. Looking at the electron distribution function
sFig. 4d, it can be seen that in this figure thex point is split
into two branches which appear superposed. The form of the
ergodicity region near thex point seems then to reproduce
the form of the electron distribution function level curves.

In Fig. 5 we have represented in thex-v phase space the
contour plot of the Lyapunov exponent distribution, which is
a measure of the chaoticity of trajectories. The maximum
values of the Lyapunov exponents appear in a critical zone
around the separatrix between the trapping hole and the free
motion regionf10g. As for the Poincaré sections, the position
of the separatrix corresponding to the maximum and the
minimum values of the electric field envelope are indicated
in the figure by dashed lines. Once again these lines delimit
rather well the zone where we find the maximum values of
the Lyapunov exponents. In conclusion, particles moving in
the phase space between the maximum and the minimum

sizes of the resonant region, display an ergodic and chaotic
dynamics, the contrary occurring for particles which remain
trapped all the time.

We then studied the statistics of phase space flightssa
flight is defined as the portion of trajectory between two
successive sign changes of the velocity in the wave reference
framed. In Fig. 6, the probability distributions of flights as a
function of length in space and in time are shown. In both
histograms two clearly separated populations can be identi-
fied: the first one that performs flights smaller than one
wavelengthsl=Lx=15.5d in space and with time duration
between 30 and 150 and a second one whose flights are
larger than a wavelength and last more than 150 in time.

The first population is formed by particles which remains
always trapped in the potential well, in the second one we
find those particles which, after performing a tail-on colli-
sion, are able to escape from the potential well but are almost
all retrapped, the most probable flight being 3l large, while
very few flights are larger than 5l.

Let us compare the O’Neil scenario with simulation re-
sults: the oscillating energy exchange between wave and par-
ticles is able to stop the Landau damping effect, as predicted
by O’Neil, but according to the O’Neil point of view, the
characteristic time of the wave-particle energy exchange is of
the order of the trapping timetp, which for the initial value
of the wave amplitudeA=0.05 istp.4.5. Moreover in the
O’Neil scenario the assumed ergodic behavior of resonant
particles produces a phase mixing, stopping the wave energy
dissipation but also stopping oscillations in the growth rate.
From our simulation, the electric field envelope in the
asymptotic limit oscillates with a period of the order of 120,
which is strongly different with respect totp, but whose half
value t* .60 ssee Fig. 6d represents the averagesmost prob-
abled value of the flight duration for particles trapped inside
the potential well. It is also worth noting that both the oscil-
lation period and the average value of the flight duration

FIG. 4. Contour plot of the electron distribution function in the
phase space fort=1200.

FIG. 5. Asymptotic Lyapunov exponent distribution in the phase
space.

FIG. 6. x-flights histogramsat the topd and t-flights histogram
sat the bottomd.
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scale with the oscillation amplitude in the same way: i.e., as
A−1/2. This means that the energy exchange mechanism in the
asymptotic state is totally different from that predicted by
Isichenko, but is also somewhat more complicated with re-
spect to the O’Neil view.

The difference from Isichenko’s view is related to the fact
that in f4g a pure ballistic motion is assumed for detrapped
particles, these particles being subject only to integrable
fields. The possibility of Lagrangian chaos and subsequent
diffusion-induced retrapping was ruled out. On the contrary,
the set of self-consistent Lagrangian equationss3d is in gen-
eral nonintegrablef11g, and, as we have shown, displays a
chaotic behavior in the region around the separatrix. In this
region particles are subject to Lagrangian chaos and cannot
follow simply ballistic trajectories at constant velocity. Dif-
fusion in the phase space leads to a retrapping of those par-
ticles escaped from the potential well. Correlations present in
the electric field might induce also very long flights in the
diffusive motion before the particle is retrapped, but infinite
flights are not observedsthey would require a physically un-
realistic electric field, able to produce an infinite variance in
particle velocity fluctuationsd, so the damping must necessar-
ily saturate.

The main difference from the O’Neil view, is represented
by the presence of a population of trapped particles whose
behavior remains all the time nonergodic and which are then
subject to more or less regular oscillations in the potential
well stheir flights correspond to one-half oscillationd. Since
the oscillation period in a sinusoidal well depends on the

oscillation amplitude, even if at some time the phases of
those particles were uniformly distributed, later on their dis-
tribution could display a larger number of particles at some
particular phase. This situation can switch on, for example, a
decreasing in the potential barrier if the largest number of
particles occurs in correspondence with tail-on collisions.
The decreasing level of the barrier then causes the escape of
other particles in the chaotic zone which in turn produces a
further reduction of the energy barrier, and so on. The situa-
tion can be inverted when the peak in the distribution of the
phase of trapped particles in the wave potential well arrives
in correspondence to head-on collisions. This phenomenon is
clearly visible in Fig. 3 where the electric field envelope
amplitude grows when the number of head-on collisions per
unit time is larger than that of tail-on collisions and decreases
in the opposite situation. The characteristic time of this phe-
nomenon is clearly related to the average oscillation period
of particles trapped inside the potential well, which, as seen
in Fig. 6, is of the order of 2t* , i.e., the oscillation time for
the electric field envelope.

The mechanism outlined above furnishes a physical ex-
planation for asymptotic solutions obtained in numerical
simulations. Clearly it does not rule out the possibility that,
for times longer than those numerically investigated, all the
resonant region becomes chaotic and ergodic, giving rise to
the phase mixing predicted by O’Neil and thus stopping the
oscillation in the wave amplitude.
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