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Abstract 

A fast, accurate anti robust method to obtain a numerical solution to the Vlasov equation is presented. The method is 
based on time splitting to separate the initial equation into a set of simple transport type equations, and the solution of 
the resulting split equations by a fluid flux balance method. The goal of the present paper is to present this method for 
constant coefficients, and to show its extension to second order in phase space variable for equations such as the relativistic 
or the gyrokynetic Vlasov equation. Numerical results of simulations in 1 and 2 dimensions are presented. @ 1999 Elsevier 
Science B.V. 
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I. Introduct ion  

Since the introduction of the time splitting method to solve numerically the Vlasov equation (Eq. ( 1 ) ) many 
techniques have been used to solve the equations obtained after the splitting is done: Finite Elements [8] ,  
Finite Differences [9] ,  Spline Interpolation [3].  

The earliest of  these techniques is the use of  Fast Fourier Transforms (FF-q') [4] .  The great difficulty of  the 
method comes from the FFT principle: as the FTT is a Fourier series development it is valid only on a periodic 
space, and as the velocity (or momentum) space is never periodic, we must surround the function values by 
an equal number of  zeros to avoid aliasing. The present obligatior is very expensive in computer memory  and 
as a corollary in computer  time [ 10]. The method presented in [ 11 ] reduce,; the need for storage, but is still 
expensive in computer  time, every transform being evaluated twice. 

The technique of formal integration and calculation of the function values and shift of  the calculated values 
at the computational grid knots by cubic splines interpolation (or MOS, Method Of Splines) [3] is much faster 
than the previous one, but still slower than the method we preseat in the actual work (by a factor 3.5 on a 
scalar computer, and up to a factor 10 on a fast vector computer) .  

The present paper deals with the "Flux Balance" (FB) method, a technique based on application of  the 
ENO [7] schemes method, and a way how to apply that basic idea to solve the equations following from 
Vlasov equation splitting. 
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2. The Flux Balance method 

2.1. The time splitting 

The aim of this paper is to present a numerical solution to the Vlasov equation, 

fO._£_~ + P" V x f  + G(x,  t ) V p f ( x , p ,  t) = O, 
Ot 

coupled to Maxwell equations in the most general case, and to the Poisson equation 

(1) 

q-oo 

Vx • E ( x , t )  = f f ( x , p , t )  d p -  No 
- -  O O  

(2) 

in the electrostatic case. 
In the equations presented in this paper, time is normalised Eo the inverse of the plasma frequency: wp, 

velocity to thermal speed (and so p to mVthermal), and space to Debye length. G(x,  t) is a generalised force 
term, E in the electrostatic case, (E  + v x B) in the presence of a magnetic field B, and ( E  + p x B / y ) / y  in 
the relativistic case (v = p ly ) .  

To simplify the presentation of the method we present the ID electrostatic case, the generalisation to higher 
dimensions being straightforward. In this case the Vlasov equation simplifies to 

Of Of Of + v + E(x,  t) = 0 (3) 

with initial condition f ( x ,  v, t = 0) = f0(x,  v). 
Eq. (3) can be written using a differential operator form, 

Of + L f  O, L L1 -+- L2, (4) 
Ot 

with 

0 
Ll = v - - ,  (5) 

Ox 
O 

L2 = E(x ,  t) 0--7" (6) 

Following the splitting method idea, Eq. (3) is now replaced by the couple of equations (7) and (8),  

--f fO~--+vO~* = 0 ;  f * ( x , v , t = n A t ) = f * * ( x , v , t = ( n - - 1 ) A t ) ,  (7) 
at Ox 

of** of** f**rx * x ~ + E ( x , t = n A t ) - : - - = O ;  j , , v , t = n A t ) =  f ( , v , t = n A t ) ,  (8) 
Ot 

which are solved iteratively, the result of one of the equations being used as the initial condition for the other. 
In spite of the fact that E(x,  t) is time dependent, since a change in v-space does not change the density in 

the Poisson equation (2),  the electric field remains constant when solving Eq. (8). 
In practice, since we look for a scheme of second order in time, we take the splitting symmetrical in time, 

obtaining a leap-frog type scheme. 
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2.2. The basic idea 

In order to obtain a numerical solution to the Vlasov equation, we have to solve Eqs. (7) and (8),  which 
have the form of a one-dimensional fluid equation, and can then be written in the form 

ag(x, t) a 
a--~ +-~x (ag(x , t ) )  = 0. (9) 

Now we shall follow [7] to obtain a non-oscillatory scheme. Our goal is the solution of equations of Eq. (9) 
type on a grid, assuming the function to be smooth in each elementary cell. We replace g(x, t) by its smoothed 
approximation 

~x/2 

g (x , t )  = -~x g(x + h , t ) d h ,  (10) 

-~x /2  

and we introduce Eq. (10) in (9), 

Og(x,t) 1 [ a g ( x + A x / 2 ,  t ) - a g ( x - A x / 2 ,  t ) ]=O.  ( I1)  ------U-+ 

The equation so obtained is of the same degree of smoothness as Eq. (9). If "a" is a function of x and/or t 
as in relativistic or the gyrokinetic Vlasov equations, Eq. (11) becomes 

~g(x, t) l 
a----'--~- + ~x  [a(x + Ax/2,  t )g(x  + Ax/2,  t) -- a(x -- Ax/2,  t )g(x  -- Ax/2,  t )]  = 0. (12) 

Integrating Eq. ( I 1 ) for a time step gives 

t+~t 

At f [ag(x + Ax/2,  t) -- ag(x--  Ax/2,  t)] dt (13) g(x, t + At) = g (x , t )  -- ~ 

t 

2.3. The flux balance 

The integral term in Eq. (13) is the quan~tity of fluid gained or lost by the cell at its right and left boundaries. 
To find that quantity formally we introduce an evolutionary function X(to, t, x) (with to the initial time). That 
function had to obey to the following rules: 

8X 
g(x, t) = g(X(.~o, t, x) ) c9--~ (14) 

is the solution of the PDE 

aX 0X 
- -  + a - -  = 0  ( 1 5 )  
at 0x 

with initial condition X(to, to, x) = x and boundary condition ax 7;  (to,  t, x )  = - a (  x,  t ).  
After introduction of (14) into Eq. (13), and using (15), we obtain finally, for every cell xi, 

[ x,+,Xx/2 xi_l+/~x/2 ] 

J g(xi, t + At) = g(xi, t) -- / g(h - xi, t) dh - g(h - x i- l ,  t) dh 

(t,t+~t. xi+.~x/2) X(t,t+At,xi_ j + ~  ) 
(16) 
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and X( t ,  t + At, xi) taking the value xi + A x / 2  - aAt in the case of a = constant, or as a first order solution 
of (15) for a = a(x ,  t ) .  For the later case a second order solution to Eq. (15) is obvious, 

X ( t ,  t + At,  xi) = xi + A x / 2 a ( x i  + A x / 2  -- a(xi  + Ax /2 ,  t )&t /2 ,  O A t .  (17) 

Many options are available to solve Eq. (16). The simplest, and fastest model is to represent g(x ,  t) in every 
cell xi at time t by a linear second order ftmction, 

X 
g ( x )  = g ( x i )  + (g(xi+l)  - -g (x i -1 ) )~A-  ~ , xi - a x / 2  < x < xi + Ax/2.  (18) 

Going back now to Eq. (16), we note that the first integral term is the decrease of g(x i ,  t) due to loss of 
fluid to the (i + 1)th cell (for positive "a", to i -  1 for "a" negative) whereas the second integral term is the 
gain from the ( i -  1)th cell and is equal to the fluid the (i - l)th cell looses. 

We shall now calculate the loss of fluid for the xi cell, Dg(x i ) ,  introducing (18) into the integral term of 
(16), 

xi+ax/2 

Dg(x i )  = -t Ax  g (h  - xi) dh 

xi+Ax/2--aAt 

Ax/2 

--+± / Ax g(h)  dh 

Ax/2--aAt 

ax/2 

=+~xx g(x i )  + (g(x ,+l)  - g ( x i - l )  )~A--~x dh 
Ax/2--aAt 

At \4Ax(aAt ( aAt'~ / = + g ( x i ) a - ~ x  + (g(xi+l)  - - g ( x i - l )  ) 1 -- . 

The new value of the function g(x i ,  t + At )  
the right, 

(19) 

is the old value, plus the gain ~om the left, minus the loss to 

g(x i ,  t + At)  = g(x i ,  t) + D g ( X i - l )  - Dg(xi )  , (20) 

for a(x ,  t) negative the equivalent to Eq. (19) is 

At (]alAt ( A t ) )  
Og(x i )  = g ( x i ) l a l - ~ x  - (g(xi+j)  - g ( x i - l ) )  k, 4ax 1 - la l  ~x ' 

and the function g(x i ,  t ÷ At )  takes now the new value 

(21) 

g(xi,t+at) = g(xi ,  t) + Dg(Xi+l ) - Dg(x i )  . (22) 

3. Application of the FB method to the Vlasov equation 

To solve the Vlasov equation in 1D, we have to solve Eqs. (7) and (8) iteratively. Using the same recipe as 
for Eqs. (19) and (21), we get for advancing equation (7), 

A t [  ( A t ) ]  
D x f ( X i , V j )  = vj -~X f ( x i , v j ,  t) + { f ( x i + l , v j , t )  - f ( X i - l , , ' 3 j ,  t ) }  I -- Vj ~X /4 (23) 
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for vj > 0. For vj < 0, Eq. (23) transform to 

At I ( A t ) ]  D~f(xi ,  vj) =lvJl~xx f (x i , v j ,  t ) - { f ( x i + l , v j , t ) - f ( x i _ l , v j ,  t)} l - l v j l ~  /4 (24) 

and the new value of the distribution function is 

f (x i ,  vj, t*) = f (x i ,  v.i, t) + Dxf(Xil,  v j) - Dxf(Xi,  vj) , (25) 

the minus sign is for vj > 0 and the plus sign is for vj < 0. 
The same process is used to solve Eq. (8), the value of the clistribution function f ( x i , v j ,  t * )  obtained in 

Eq. (25) being used as the initial condition of the equation to be solved, 

D,.f(xi,  vj)=lEi[-~v f (x i ,  v j , t * ) 4 - { f ( x i , v j + , , t * ) - f ( x i ,  vj_l , t*)} 1-lE, lS-~x / 4 .  (26) 

The ± sign is plus for Ei > 0 and minus for E~ < 0. 
The final result for f ( x i ,  Vj,  t )  after a full time step is 

f (x i ,  vj, t + AJ~) = f (x i ,  uj, t * )  -~- Dvf(xi ,  U j + I )  - -  D,,f(xi,  lJj) , (27) 

again the plus sign is for E i < 0 and the minus sign for E i > O. 

4. Vlasov equation in 2D 

To extend the method to two dimensions, we start again with Eq. (1),  with the differential forms (4) 
extended to two dimensions. 

Rewriting the 2D Vlasov equation with a magnetic field B giw~s 

Of + v~Of (Ex + Bzvv) Of + _ o~f ~t ( x ' y ' vx ' vy ' t )  Vx-~x " ay . ~u x ( E y  Vxnz)~uy (28) + == 0~ 

so that the differential operator L is now 

0 
L1 = tgx 0x 

L2 = Vy Oy L = LI + L2 + L3 q - / , 4 ,  

,9 
L3 = ( Ex  -[- VyBz) &'x ' 

a 
L4 = ( Ey - VxB z ) c~v---7 . (29) 

We have now to apply the FB method four times, and not two as in the 1D case. Four fluid losses (or gains) 
have now to be calculated using ( 1 9 ) - ( 2 2 ) .  

For the first, a is replaced by Vx, x remains x, 

At (VxAt ( A t ' ) )  
Dx f (X i )= f (as 'Y i~"vx j "vY j " t )VxAx+ \ 4 A x  1 - V x ~ x  

• v , ,t)--f(xi,_a,yi,.,Vxj~,Vyj,. t ) ) .  (30) X ( f ( X i ~ , l  , y , , ,  xj., 039 . . . .  , 

The second is of the same form a ~ Vy, x ~ y and the shifted indexes are the iy'S. 
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Fig. 1. Phase space. 

5 10 
x space 

15 

1 " O  

0 . 0  

% --S-- ~ 

Fig. 2. The electric field in space ~md time. 

For  the  th i rd  loss  term,  a ~ Ex + v~.Bz, x ~ vx, i ~ jx .  The  equa t i on  so ob t a ined  is n o w  

At  
Dv, f ( j x  ) = f ( x& , Y6. ' Vxj, , Vyj,. , t )  ( Ex -+- vyBz  ) Avx 

4- ( E x q - v y B z - ~ ' ~ v  x 1 - -  ( E x + u y B z ) - ~ V  x 

x [ f ( x & , y 6 , v x j , + l , U y j r ,  t )  - f ( x i , , y 4 ,  Vxj~-l,Vy~ , t ) ]  . 

The  last  loss t e rm  is o f  the s ame  g loba l  f o r m  as (31 ) wi th  now a ~ Ey - v xBz ,  x --* Vy, i :=> jy .  

(3l) 

(32) 
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Fig. 3. The two-dimensional phase space projections. 

5. Numerical  results 

To show the capability of the computer c-odes based on the EB. method, we present in this section some 
results in one and two dimensions. 

In ID a lull output of the phase space function is possible, arid from the knowledge of that function the 
whole global behaviour can be obtained. Fig. 1 present a phase space representation of a 1D problem starting 
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Fig. 4. The two-dimensional density. 
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Fig. 5. Two-dimensional electric field in space, at time 0, 24, 80. 
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with a Maxwellian in v, homogeneous in x, with a perturbation in x of  the form 

pert = 0.3 cos kox,  (33) 

so that the initial condition is 

f ( x ,  vlt  = O) = d- t '2 /2(  1 q- pert)/v/2-~. (34) 

In Fig. 1, we plot the phase space for oJpt = 0, 20,40100. The phase space holes, the plasma response due 
to nonlinear Landau damping are well defined. Fig. 2 present the electric field behaviour in space and time. 

In 2D the output of  results is more difficult, since it is impossible: to plot a 4-dimensional function. The huge 
quantity of  results generated by the code does not allow the full time evolution of  the distribution to be stored. 
We have to decide before running the code what data we wish to store and display. Fig. 3 present phase-spaces 
projections (34) ,  (35) at ¢Opt = 4, 16,28,48,  

f(x,v:,.) : ~ ]~ f(ix, iy,jx,jy)Im~.ny, (35) 
Z, :t' 

f(y, Vy) = Z ~/~ f(ix, iy,jx,jy)/mxnx. (36) 
.]u ,:r 

The problem is again a nonlinear Landau damping with kox = .3, koy = .4. The density is given in Fig. 4, at 
the time values 0, 16. 24, 48. The electric field behaviour is given for Wpt = 0, 24, 80 in Fig. 5. Other data can 
be stored, for example the velocity space, the energy, etc. 

6. Conclusion 

We have presented the flux balance method, and its application to solve the Vlasov equation in one and two 
dimensions. We also show how the equations of  the flow gain and loss for a system known on a rectangular 
grid are solved. From the calculated gains and losses the time evolution of  the Vlasov distribution function is 

obtained. 
The last part of  this paper shows the phase space behaviour in one and 2D, electric field and density evolution 

with time, as they are computed by codes written according to the flux balance method. 
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