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Abstract

Four different Eulerian grid-based Vlasov solvers are discussed, namely a second order method and a fourth ord
(symplectic integrator) using cubic splines for interpolation, the CIP (cubic interpolated propagation) method, and a
Lagrange method applying two-dimensional cubic interpolants. The four methods will be presented by outlining their al
The performance of the numerical methods will be compared by numerically solving the Vlasov–Poisson system for th
bution function on a fixed Eulerian grid, for the problem of a two-stream instability in a two-dimensional phase-space.
 2004 Elsevier B.V. All rights reserved.
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Introduction

Numerical simulations of the Vlasov equation a
of fundamental importance for the study of ma
nonlinear processes in kinetic plasmas. An import
method for the numerical solution of the Vlaso
Poisson system is the direct solution of the Vlas
equation for the velocity distribution function as
partial differential equation in phase-space. This d
ferential equation is discretized on a fixed Euler
grid. Since Cheng and Knorr[1] proposed the second
order splitting scheme as an efficient time-integrat
method for the Vlasov–Poisson system, several E
rian grid-based Vlasov solvers have been develo
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E-mail address: shoucri.magdi@ireq.ca(M. Shoucri).
0010-4655/$ – see front matter 2004 Elsevier B.V. All rights reserved
doi:10.1016/j.cpc.2004.10.009
(see the recent works in Refs.[2,3] and reference
therein). It is the purpose of this work to prese
four of these methods, and test their results by stu
ing a problem of a two-stream instability in a tw
dimensional phase-space, i.e. namely one spatia
mensionx an one velocity dimensionv.

Interest in Eulerian grid-based Vlasov solvers ar
from the very low noise level associated with the
methods, and the recent advances of parallel c
puters have increased the interest in the applicat
of splitting schemes to higher dimensional problem
since these splitting schemes adapt very well to c
puter with parallel architecture. Generalizations
these methods to higher dimensions have been
sented a long time ago[4,5]. However, due to the
higher computational resources demanded by th
higher dimensional numerical simulations, it took
.
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long time for the applications of these methods
Eulerian Vlasov codes to be presented (see the re
references[6–10]and references therein).

It is clear in this context that some compariso
between different Eulerian grid-based Vlasov solv
are pertinent and certainly very useful. In the pres
work, we restrict our attention to a spatially on
dimensional problem. The first method we pres
is the second order splitting scheme of Cheng
Knorr [1]. The second method is a method bas
on a fourth-order symplectic integrator[2]. The third
method is the CIP (cubic interpolated propagati
method[11]. All of these three methods apply a spl
ting scheme. The differences between these sche
are in the implementation of the advection in thex

and v directions. The fourth method uses also
Eulerian grid but without splitting, so the advection
done simultaneously in space and velocity direction
solving for the orbit or the characteristics in the tw
dimensional phase-space. These characteristics c
calculated either exactly or by approximation[4,8], or
calculated by an iterative process[12], sometimes re
ferred to in this last case as semi-Lagrangian. It is
fact an Eulerian method advecting simultaneously
the two directions along the characteristics on a fi
Eulerian grid. A better denomination of this meth
would be the Euler–Lagrange method, which we w
adopt in this text, since essentially it uses an Eule
grid. The advection of the Vlasov equation in mul
dimensions along the characteristics was discus
and proposed long time ago[4], but quite recently ap
plied.

1. The problem equations

The performance of the numerical methods is ev
uated by studying a two-stream instability in the tw
dimensional phase-spacex–v, where the pertinen
Vlasov equation is:

(1)∂tf + v · ∂xf − Ex · ∂vf = 0.

f = f (x, v, t) and∂ denominates partial derivative
The spatial dimensionx is assumed to be periodi
Eq.(1) for the electron distribution function is couple
t

s

e

to Poisson’s equation for the potential by:

(2)

∂2ϕ

∂x2
= −(1− ne), wherene =

∞∫
−∞

f dv,

i.e. ions are assumed to form an immobile backgrou
The electric field is calculated from the relation:

(3)E = −∂ϕ

∂x
.

2. The numerical methods

2.1. One-dimensional cubic splines

This group of numerical methods consists in fra
tional shifts which are applied to the distribution fun
tion. Considering a problem in one-dimensional spa
a shift consists in advancing the distribution functi
in time by:

(4)f (x, t + �t) = f (x − gx�t, t),

where the factorgx depends on the considered a
vection. In the present work, we limit ourselves
the case where the function value at the interme
ate pointx −gx�t is calculated by interpolation usin
cubic splines. A recent work[13] contains a nice com
parison between different interpolating polynomi
where the cubic spline performed favorably. We a
note recently the use of second degree polynomia
Ref. [3].

Cubic splines are interpolating functions with a c
bic polynomial where the function values of the inte
polants coincide with the function values at the gr
points, and the first and second derivatives of adja
local interpolants are continuous at the grid-points
a higher-dimensional problem the shifts become fr
tional, i.e. each of the dimension of the phase-sp
is shifted separately. The specific order, number
shifts and choice of the size of shift-factors depe
now on the numerical method. In the case of a tw
dimensional phase-space problem, the splitting is
fected into two parts, one part dealing with the spa
derivative:

(5)f a(x, v, t + �t) = f (x − c · gx · �t, v, t),
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and the other part dealing with the derivative in velo
ity space:

(6)f (x, v, t + �t) = f a(x, v − d · gv · �t, t),

where the shift factors aregx = v andgv = −E. The
factorsc andd are constant and are chosen accord
to the specific numerical method.

2.1.1. 2nd order method (Cheng and Knorr)
A method of second order in time[1] is obtained by

splitting Eq.(1) as follows:

(7)• Solve∂tf + v · ∂xf = 0 for a step�t/2,

• Solve Poisson equation for the electric field,

(8)• Solve∂tf − E · ∂vf = 0 for a step�t,

(9)• Solve∂tf + v · ∂xf = 0 for a step�t/2.

This splitting has the advantage that each of thex or
v updates is a linear advection effected by apply
successively the shifts:

(10)• f a(x, v, t + �t) = f (x − c1 · gx�t, v, t),

(11)• f b(x, v, t + �t) = f a(x, v − d1 · gv�t, t),

(12)• f (x, v, t + �t) = f b(x − c2 · gx�t, v, t),

with c1 = 1
2, c2 = 1

2 andd1 = 1. That is, half of the
spatial shift is performed first, followed by the tot
shift in velocity space, and finally the second half
the spatial shift is done. This shifts are effected
calculating the shifted value using a cubic spline
terpolation polynomial defined by assuming that
function, and its first and second derivatives are c
tinuous at grid points. For the interval(i, i + 1), this
polynomial is given by:

Pi(x) = Aifi + Bifi+1 + Cisi + Disi+1,

for xi < x < xi+1,

(13)Ai = xi+1 − x

�xi

, Bi = x − xi

�xi

,

Ci = �x2
i

6
(A3

i − Ai), Di = �x2
i

6
(B3

i − Bi)

and�xi = xi+1 − xi . The second derivativesi is re-
lated to the value of the function at grid pointsfi by:

�xisi+1 + 2(�xi + �xi−1)si + �xi−1si−1

= 6

(
fi+1 − fi

�xi

− fi − fi−1

�xi−1

)
.

This cubic polynomial is defined over three gr
points. One can also use a cubic B-spline defined o
four grid points (see Section2.3below), but the results
were essentially the same. A brief comparison
tween these two cubic polynomials will be presente

2.1.2. 4th order method (symplectic integrator)
A method of fourth order in time is obtained by a

plying successively the shifts[2]:

(14)• f a(x, v, t + �t) = f (x − c1 · gx�t, v, t),

(15)• f b(x, v, t + �t) = f a(x, v − d1 · gv�t, t),

(16)• f c(x, v, t + �t) = f b(x − c2 · gx�t, v, t),

(17)• f d(x, v, t + �t) = f c(x, v − d2 · gv�t, t),

(18)• f e(x, v, t + �t) = f d(x − c3 · gx�t, v, t)

(19)• f f (x, v, t + �t) = f e(x, v − d3 · gv�t, t),

(20)• f (x, v, t + �t) = f f (x − c4 · gx�t, v, t)

with

c1 = c4 = 1

2(2− 21/3)
, c2 = c3 = 1− 21/3

2(2− 21/3)
,

d1 = d3 = 1

2− 21/3
, d2 = − 21/3

2− 21/3
.

The sum over allci and over alldi is equal to 1 re-
sulting altogether in a whole shift. This symplec
integrator method[2] can be applied in cases whe
the Hamiltonian is separable, as in the present cas

2.2. The CIP method

The CIP method[11] does not only solve the equ
tion for the distribution functionf , but additionally
solves the equations for its partial derivatives∂vf

and∂xf . Proper equations for the derivatives are o
tained by building partial derivatives of the consider
problem-equation. Similar to the cubic spline meth
local cubic interpolants are used for performing
shifts, but now no additional artificial assumptio
(e.g., concerning the smoothness) have to be m
for uniquely determining the interpolating polynomia
because the partial derivatives off are now known,
too. That is, the interpolantF is chosen in such a wa
that the function values as well as its derivates co
cide at the grid-points. One obtains:

(21)Fi(x) = fi + (∂xfi)x + aix
2 + bix

3
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(22)ai = −2∂xfi + ∂xfi+1

�x
− 3

fi − fi+1

�x2
,

(23)bi = ∂xfi + ∂xfi+1

�x2
+ 2

fi − fi+1

�x3

for the interpolant of the distribution functionf at
interval i in the discretized space. A correspondi
equation for the interpolation in velocity space is o
tained. The interpolants for the partial derivatives
obtain from the equation:

(24)(∂xFi)(x) = ∂xfi + 2aix + 3bix
2.

Similar to the 2nd order cubic spline method, adva
ing the equation for a time-step�t is done by first
applying a spatial shift for half a time-step(�t/2),
then performing the shift in velocity space for a fu
time-step, and finally another spatial shift for half
time-step. But now, each of these steps is slightly m
complicated than for the cubic splines method, due
the effect of the derivatives. Altogether the algorith
reads as follows, withc1 = 1

2 andd1 = 1:

(1) first half of spatial shift
(a) advancing∂vf by

(∂vf )ij = (∂vf )ij

(25)

− [
vj+1(∂xf )ij+1 − vj−1(∂xf )ij−1

] �t

4�v
,

(b) advancingf by

f a(x, v, t + �t)

(26)= f (x − c1 · v�t, v, t),

(c) advancing∂xf by

(∂xf )a(x, v, t + �t)

(27)= (∂xf )(x − c1 · v�t, v, t),

(28)(d) advancing∂vf (same as (a));
(2) total shift in velocity space

(a) advancing∂xf by

(∂xf )ij = (∂xf )ij

(29)

− [
Ei+1(∂vf )i+1j − Ei−1(∂vf )i−1j

] �t

4�x
,

(b) advancingf by

f b(x, v, t + �t)

(30)= f a(x, v + d1 · Ex�t, t),

(c) advancing∂vf by

(∂vf )b(x, v, t + �t)

(31)= (∂vf )a(x, v + d1 · Ex�t, t),

(32)(d) advancing∂xf (same as (a));

(3) second half of spatial shift (same as above for
first half).

2.3. Euler–Lagrange method with two-dimensional
cubic B-splines

This method is also called semi-Lagrangian meth
[12]. We have explained in the introduction our pref
ence to call this method Euler–Lagrange method, s
it is essentially using an Eulerian grid and integra
the Vlasov equation along the characteristics. It diff
from the other methods by the use of two-dimensio
interpolation[4]. Thus, no splitting is necessary wh
a problem in a two-dimensional phase space is sol
Considering the characteristics of the problem eq
tion presented, a integration scheme can be deri
which works as follows. Writing Eq.(1) as

(33)∂tf + ⇀

G ·
(

∂xf

∂vf

)
= 0 with

⇀

G =
(

v

−E

)
,

the Euler–Lagrange method calculates the shift fa
⇀

d from the equation:

(34)
⇀

d i = �t
⇀

G(
⇀
x i − ⇀

d i, tn)

with ⇀
x = (

x
v

)
for each grid pointi at the current time

tn.
Each time-step consists now in first calculating

shift factor iteratively using the iteration:

(35)
⇀

dk+1
i = �t

⇀

G
(

⇀
x i − ⇀

dk
i , tn

)
and then applying this factor to the single shift:

(36)f (
⇀
x i, t + �t) = f (

⇀
x i − 2

⇀

d i, t − �t).

The Euler–Lagrange method is a two-step meth
which means that the distribution function at tim
t + �t is calculated using information from timet
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(calculating the shift factor in Eq.(35)) as well as from
time t −�t (performing the shift in Eq.(36)). The shift
in Eq. (36) is effected using a 2D cubic B-spline[7,8,
12], defined as a tensor product of one-dimensiona
splines:

(37)s(x, v) =
Nx∑
i=0

Nv∑
j=0

ηijBi(x)Bj (v),

where the B-splines are defined as:

Bi(x) = 1

6

×




(x − xi)
3 xi � x < xi+1,

1+ 3(x − xi+1) + 3(x − xi+1)
2 − 3(x − xi)

3

xi+1 � x < xi+2,

1+ 3(xi+3 − x) + 3(xi+3 − x)2 − 3(xi+3 − x)3

xi+2 � x < xi+3,

(xi+4 − x)3 xi+3 � x < xi+4

andBi(x) = 0 otherwise. We have a similar definitio
for Bj (v). For the calculation of the coefficients of th
B-spline interpolation functions(x, v), see details in
Refs.[7,8].

Few iterations are necessary for the calculation
the shift-factor in the intermediate step in Eq.(35) to
converge. A linear interpolation as well as a cubic
terpolation have been used for interpolating

⇀
G. The

results we present use the cubic B-spline interpola
for the solution of Eq.(35), which, as we shall see
gives a more accurate result than the linear interp
tion. It has also been shown in[8] for instance, that to
an order O(�t2), the displacement calculated in the
eration in Eq.(35) is equivalent to the integration o
the orbit along the characteristics. An accurate disc
sion for the calculation of the characteristics for t
2D and multi-dimensional interpolation can be fou
in [4].

3. The advection term

All previously presented methods are based on
vection solvers based on interpolation techniques.
consider first the simple one-dimensional equation

(38)∂tf + v∂xf = 0
whose solution at a timetn is given as a function of th
initial condition by the relation:

(39)f (x, v, tn) = f (x − vtn, v,0).

If we consider att = 0 an initial Maxwellian distribu-
tion perturbed by a small perturbation:

(40)f (x, v, t = 0) = e−v2/2

√
2π

(
1+ ε cos(kx)

)
,

then the charge densityρ at timet will be given by:

ρ(x, t) = 1−
∞∫

−∞
f (x − vt, v,0)dv

(41)= e−k2t2/2ε cos(kx).

The analytical solution is decaying exponentially
time. For the numerical solution, the density of t
electrons is calculated at every spatial grid point
summation over all grid points in velocity space:

ne(x, t) =
Nv∑
j=0

f (xi, vj , t) =
Nv∑
j=0

f (xi − vj t, vj ,0)

(42)=
Nv∑
j=0

f (xi, vj ,0)ε cos
(
k(xi − j�vt)

)
.

So the exponential decay in Eq.(41) is replaced by
a quasi-periodic function. When at a timet = TR we
havek(xi − j�vt) = kxi + 2πn, then the densityne

recovers exactly its value att = 0. This recurrence
timeTR is given by:

(43)TR = 2π

k�v
.

We show in the following the results obtained from t
second order splitting scheme using cubic spline in
polation and the second order CIP method. The Eu
Lagrange method, using two-dimensional interpo
tion, cannot be applied in the present one-dimensio
problem. We useε = 0.1. Two examples will be pre
sented, with grid pointsNx × Nv = 8 × 32 andNx ×
Nv = 16× 32. The length in space isLx = 4π and
in velocity space we use−5 � v � 5. The recurrence
time for this case isTR = 38.95.

Fig. 1 shows for 8 grid points and 16 grid poin
in space respectively the time evolution of the pe
value ofρ(x, t) calculated analytically (dotted curv
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6 grid
(a) (c)

(b) (d)

Fig. 1. Time evolution of the peak ofρ. (a) CIP method (8 grid points). (b) 2nd order cubic splines (8 grid points). (c) CIP method (1
points). (d) 2nd order cubic splines (16 grid points).
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Eq.(41)), and numerically (full curve). The results fo
the CIP method are shown inFig. 1(a), and the result
for the second order splitting scheme with the cu
spline interpolation are shown inFig. 1(b). One recog-
nizes that the results inFig. 1(b) appear more accurat
In the CIP-method the numerical curve detaches it
earlier in time from the analytical curve. The relati
error att = 4.75 in Fig. 1(a) is 0.1, while for the re
sults in Fig. 1(b) the relative error of 0.1 is reache
only at t = 6.5. In Fig. 1(b) the recurrence effect ap
pears att = 39, and reaches a peak of 0.0974, o
2.6% less than the initial peak of 0.1. In the results
the CIP method inFig. 1(a), the recurrence time ap
pears a time-step�t earlier, attn = 38.875, and the
amplitude of the peak at recurrence is 0.0917, ab
8.3% less than the initial peak of 0.1.

Figs. 1(c)–(d) present the equivalent results for t
caseNx = 16 grid points. In both cases the nume
cal results remain closer to the analytical results fo
longer time. The recurrence effect istn = 39 in both
cases. The error in the peak at the recurrence tim
0.95% in the CIP method and 0.48% in the second
der splitting scheme with cubic spline interpolation

Figs. 2(a)–(d) present the evolution of the nume
cal densityρ(x, t) on a linear scale for 15 recurren
times for Nx = 8 grid points and forNx = 16 grid
points, for the two methods. InFig. 2(a) for Nx = 8,
the amplitude ofρ is only 38% of the original value
for the CIP method after 15 recurrence times, wh
in Fig. 2(b) for the second order splitting scheme w
cubic spline interpolation, the peak ofρ is still 73% of
the original peak.Figs. 2(c)–(d) show the results fo
the two methods forNx = 16. The second order cub
spline splitting scheme is still giving a better cons
vation of the peak after 15 recurrence times.
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6 grid
(a) (c)

(b) (d)

Fig. 2. Time evolution of the peak ofρ. (a) CIP method (8 grid points). (b) 2nd order cubic splines (8 grid points). (c) CIP method (1
points). (d) 2nd order cubic splines (16 grid points).
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4. The two-stream instability

We consider the interval 0� x < 4π in the spatial
direction and−5� v � 5 in velocity space.

The initial condition is:

(44)f (x, v, t = 0) = v2 e−v2/2

√
2π

(
1+ ε cos(kx)

)
.

This function has two maxima in velocity space
v = ±√

2, and a periodic spatial perturbation. The p
rameters of the perturbation areε = 0.05 andk = 0.5.
A grid of Nx × Nv = 32 × 256 points is used. Th
time-step is�t = 1/8. The cubic spline in Eq.(13) is
used with the second order and fourth order splitt
schemes. The cubic polynomials in Eqs.(21)–(24)are
used with the CIP method. The tensor product of cu
B-splines in Eq.(37) is used with the Euler–Lagrang
method.
In Fig. 3 we present on a logarithmic scale the
sults obtained for the time evolution of the four ha
monicsE1, E2, E3 and E4 of the electric field for
the four different methods. There is a close agreem
for the first two harmonics.Figs. 3(e)–(f) show the
time evolution of the modesE3 andE4 in a magni-
fied area. The oscillations of the second order split
scheme appear more important for the higher harm
ics E3 and E4, but the CIP method deviates com
pletely. Note the good agreement for the higher h
monics between the fourth order splitting scheme
the Euler–Lagrange method.

The time evolution of the electric energy:

(45)E.E.= 1

2

1

Lx

Lx∫
0

E2 dx,
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(a) (d)

(b) (e)

(c) (f)

Fig. 3. Time evolution of the Fourier modeE1 (a),E2 (b), E3 (c), E4 (d). Time evolution (magnified) of Fourier modeE3 (e),E4 (f).
- c-
ine
od
the
ore
ith

re
is presented inFig. 4. Fig. 5 presents the time evolu
tion of the kinetic energy,

(46)K.E.= 1

2

1

Lx

Lx∫
0

∞∫
−∞

v2f (x, v, t)dx dv

and the total energy is presented inFig. 6.
Figs. 4(b), 5(b) and 6(b)show the results of the se
ond order cubic spline and fourth order cubic spl
methods following each other closely. The CIP meth
and the Euler–Lagrange method are not far, but
oscillations of the CIP method have its peaks m
smoothed due to a numerical diffusion associated w
the method[14], and showing even a difference whe
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(a) (b)

Fig. 4. (a) Time evolution of the electric energy, (b) time evolution of the electric energy (magnified scale).

(a) (b)

Fig. 5. (a) Time evolution of the kinetic energy, (b) time evolution of the total energy (magnified scale).

(a) (b)

Fig. 6. (a) Time evolution of the total energy, (b) time evolution of the total energy (magnified scale).
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(a) (d)

(b) (e)

(c) (f)

Fig. 7. Phase space contour plots for the evolution of the two-stream instability, calculated from 2nd order splines.
the
the
r–
tep
the

ap-
ines

se
the maxima and minima appear with respect to
other methods. Note also a small modulation in
evolution of the curve associated with the Eule
Lagrange method, probably due to the iterative s
in Eq. (35). Fig. 7 presents some sequences of
phase-space evolution with a final BGK structure
pearing, obtained using the second order cubic spl
method.

A further insight in the difference between the
four methods is presented inFig. 8 which shows the
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Fig. 8. Time evolution of the entropy.

time evolution of the entropy:

(47)S = − 1

Lx

Lx∫
0

∞∫
−∞

f lnf dx dv

associated with the four methods. When the
crostructure was initially evolving, the entropy w
increasing. The entropy curve obtained with the C
method grows more rapidly than the entropy curve
the other methods, underlining a more rapid cle
ing of the initial microstructure, and then shows
continuous small growth without reaching saturati
underlining the numerical dissipation associated w
the CIP method. The entropy curves of the Eul
Lagrange method and the second order and fo
order cubic spline methods show similar evolutio
After the initial rapid growth phase, the curves clea
show a saturation indicating that an equilibrium h
been reached. When the microstructure starts to
cleaned, the final entropy remains constant, indi
ing that these three methods give a good con
vation of the equilibrium. We have added howev
for comparison, the curve obtained for the entro
of the Euler–Lagrange method when a linear int
polation is used for the solution of Eq.(35) (de-
noted by (lin) in Fig. 8). The curve in this cas
follows the entropy curve of the CIP method, u
derlining the numerical diffusion associated with t
Euler–Lagrange method in this case. Hence the
portance of using cubic spline for the iterative step
Eq.(35).
Figs. 9(a)–(c) show the variation in electron-dens

(48)�n = 100

∫ Lx

0 n(x, t)dx − ∫ Lx

0 n(x,0)dx∫ Lx

0 n(x,0)dx
,

during the simulation, comparing the density cons
vation of the different numerical methods. The seco
and fourth order splitting methods using cubic spl
and the Euler–Lagrange method conserve the den
best (Figs. 9(a)–(b)). The integral over density for th
second order spline method increases from 1(t = 0)

to less than 1.000018(t = 180), i.e. the percentag
increase is about 0.0018%. The percentage den
increase for the fourth order cubic spline method
less than 0.0025%, and the Euler–Lagrange me
in Fig. 9(b) gives a percentage density increase
0.0015%. For the CIP method, the density increa
much more, about 0.037% inFig. 9(c), especially dur-
ing the initial phase when the microstructures evo
We also show inFig. 9(b) the percentage densi
increase when the second order splitting metho
solved using cubic B-splines, instead of the cu
spline in Eq.(13). The percentage density increa
(shown inFig. 9(b), with the notation B-spline (2nd)
is now 0.0014% instead of 0.0018% inFig. 9(a). The
other curves presented inFigs. 3–6for the second
order splitting method remained essentially the sa
when the cubic B-spline is used.Fig. 9(c) also demon-
strates the important role of the iteration in Eq.(35)for
calculating the shift-factors

⇀

d i . Linear interpolation as
well as cubic splines were compared for calculat
⇀

G in Eq. (35) at the intermediate points. The effe
on density conservation is drastic. When using lin
interpolation, the Euler–Lagrange method shows a
ear increase of density without stabilization even wh
reaching the equilibrium (Fig. 9(c)), whereas the cubi
splines interpolation results in very good conservat
(Fig. 9(a)). This is in agreement with previously r
ported results[15] showing poor performance of th
Euler–Lagrange method when linear interpolation
used for the solution of Eq.(35).

For the computational time required to do this si
ulation, the fourth order cubic spline method and
CIP method were a factor of 2.3 slower than t
second order cubic spline method, and the Eu
Lagrangian method was a factor of 6 slower than
second order cubic spline method, because of the
ative steps involved in Eq.(35).
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5. Conclusions

We have presented results obtained using f
Eulerian grid-based Vlasov solvers, when study
a problem of a two-stream instability. Differenc
observed are sufficient to draw some general c
clusions, which help complement some previou
obtained results[14,15]. The entropy of the fourth or
der cubic spline symplectic integrator method sho
a flat saturation of the entropy curve after the i
tial rapid cleaning of the microstructure, indicatin
nicely the conservation of the equilibrium. The se
ond order cubic spline method and Euler–Lagra
method follow closely the entropy curve of the four
order symplectic integrator method. All three me
ods show a nice conservation of the density. For
Euler–Lagrange method however, this requires the
of cubic B-splines interpolation for the iterative st
in Eq. (35), in addition to the use of cubic B-spline
for the interpolation in Eq.(36). Note also the smal
modulation superimposed on the energy curve of
Euler–Lagrange method inFig. 6, probably the resul
of the iterative step in Eq.(35). A linear interpolation
in Eq. (35) leads to a poor performance of the Eule
Lagrange method, especially concerning the conse
tion of density, where the error shows a continuous
ear growth as inFig. 9(c), and the continuous increa
in the entropy curve associated with a numerical
fusion (curve Euler–Lagrange (lin) inFig. 8), a result
previously pointed out in Ref.[15]. The continuous
growth of the entropy curve observed with the C
method inFig. 8 clearly underlines a numerical diss
pation associated with this method (a result previou
pointed out in Ref.[14]). Note in Figs. 3(e) and (f)
the deviation of the CIP curves from the other curv
Also, the density conservation of the CIP method
Fig. 9(c) was a factor of about 15 lower than t
other methods. Finally we note that the methods
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presented and discussed are quite general. Recen
plications to the fluid equations of the shallow wat
of the methods of fractional steps associated with
tegration along the characteristics, of the associa
Riemann invariants using cubic splines interpolat
[16] have produced very good results.
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