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1 Introduction
The earliest numerical methods introduced to solve the Vlasov-Poisson system were
polynomial expansions [1]. In these methods, the position dependence is usually
expanded in Fourier modes and the velocity dependence is treated either through
Fourier modes [2, 3, 4, 5, 6] or Hermite polynomials [7, 8, 9, 10, 11]. Then splitting
schemes appeared. In those schemes the initial Vlasov equation is splitted in two
partial derivative equations, one in x, t the other in v, t. These equations must be
solved alternatively [1]. A simple way to solve the splitted equations is to use Fourier
transform both for x and v subspaces [12, 13] . The tendency of the distribution
function f(x,v,t) to develop steep gradients in phase space ("the filamentation")
inhibits the numerical solution to Vlasov-Poisson system [13]. In order to ward of
this problem Klimas has introduced a smoothed Fourier-Fourier method []Xf . This
method consists in convolving the original distribution function with a Gaussian
distribution function, and, next, in solving the new system with a transformed
splitting algorithm. Unfortunately, a second^order_tei-m appears in the new equation.
Irrthis work, wê sfirety how_UiisJerni affects the numerical equation. In particular "we <•/• ^ ,pvCl'e '

: that instabilitvoccurs in the linear version of the Vlasov, equation obtained IDV
3. We-pi'bv£ Alijojhat the use of frouneT-

Foui^er^transform is a fundamental requirement to solve this new equation. We-potst
au4 4 n important property, which io not completely clftrifoU -in [1'^concerning the
filtered distribution function_in the transformed space. T4?«~p«peTHis-̂ igaiii3ed-\as
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2 The Mathematical Model
n w'.uV o*s\

The evolution of a one-dimensional electron plasma in a periodic box can be de-
scribed by the normalized Vlasov-Poisson system.

f + 4 + £(*,i)^ = 0, (1)
at ox av

j J J f(x,v, t)dxdv=l, (2)

where f(x,v,t) denotes the electron distribution function, E(x,t) the electric field
and L is the length of the periodic spatial box. In this units t is normalized to the
inverse of plasma frequency o>p, v to thermal velocity vth and x to Debye length A .̂
The idea to use a splitting algorithm in time to integrate the Vlasov equation (1)
was introduced first in [2]. As it is difficult to distinguish between the mathematical
filamentation and the numerical noise, the method of filtering was introduced in
[14]. Its philosophy consists in a convolution of the distribution function / by a



Gaussian filter in the variable v to obtain the smoothed function / ,

f{x,v,t) = / F(v - u)f(x,u,t)du, (3)

where
--(—) 2
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and vo is a constant parameter giving the width of the Gaussian filter in thermal
velocity units. The function / solves

df df - df 2 d
2f

OT ax au a.Tav

/9 P r

~ = j f{x,v,t)dv-l. (6)
In (5) and (6), we have E = E. The aim of the present paper is to compare the
stability properties of the solutions to equations (1) and (5). The conclusion we got
is that the solutions to (5) can be obtained only by the use of Fourier Transforms,
and so are very sensitive to perturbations. Consequently we have to be extremely
careful when using such a method for numerical computation, in the general case of
initial conditions.
Since the filamentation process is associated to the free streaming term v-rf-^, it is

sufficient to consider the free streaming problem, dropping in (5) the term E(x, t)jt~-
Thus let us consider the equation

dg dg 2 d
2g

dt dx dxdv r<->\

g(x,v,0) = go{x,v).

In order to describe the equation (7), let us define the Fourier-Transform g of g
by

1 f^1 f 2n

Introducing (8) in (7), we obtain

d~9 , d9 2, ~ /Qx
-r /com— = Vnkomi'g, (9)
ot ov
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where ko is the fundamental wave number ko =

Li

Now let us study the Cauchy problem, which consists in solving equation (9) with
initial condition



g(m,i/,Q) - go(m,u). (10)

The solution of the system (9)—(10) is given by

. g{m,v,t)=go(m,i; + mkot)e
v2omko'/te2v2om2k2°t2. (11)

Then, in order to obtain a solution to (7), we need to find a function g such
that its Fourier transform is g defined in (11). If go(m,i/) is an arbitrary func-
tion, we observe that asymptotically, if v and in have the same sign then the term
evlmk0ute^v^m2k^t2 j n ̂ -g tends exponentially to infinity, and therefore there is no
function having g as Fourier-Transform. Consequently there is no solution to (7).
On the contrary, let the initial distribution function g0 takes the form

9o(x,v) = fo(x,v)*F{v) (12)

then
go(m,v) = fo(m,v)e-^2. (13)

Hence, we get from (11)

g{m,u,t) = fo(m,v + mkot)e-^, (14)

or equivalentely

/ )=g{m,u,t)e^"\ (15)

which is the solution to the Vlasov equation. By these formulas we see that the fact
that go has the form (12) is crucial, and, as we shall see in section 3, we have to
keep this property for all times in approximate numerical schemes.

3 Stability

It might be interesting to investigate the stability of (7). For that purpose, we
compare the exact solution of (7), which can be written as

g(t) = S(t)g(0), (16)

with S(t) the resolution operator, which can be expressed by (11), and an approxi-
mate solution hn computed by

hn+l = A(At)hn, (17)

with A(Ai) an approximate resolution operator, and ho = fl'(O). At a fixed time
T = nAt, we assume that there is a slight difference between hn and g as

hn=g{T) + 8g. ( IS)



Then, in the next step, since the operator 5' is linear, the difference between hn+i

and g takes the following form

hn+i - g(t) = (A(At) - S{At))hn + S{At)Sg. (19)

For this difference to be small, we need both terms in the right-hand side of
(19) to be small. The first one depends on the way A approaches S, but for the
second one, as we discussed before, Sg needs to be small with respect to e~vo'/'^2.
Therefore, a necessary condition for the approximate method to be stable is that
the operator A(At) preserves the exponential decrease at infinity of the Fourier-
Transform. Generally, this property is very difficult to obtain unless A( At) is defined
itself by Fourier-Transform. Moreover, it might be lost when taking into account
the acceleration term due to the electric field.

4 Need to use Fourier-Fourier transform

In the following, we show that the solution to equation (5) can be obtained only by

the use of Fourier transform (without the term E-^—). It will be proved that the
ov

direct solution to equation (7) leads to the solution of an unstable heat equation.
Equation (7) is a. second order linear partial differential equation. It can be solved
by Fourier-Fourier transform, but let us try a splitting method as follow

! + •£-. <»>

The system so obtained represents a linear transport equation (20) and a second-
order parabolic equation in a non canonical form.

The solution of the transport equation (20) is given by

g(x,v,t)=g(x-vt,v,0). (22)

In order to solve equation (21) we introduce the change of variables

x = xi -yu

(23)
v = Xi + yx.

Introducing this last relation into equation (21), gives

dg 7d
2g

dt dy\
, . . .
2 4



We have obtained a canonical linear partial differential equation, which can be solved
a priori by a splitting method as follows

The difference between the last equations reside in their stability. It is well known
that the first type of equation is stable but the last one, called the retrograde temper-
ature equation is unstable. Consequently a solution to equation (7) by the splitting
method (20)-(21) is unstable.

Now we Remark that the stability of partial differential equations depends mainly
on their highest-order terms. Therefore, since we have seen above that equation (21)
is unstable, the solution to equation (7) is merely unstable also. Hence we must not

separate the terms v-^— and tî  , and we must be very careful in the treatment
ox oxov

of these two terms. As shown in Sections 2-3, this can be achieved only by the
use of Fourier-Fourier transform. In this case the filtering of the initial distribu-
tion function becomes a simple multiplication which consists to damp high wave
lengths as we have seen in section 2. That operation hides but does not remove the
filamentation.

5 Conclusion

The numerical integration of the Vlasov equation has been studied intensely during
the recent years, since a knowledge of its non-linear evolution is indispensable in
the understanding of plasmas. A major problem encountered in these studies is the
phase space filamentation of the distribution function. The filtering method intro-
duced by Klimas is reminescent of the Fokker-Planck term introduced in [7. 8] in
the Fourier-Hermite method. But the comparison is fallacious. The finite number of
Hermite polynomials introduced a bouncing of the information and triggers instabil-
ity. The Fokker-Planck term damps the high order Hermite coefficients supressing
the instability but at the price of a modification of the physics of the problem. The
method of Klimas seems to remove filamentation. But, it is important to point
out that filamentation is a physical property, and that the splitting method does
not trigger any numerical instability. We have proved that the only way to accom-
plish smoothing and keep stability is by Fourier-Fourier transfom, as outlined by
Klimas himself. But, in this case, the velocity wavenumbers are simply multiplied
by e~2v°" . Their smallness at the border is just an artefact and tends to hide the
reality of the approximation.

The only advantage of the Klimas method is to erase parasites from figures,
allowing a better understanding of the phase structures.
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