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Abstract

Four different Eulerian grid-based Vlasov solvers are discussed, namely a second order method and a fourth order method
(symplectic integrator) using cubic splines for interpolation, the CIP (cubic interpolated propagation) method, and an Euler—
Lagrange method applying two-dimensional cubic interpolants. The four methods will be presented by outlining their algorithm.
The performance of the numerical methods will be compared by numerically solving the Vlasov—Poisson system for the distri-
bution function on a fixed Eulerian grid, for the problem of a two-stream instability in a two-dimensional phase-space.

0 2004 Elsevier B.V. All rights reserved.

Introduction (see the recent works in RefR2,3] and references
therein). It is the purpose of this work to present
Numerical simulations of the Vlasov equation are four of these methods, and test their results by study-
of fundamental importance for the study of many ing a problem of a two-stream instability in a two-
nonlinear processes in kinetic plasmas. An important dimensional phase-space, i.e. namely one spatial di-
method for the numerical solution of the Vlasov— mensionx an one velocity dimension.
Poisson system is the direct solution of the Vlasov Interest in Eulerian grid-based Vlasov solvers arise
equation for the velocity distribution function as a from the very low noise level associated with these
partial differential equation in phase-space. This dif- methods, and the recent advances of parallel com-
ferential equation is discretized on a fixed Eulerian puters have increased the interest in the applications
grid. Since Cheng and Knoft] proposed the second-  of splitting schemes to higher dimensional problems,

order splitting scheme as an efficient time-integration gjnce these splitting schemes adapt very well to com-
method for the Vlasov—-Poisson system, several Eule- yyter with parallel architecture. Generalizations of

rian grid-based Vlasov solvers have been developed hase methods to higher dimensions have been pre-
sented a long time agpt,5]. However, due to the
" Corresponding author. h?gher c.()mput.ational resources demgnded. by these
E-mail address: shoucri.magdi@ireq.céM. Shoucri). higher dimensional numerical simulations, it took a
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long time for the applications of these methods to to Poisson’s equation for the potential by:
Eulerian Vlasov codes to be presented (see the recent

reference$6—10] and references therein). 92p -
It is clear in this context that some comparisons 3.2 = —(1-n.), wheren,= / fdv,
between different Eulerian grid-based Vlasov solvers oo (2)

are pertinent and certainly very useful. In the present
work, we restrict our attention to a spatially one-
dimensional problem. The first method we present
is the second order splitting scheme of Cheng and  _ _3_‘P. 3)
Knorr [1]. The second method is a method based dx

on a fourth-order symplectic integratf#]. The third
method is the CIP (cubic interpolated propagation)
method[11]. All of these three methods apply a split-
ting scheme. The differences between these schemes

are in the implementation of the advection in the ~ 2.1. One-dimensional cubic splines

and v directions. The fourth method uses also an

Eulerian grid but without splitting, so the advectionis ~ This group of numerical methods consists in frac-
done simultaneously in space and velocity direction by tional shifts which are applied to the distribution func-
solving for the orbit or the characteristics in the two- tion. Considering a problem in one-dimensional space,
dimensional phase-space. These characteristics can b& shift consists in advancing the distribution function

i.e.ions are assumed to form an immobile background.
The electric field is calculated from the relation:

2. Thenumerical methods

calculated either exactly or by approximati@h8], or in time by:
calculated by an iterative proceld®], sometimes re-
ferred to in this last case as semi-Lagrangian. Itis in /(.7 + A0 = f(x —gcAt, 1), (4)

fact an Eulerian method advecting simultaneously in \yhere the factorg, depends on the considered ad-
the two directions along the characteristics on a fixed yection. In the present work, we limit ourselves to
Eulerian grid. A better denomination of this method he case where the function value at the intermedi-
would be the Euler-Lagrange method, which we will - ate pointr — g, As is calculated by interpolation using
adopt in this text, since essentially it uses an Eulerian cypjc splines. A recent woid.3] contains a nice com-
grid. The advection of the Vlasov equation in multi-  parison between different interpolating polynomials
dimensions along the characteristics was discussed\here the cubic spline performed favorably. We also
and proposed long time agé], but quite recently ap-  note recently the use of second degree polynomials in
plied. Ref.[3].
Cubic splines are interpolating functions with a cu-

bic polynomial where the function values of the inter-
1. The problem equations polants coincide with the function values at the grid-
points, and the first and second derivatives of adjacent
local interpolants are continuous at the grid-points. In
a higher-dimensional problem the shifts become frac-
tional, i.e. each of the dimension of the phase-space
is shifted separately. The specific order, number of

The performance of the numerical methods is eval-
uated by studying a two-stream instability in the two-
dimensional phase-space-v, where the pertinent

Vlasov equation is: shifts and choice of the size of shift-factors depends
now on the numerical method. In the case of a two-
O f+v-0cf —Eyx-9,f=0. (1) dimensional phase-space problem, the splitting is ef-

fected into two parts, one part dealing with the spatial
f = f(x,v,t) andd denominates partial derivatives. derivative:
The spatial dimension is assumed to be periodic.
Eq. (1) for the electron distribution function is coupled  f“(x, v, + At) = f(x —c- gx - At, v, 1), (5)
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and the other part dealing with the derivative in veloc-
ity space:

fO,v,t+ A= f4x,v—d- gy AL, 1), (6)

where the shift factors arg, = v andg, = —E. The
factorsc andd are constant and are chosen according
to the specific numerical method.

2.1.1. 2nd order method (Cheng and Knorr)
A method of second order in tinj&] is obtained by
splitting Eq.(1) as follows:

e Solved, f +v-d, f =0 for a stepAr/2, @)
e Solve Poisson equation for the electric field,

e Solved, f — E - 9, f =0 for a stepAt, (8)
e Solved, f +v - d, f =0 for a stepAr/2. (9)

This splitting has the advantage that each of thar
v updates is a linear advection effected by applying

successively the shifts:

o fY(x,v,t+Ar)= f(x —c1-gcAL, v, 1), (20)
o fP(x, v+ A= fUx,v—di-guAr, 1), (11)
° f(x,v,t+At)=fb(x—cz~ngt,v,t), (12)

with c1 = 3, c2 = § andd; = 1. That is, half of the
spatial shift is performed first, followed by the total
shift in velocity space, and finally the second half of
the spatial shift is done. This shifts are effected by
calculating the shifted value using a cubic spline in-
terpolation polynomial defined by assuming that the
function, and its first and second derivatives are con-
tinuous at grid points. For the intervél, i + 1), this
polynomial is given by:

Pi(x) = A fi + Bi fi+1+ Cisi + Disiy1,
for x; <x < xjy1,

o Xi4+1— X
- Ax,-

X — X

’ i = ’

Ax,-

Ai (13)

Ax} o
D; = T(Bi — Bi)
and Ax; = x;11 — x;. The second derivative is re-
lated to the value of the function at grid poinfsby:

Axf g
Ci=—- (A7 — A,

Axisiy1+ 2(Ax; + Axi_1)s; + Axi_15i—1
_o(feifi_ sz i)

Ax; Axi_q

83

This cubic polynomial is defined over three grid
points. One can also use a cubic B-spline defined over
four grid points (see Sectich3below), but the results
were essentially the same. A brief comparison be-
tween these two cubic polynomials will be presented.

2.1.2. 4th order method (symplectic integrator)
A method of fourth order in time is obtained by ap-
plying successively the shiffg]:

o fU(x,v,t+At)= f(x —c1-g:AL,v,1), (14)
o fP(x,v,t+At)= fUx,v—dy- guAt, 1), (15)
° f”(x,v,t—f—At)=fb(x—cz~ngt,v,t), (16)
o flx,v, 1+ A= fC(x,v—ds-guAt,1), (17)
o fé(x,v,t+AN=flx —c3-g:At,v, 1) (18)
o fl(x,v, 1+ A1) = fé(x,v—d3-g,At, 1), (19)
° f(x,v,t—l—At):ff(x—C4ongt,v,t) (20)
with

1 1213
C1=C4=m, CZZCSZM,

1/3

d1:d3:2_7121/3, dzz—ﬁ.

The sum over alk; and over alld; is equal to 1 re-

sulting altogether in a whole shift. This symplectic
integrator method2] can be applied in cases where
the Hamiltonian is separable, as in the present case.

2.2. The CIP method

The CIP method11] does not only solve the equa-
tion for the distribution functionf, but additionally
solves the equations for its partial derivativesf
andd, f. Proper equations for the derivatives are ob-
tained by building partial derivatives of the considered
problem-equation. Similar to the cubic spline method,
local cubic interpolants are used for performing the
shifts, but now no additional artificial assumptions
(e.g., concerning the smoothness) have to be made
for uniquely determining the interpolating polynomial,
because the partial derivatives gfare now known,
too. That is, the interpolant is chosen in such a way
that the function values as well as its derivates coin-
cide at the grid-points. One obtains:

Fi(x) = fi + 3y fi)x + aix® + bix® (21)
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with (b) advancingf by
20y fi + Ox fi i — fi

g = 20 Si T O fivs g fi = fivt (22) fPx v+ A

» ax? FUx, v+ d- ExAL 1) (30)

a i a i i — fi = X,V 1 Ex t,1),
Ax Ax (c) advancing, f by

for the interpolant of the distribution functioyi at b
interval i in the discretized space. A corresponding @ f)"(x v, 1+ Al
equation for the interpolation in velocity space is ob- =0y f)*(x,v+dy- ExAt, 1), (32)
tained. The interpolants for the partial derivatives are ,
obtain from the equation: (d) advancing, f (same as (a)); (32)
(0. F) () = By fi + 2aix + 3bix2, (24) ) ﬁresi%r;c:f)half of spatial shift (same as above for the

Similar to the 2nd order cubic spline method, advanc-

ing the equation for a time-stepr is done by first 2.3. Euler—Lagrange method with two-dimensional
applying a spatial shift for half a time-steg\z/2), cubic B-splines

then performing the shift in velocity space for a full

time-step, and finally another spatial shift for half a This method is also called semi-Lagrangian method
time-step. But now, each of these steps is slightly more [12]. We have explained in the introduction our prefer-
complicated than for the cubic splines method, due to ence to call this method Euler-Lagrange method, since
the effect of the derivatives. Altogether the algorithm it is essentially using an Eulerian grid and integrates

reads as follows, witly = % andd; = 1: the Vlasov equation along the characteristics. It differs
from the other methods by the use of two-dimensional
(1) first half of spatial shift interpolation[4]. Thus, no splitting is necessary when
(a) advancingd, f by a problem in a two-dimensional phase space is solved.
Considering the characteristics of the problem equa-
(@ f)ij = @ f)ij tion presented, a integration scheme can be derived,
At i iti
. [ij(axf)in _ vj—1(3xf)ij—1] . which works as follows. Writing Eq1) as
~ (3, I
(25) atf+G-<a ;)zo WlthG=< ”E>, (33)
(b) advancingf by v _
the Euler-Lagrange method calculates the shift factor
féx vt + Ar) d from the equation:
= f(x —c1-VAL, v, 1), (26) EiZAté()?i—gi,tn) (34)

(c) advancing). f by with x = (}) for each grid point at the current time

(3 )" (x, v, 1+ A1) In-
_ Each time-step consists now in first calculating the
=0 f)x —c1-vAL v, 1), (27) shift factor iteratively using the iteration:
d) advancin same as (& 28 - N -
(@ Do f ( (a3) C8) e nG(edbn) 5
(2) total shift in velocity space ) ] ) )
(a) advancing), f by and then applying this factor to the single shift:
O f)ij = (Ox i f@Eit+ AN = f& —2d;.t — Ap). (36)
At The Euler—Lagrange method is a two-step method
—Eit+10y it1j — Ei—10 i-1j|=——> ; S : o
[Eisa @ iz 13 f) 1’]4Ax which means that the distribution function at time

(29) t + At is calculated using information from time
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(calculating the shift factor in E¢35)) as well as from
timer — At (performing the shift in EQ.36)). The shift

in Eq. (36)is effected using a 2D cubic B-spliri@é,8,

12], defined as a tensor product of one-dimensional B-
splines:

Ny Ny

s(x,v) =Y > nijBi(x)B;v),

i=0 j=0

37)

where the B-splines are defined as:

1

Bi(x) = 5

(x —x;)3 X <X < Xjy1,

1+ 3(x — xi41) + 3(x — xi41)% — 3(x — x;)3
Xitl S X < Xj42,

14 3(xi43 — x) 4+ 3(xi43 — )% — B(xi43 — x)°
Xi+2 S X < Xi43,

(ipa—x)% xip3<x <Xita

andB; (x) = 0 otherwise. We have a similar definition
for B;(v). For the calculation of the coefficients of the
B-spline interpolation function (x, v), see details in
Refs.[7,8].

Few iterations are necessary for the calculation of
the shift-factor in the intermediate step in E85) to
converge. A linear interpolation as well as a cubic in-
terpolation have been used for interpolatiﬁg The

85

whose solution at a timg is given as a function of the
initial condition by the relation:

fx,v, 1) = f(x —vt,,v,0). (39)

If we consider at = 0 an initial Maxwellian distribu-
tion perturbed by a small perturbation:

e—v2/2

ver

then the charge densigyat timer will be given by:

f(x,v,t=0)=

(1+ ecogkx)), (40)

plx,)=1- / fx —vt,v,0)dv

— e K*%/2¢ cogkx). (41)

The analytical solution is decaying exponentially in
time. For the numerical solution, the density of the
electrons is calculated at every spatial grid point by
summation over all grid points in velocity space:

Ny Ny
ne(x,t) = Zf(xi, vj, t)= Zf(xi — VL, vj, 0)

j=0 j=0
Ny

=Y f(xi.vj, 0)ecosk(x; — jAvn). (42)
j=0

So the exponential decay in E@i1) is replaced by

results we present use the cubic B-spline interpolation a quasi-periodic function. When at a time= Tz we

for the solution of Eq(35), which, as we shall see,

havek(x; — jAvt) = kx; + 2nn, then the density,

gives a more accurate result than the linear interpola- recovers exactly its value at= 0. This recurrence

tion. It has also been shown 8] for instance, that to
an order QAr?), the displacement calculated in the it-
eration in Eq.(35) is equivalent to the integration of

the orbit along the characteristics. An accurate discus-

sion for the calculation of the characteristics for the
2D and multi-dimensional interpolation can be found
in [4].

3. Theadvection term

time Ty is given by:
2

kAv’

We show in the following the results obtained from the
second order splitting scheme using cubic spline inter-
polation and the second order CIP method. The Euler—
Lagrange method, using two-dimensional interpola-
tion, cannot be applied in the present one-dimensional
problem. We use = 0.1. Two examples will be pre-
sented, with grid point®/, x N, =8 x 32 andN, x

N, = 16 x 32. The length in space i6, = 47 and

Tk = (43)

All previously presented methods are based on ad- velocity space we use5 < v < 5. The recurrence
vection solvers based on interpolation techniques. We time for this case igx = 38.95.

consider first the simple one-dimensional equation:

3 f +vd f=0 (38)

Fig. 1 shows for 8 grid points and 16 grid points
in space respectively the time evolution of the peak
value of p(x, ¢t) calculated analytically (dotted curve,
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-k21212)

log(Ae

log(max(rho))
log(max(rho))

22
log(Ae ¥ 012

) =mmmmee

log(max(rho))
log(max(rho))

L L 1
25 30 35 40

time

(b)

Fig. 1. Time evolution of the peak gf. (a) CIP method (8 grid points). (b) 2nd order cubic splines (8 grid points). (c) CIP method (16 grid
points). (d) 2nd order cubic splines (16 grid points).

Eq.(41)), and numerically (full curve). The results for cal results remain closer to the analytical results for a
the CIP method are shown ig. 1(a), and the results  longer time. The recurrence effectfis= 39 in both

for the second order splitting scheme with the cubic cases. The error in the peak at the recurrence time is
spline interpolation are shown iig. 1(b). One recog-  0.95% in the CIP method and 0.48% in the second or-

nizes that the results fig. 1(b) appear more accurate. der splitting scheme with cubic spline interpolation.
In the CIP-method the numerical curve detaches itself Figs. Za)—(d) present the evolution of the numeri-

earlier in time from the analytical curve. The relative cal densityp (x, ) on a linear scale for 15 recurrence

T e o I e imes for . — 6 1 it and o, — 16 1
g ' points, for the two methods. IRig. 2a) for N, = 8,

ly atr = 6.5. In Fig. 1(b) th ffect ap- : : .
on'y at! N Fig. 4(b) the recurrence effect ap the amplitude ofp is only 38% of the original value

pears att = 39, and reaches a peak of 0.0974, only : .
2.6% less than the initial peak of 0.1. In the results of for the CIP method after 15 recurrence times, while

the CIP method irFig. 1(a), the recurrence time ap- N Fig. 2(b) for the second order splitting scheme with
pears a time-stept earlier, atr, = 38.875, and the cubic spline interpolation, the peak pfs still 73% of
amplitude of the peak at recurrence is 0.0917, about the original peakFigs. 4c)—(d) show the results for
8.3% less than the initial peak of 0.1. the two methods foN, = 16. The second order cubic

Figs. 1(c)—(d) present the equivalent results for the spline splitting scheme is still giving a better conser-
caseN, = 16 grid points. In both cases the numeri- vation of the peak after 15 recurrence times.
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Fig. 2. Time evolution of the peak gf. (a) CIP method (8 grid points). (b) 2nd order cubic splines (8 grid points). (c) CIP method (16 grid

points). (d) 2nd order cubic splines (16 grid points).
4. Thetwo-stream instability

We consider the interval € x < 4r in the spatial
direction and-5 < v < 5 in velocity space.
The initial condition is:

—v2/2
f(x, v,t=0)= vze o (1+8C0qu)).

(44)

This function has two maxima in velocity space at
v = ++/2, and a periodic spatial perturbation. The pa-
rameters of the perturbation are= 0.05 andk = 0.5.

A grid of N, x N, = 32 x 256 points is used. The
time-step isAt = 1/8. The cubic spline in Eq13)is
used with the second order and fourth order splitting
schemes. The cubic polynomials in E¢&L)—(24)are
used with the CIP method. The tensor product of cubic
B-splines in Eq(37) is used with the Euler—-Lagrange
method.

In Fig. 3we present on a logarithmic scale the re-
sults obtained for the time evolution of the four har-
monics E1, E», E3 and E4 of the electric field for
the four different methods. There is a close agreement
for the first two harmonicsFigs. 3e)—(f) show the
time evolution of the mode&3 and E4 in a magni-
fied area. The oscillations of the second order splitting
scheme appear more important for the higher harmon-
ics E3 and E4, but the CIP method deviates com-
pletely. Note the good agreement for the higher har-
monics between the fourth order splitting scheme and
the Euler—Lagrange method.

The time evolution of the electric energy:

1
. (45)

NI =
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Fig. 3. Time evolution of the Fourier modg,; (a), E> (b), E3 (€), E4 (d). Time evolution (magnified) of Fourier modg; (e), E4 (f).

Figs. 4(b), 5(b) and 6(kjhow the results of the sec-
ond order cubic spline and fourth order cubic spline
methods following each other closely. The CIP method
and the Euler-Lagrange method are not far, but the
oscillations of the CIP method have its peaks more
smoothed due to a numerical diffusion associated with
the method14], and showing even a difference where

is presented iffrig. 4. Fig. 5 presents the time evolu-
tion of the kinetic energy,

1 Ly o
L—//vzf(x,v,t)dxdv
X 0 ~%

and the total energy is presentedHig. 6.

1
K.EE.= ¢
2

(46)
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Fig. 6. (a) Time evolution of the total energy, (b) time evolution of the total energy (magnified scale).
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Fig. 7. Phase space contour plots for the evolution of the two-stream instability, calculated from 2nd order splines.

the maxima and minima appear with respect to the phase-space evolution with a final BGK structure ap-
other methods. Note also a small modulation in the pearing, obtained using the second order cubic splines
evolution of the curve associated with the Euler— method.

Lagrange method, probably due to the iterative step A further insight in the difference between these
in Eq. (35). Fig. 7 presents some sequences of the four methods is presented kig. 8 which shows the
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time evolution of the entropy:
1 Ly oo
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associated with the four methods. When the mi-
crostructure was initially evolving, the entropy was
increasing. The entropy curve obtained with the CIP
method grows more rapidly than the entropy curves of
the other methods, underlining a more rapid clean-
ing of the initial microstructure, and then shows a
continuous small growth without reaching saturation,
underlining the numerical dissipation associated with
the CIP method. The entropy curves of the Euler—

/ Computer Physics Communications 166 (2005) 81-93
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Figs. 9a)—(c) show the variation in electron-density:

fOL* n(x,t)dx — fOL‘ n(x,0)dx
fOL“n(x,O)dx

during the simulation, comparing the density conser-
vation of the different numerical methods. The second
and fourth order splitting methods using cubic spline
and the Euler-Lagrange method conserve the density
best Figs. 9a)—(b)). The integral over density for the
second order spline method increases froia £ 0)

to less than 1.00001& = 180), i.e. the percentage
increase is about 0.0018%. The percentage density
increase for the fourth order cubic spline method is
less than 0.0025%, and the Euler-Lagrange method
in Fig. 9Yb) gives a percentage density increase of
0.0015%. For the CIP method, the density increases
much more, about 0.037% kig. 9c), especially dur-

ing the initial phase when the microstructures evolve.
We also show inFig. 9b) the percentage density
increase when the second order splitting method is
solved using cubic B-splines, instead of the cubic
spline in Eq.(13). The percentage density increase
(shown inFig. 9b), with the notation B-spline (2nd))

is now 0.0014% instead of 0.0018%/Hig. Ya). The
other curves presented iRigs. 3—6for the second
order splitting method remained essentially the same
when the cubic B-spline is uselig. 9(c) also demon-
strates the important role of the iteration in E8p) for
calculating the shift-factord, . Linear interpolation as
well as cubic splines were compared for calculating

An = 100 , (48)

Lagrange method and the second order and fourth G in Eq. (35) at the intermediate points. The effect

order cubic spline methods show similar evolution. on density conservation is drastic. When using linear
After the initial rapid growth phase, the curves clearly interpolation, the Euler-Lagrange method shows a lin-
show a saturation indicating that an equilibrium has ear increase of density without stabilization even when
been reached. When the microstructure starts to bereaching the equilibriunfig. %c)), whereas the cubic
cleaned, the final entropy remains constant, indicat- splines interpolation results in very good conservation
ing that these three methods give a good conser- (Fig. 9(a)). This is in agreement with previously re-
vation of the equilibrium. We have added however, ported result§15] showing poor performance of the
for comparison, the curve obtained for the entropy Euler-Lagrange method when linear interpolation is
of the Euler-Lagrange method when a linear inter- ysed for the solution of E¢35).

polation is used for the solution of E¢35) (de-
noted by (lin) in Fig. 8. The curve in this case
follows the entropy curve of the CIP method, un-

For the computational time required to do this sim-
ulation, the fourth order cubic spline method and the
CIP method were a factor of 2.3 slower than the

derlining the numerical diffusion associated with the second order cubic spline method, and the Euler—
Euler-Lagrange method in this case. Hence the im- Lagrangian method was a factor of 6 slower than the
portance of using cubic spline for the iterative step in second order cubic spline method, because of the iter-
Eqg.(35). ative steps involved in E¢35).
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Fig. 9. Density increase in percent.
5. Conclusions for the interpolation in Eq(36). Note also the small

modulation superimposed on the energy curve of the

We have presented results obtained using four EUler-Lagrange method #ig. 6, probably the result
Eulerian grid-based Vlasov solvers, when studying of the iterative step in E35). A linear interpolation
a problem of a two-stream instability. Differences N Ed.(35)leads to a poor performance of the Euler—
observed are sufficient to draw some general con- Lagrange method, especially concerning the conserva-
clusions, which help complement some previously tion of density, where the error shows a continuous lin-
obtained result§l4,15] The entropy of the fourth or-  €ar growth as iffrig. 9(c), and the continuous increase
der cubic spline symplectic integrator method shows in the entropy curve associated with a numerical dif-
a flat saturation of the entropy curve after the ini- fusion (curve Euler-Lagrange (lin) fig. 8), a result
tial rapid cleaning of the microstructure, indicating Previously pointed out in Ref15]. The continuous
nicely the conservation of the equilibrium. The sec- growth of the entropy curve observed with the CIP
ond order cubic spline method and Euler—Lagrange method inFig. 8 clearly underlines a numerical dissi-
method follow closely the entropy curve of the fourth pation associated with this method (a result previously
order symplectic integrator method. All three meth- pointed out in Ref[14]). Note inFigs. 3(e) and (f)
ods show a nice conservation of the density. For the the deviation of the CIP curves from the other curves.
Euler-Lagrange method however, this requires the useAlso, the density conservation of the CIP method in
of cubic B-splines interpolation for the iterative step Fig. 9(c) was a factor of about 15 lower than the
in Eg. (35), in addition to the use of cubic B-splines other methods. Finally we note that the methods we
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presented and discussed are quite general. Recent ap-[5] M. Shoucri, IEEE Trans. Plasma Sci. PS-7 (1979) 69;

plications to the fluid equations of the shallow water,
of the methods of fractional steps associated with in-
tegration along the characteristics, of the associated
Riemann invariants using cubic splines interpolation
[16] have produced very good results.
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