Consider the equation
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where w; = A, and

U, = =25 {agn(zr + a) + @ (2 — a)] — [, (xx + a) — @, (2 — a)]}. (2)

In the case of a simply-supported beam we have ¢,(z) = /2 sin(nrz), w, = (n7)? and
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If a is constant, equations (1)-(3) can be solved in closed form. Let

w(z,t) =) clt) pal) (4)

be the solution for the profile function.

The motion of the ball is given by
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with initial conditions
2(0) = w(zg, ty);  2(0) =0, (6)

From the model equations we also have

a=a(t) =7 vwla,t) - (1) (7)
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From equation (7) we have

w(zp, t) = 2(t) + (%)2 = u(t) ®)

In principle, if the equations were solved simultaneously with a(t), the expression u(t) in
equation (8) would be equal to w(zg,t) given by (4). Since equations (1)-(3) are solved
under the assumption of constant a, they will differ. We may try two possible approaches:

1. find a (constant) which minimizes
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where t¢ is the final time of impact;

2. an updated constant value of a can be obtained from equation (8) and plugged back
into equations (1)-(3) for an iterative procedure.



