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Outflow Boundary Conditions for the Fourier
Transformed One-Dimensional
Vlasov�Poisson System
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In order to facilitate numerical simulations of plasma phenomena where kinetic
processes are important, we have studied the technique of Fourier transforming
the Vlasov equation analytically in the velocity space, and solving the resulting
equation numerically. Special attention has been paid to the boundary condi-
tions of the Fourier transformed system. By using outgoing wave boundary
conditions in the Fourier transformed space, small-scale information in velocity
space is carried outside the computational domain and is lost. Thereby the
so-called recurrence phenomenon is reduced. This method is an alternative to
using numerical dissipation or smoothing operators in velocity space. Different
high-order methods are used for computing derivatives as well as for the time-
stepping, leading to an over-all fourth-order method.
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1. INTRODUCTION

Methods of solving numerically the Vlasov equation have been developed
for many decades, including methods based on Hermite and Fourier
expansions [1, 3] and methods based on the convective structure of the
Vlasov equation [2]. Convective schemes have also been developed for the
collisional Boltzmann equation [4].

A problem with the Vlasov equation is its tendency of structuring in
velocity space (due to free streaming terms), in which steep gradients are
created and problems of calculating the v (velocity) derivative of the
function accurately increase with time [1].
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Due to the sampling (Nyqvist) theorem, the tendency of structuring
of the Vlasov equation makes it impossible to represent all pats of the
solution of a uniform grid after a finite time. If not treated carefully, this
problem may eventually lead to the so-called recurrence phenomenon where
parts of the initial condition artificially re-appear on the numerical grid [2].

In applications, the recurrence phenomenon may in some cases be
unimportant if other processes dominate [7], but can be important if, for
example, the long-time behaviour of a single wave is studied [8].

One method of minimising effects due to the recurrence phenomenon
is to have a dense enough grid, so that the interesting physical results have
the time to develop, and then to stop the simulation before the recurrence
phenomenon takes place [8]. Another method is to apply smoothing
operators to the numerical solution so that the finest structures never
appear on the numerical grid [2].

The method used in the present paper is related to the second of the
above two methods, but instead of direct damping of small-scale informa-
tion, the small-scale information in velocity space is removed through an
outgoing wave boundary condition in the Fourier transformed velocity
space. The position of the boundary in the Fourier transformed variable
determines the amount of small-scale information saved in velocity space.
The objective of the method is thus not to resolve the solution fully but
only to a certain degree, and to remove the finest structures of the solution.
How much of the small-scale information one needs to save strongly
depends on the physical problem.

In Section 2.1 the three-dimensional Vlasov�Maxwell system is dis-
cussed, together with the Fourier transform technique in velocity space. In
Sections 2.2�2.5 the one-dimensional Vlasov�Poisson system is discussed,
and well-posed boundary conditions are derived in preparation for the
numerical simulation of the Fourier-transformed system. In Section 3 the
numerical schemes used to approximate the time-dependent solution of the
Vlasov�Poisson system are described. In Section 4 numerical experiments
are presented and compared with known theory and with simulations with
other methods. In Section 5 some conclusions are drawn regarding the use-
fulness of the method.

2. THE VLASOV�MAXWELL SYSTEM

2.1. The Three-Dimensional System

The Vlasov equation

�f:

�t
+v } {x f:+

q:

m:
(E+v_B) } {v f:=0 (1)
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describes the action of the electromagnetic field on charged particles of type
: (e.g., ``electrons'' or ``singly ionised oxygen ions''), each particle having
the electric charge q: and mass m: . One equation is needed for each species
of particles.

The charge and current densities act as sources of self-consistent electro-
magnetic fields according to the Maxwell equations

{ } E=
1
=0

:
:

q: n: (2)

{ } B=0 (3)

{_E=&
�B
�t

(4)

{_B=+0 :
:

q: n: v:+=0 +
�E
�t

(5)

where the particle number densities n: and mean velocities v: are obtained
as moments of the distribution function, as

n:(x, t)=|
�

&�
f:(x, v, t) d3v (6)

and

v:(x, t)=
1

n:(x, t) |
�

&�
v f:(x, v, t) d3v (7)

respectively. The Vlasov equations together with the Maxwell equations
form a closed system.

By using the Fourier transform pair

f:(x, v, t)=|
�

&�
f� :(x, ', t) e&i' } v d 3' (8)

f� :(x, ', t)=
1

(2?)3 |
�

&�
f:(x, v, t) ei' } v d3' (9)

the velocity variable v is transformed into a new variable ' and the
unknown function f (x, v, t) is changed to a new, complex valued, function
f� (x, ', t), which obeys the transformed Vlasov equation

�f� :
�t

&i{x } {' f� :&i
q:

m:
[E } 'f� :+{' } [(B_') f� :]]=0 (10)
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The nabla operators {x and {' denote differentiation with respect to x and ',
respectively.

Equation (10) is again solved together with the Maxwell equations,
where the particle number densities and mean velocities are obtained as

n:(x, t)=(2?)3 f� :(x, 0, t) (11)

and

v:(x, t)=&i
(2?)3

n:(x, t)
[{' f� :(x, ', t)]'=0 (12)

respectively. One can note that the integrals over infinite v space have been
converted to evaluations at a single point in ' space. The factor (2?)3 in
Eqs. (9), (11), and (12) is valid for three velocity dimensions. For two
velocity dimensions the factor is (2?)2 and in one dimension the factor
is 2?.

2.2. The One-Dimensional Vlasov�Poisson System

In order to explore advantages and disadvantages of the Fourier
transformation technique just described, we have chosen to study numeri-
cally a simpler case, the one-dimensional Vlasov�Poisson system consisting
of electrons and ions, with the ions assumed fixed uniformly in space. These
assumptions lead to the system

�f
�t

+v
�f
�x

&
eE
m

�f
�v

=0

(13)
�E(x, t)

�x
=

e
=0 _n0&|

�

&�
f (x, v, t) dv&

where n0 is the neutralising heavy ion density background.
By using the Fourier transform pair

f (x, v, t)=|
�

&�
f� (x, ', t) e&i'v d' (14)

f� (x, ', t)=
1

2? |
�

&�
f (x, v, t) ei'v dv (15)
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Eq. (13) is transformed into

�f�
�t

&i
�2f�

�x �'
+i

eE
m

' f� =0

(16)
�E(x, t)

�x
=

e
=0

[n0&2?f� (x, 0, t)]

Equation (16) has been studied analytically, by means of a similar
Fourier transform technique as the one we use here, by H. Neunzert
[9, 10].

The systems (13) and (16) can be cast into dimensionless form by a
scaling of variables: the time t is scaled to the inverse of the plasma fre-
quency |&1

p =- =0m�(n0e2), the velocity v is scaled to the thermal velocity
vth ; the new variable ' is then scaled to the inverse of the thermal velocity,
and the spatial variable x is scaled to the Debye length rD=vth|&1

p .
Finally, the function f� is scaled to the background density n0 , the function
f is scaled to n0 �vth and the electric field E is scaled to the quantity
vth - n0m�=0 . By this scaling of variables, the systems (13) and (16) attain
the dimensionless form

�f
�t

+v
�f
�x

&E
�f
�v

=0 (17)

�E(x, t)
�x

=1&|
�

&�
f (x, v, t) dv (18)

and

�f�
�t

&i
�2f�

�x �'
+i'Ef� =0 (19)

�E(x, t)
�x

=1&2?f� (x, 0, t) (20)

respectively.

2.3. The Problem of Structuring in Velocity Space

This section contains a justification or motivation for solving numeri-
cally the Fourier transformed Vlasov�Poisson system in (x, ', t) space
instead of the original system in (x, v, t) space.
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Due to the property of conservation of phase memory, the Vlasov�
Poisson system in phase (x, v, t) space may develop fine structures in
velocity space, since no smearing of the solution occurs. This can be
illustrated by a simple example:

Assume that the electric field is weak so that the Vlasov equation can
be approximated by

�f
�t

+v
�f
�x

=0 (21)

with the special choice of initial condition

f (x, v, 0)= f0(x, v)=[1+A cos(kxx)] e&v2�2 (22)

The solution to the initial value problem is

f (x, v, t)= f0(x&vt, v)=[1+A cos(kxx&kxvt)] e&v2�2 (23)

This solution becomes more and more structured in the velocity direc-
tion with increasing time; it will in fact be impossible to store the solution
after a finite time due to the Nyqvist theorem, that states that one needs
at least two grid points per wavelength in order to represent a solution on
an equidistant grid.

For this simple example it is possible to calculate the time after which
the solution will be impossible to store: Assume that the grid size in v
direction is 2v, and that function values are stored for v=0, \2v,
\22v,..., \Nv 2v. The ``wave-length'' of the function cos(kxx&kxvt) is
*v=2?�kx t in the velocity direction. The Nyqvist theorem states the condi-
tion *v �2v>2 for storing the solution, which for the problem gives the
condition 2?�kx t 2v>2. This condition only holds for times t<?�kx 2v.
After this time it is impossible to represent the solution on the grid.

The recurrence effect [2] occurs at the time Tc=2?�kx 2v, which is
the time for the values of the initial condition to re-appear on the numerical
grid because of the Nyqvist theorem just described.

2.4. Some Properties of the Fourier Transformed System

In general f (x, v, t) decreases as a Gaussian function texp(&:v2) for
large values of v. This behaviour guarantees that the inverse Fourier trans-
formed function f� (x, ', t) is a smooth function in '; it is an analytic func-
tion for all complex ' and therefore all '-derivatives are well-defined. This
is favourable when the ' derivative in Eq. (19) is approximated by a
numerical difference approximation.
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The difference in behaviour for the Fourier transformed system com-
pared to the original system can be illustrated by the example in the pre-
vious section; taking the Fourier transform of the solution (23) in the
velocity space yields

f� (x, ', t)=
1

- 2? {e&'2�2+
A
2

[cos(kxx)(e&('&kxt)2�2+e&('+kx t)�2)

+i sin(kxx)(e&('&kx t)2�2&e&('+kx t)2�2)]= (24)

This function does not become structured for large times. The
exp[&('&t)2�2] and exp[&('+t)2�2] terms represent smooth wave
packets moving away from the origin '=0. Instead of becoming structured,
the Fourier transformed solution becomes wider with increasing time.

Since the original distribution function f (x, v, t) is real-valued the
Fourier transformed function f� (x, ', t) fulfils the relation

f� (x, &', t)=[ f� (x, ', t)]* (25)

where V denotes complex conjugation. Therefore it is only necessary to
solve the problem for positive ' to obtain the solution for all '. For the
derivatives one can easily show that the relation

�nf� (x, &', t)
�'n =(&1)n _�nf� (x, ', t)

�'n &*
(26)

holds. Thus for even numbers of derivatives of the function f� with respect
to ', the real part is even and the imaginary part is odd with respect to '.
For odd numbers of derivatives of f� , the opposite holds.

2.5. Invariants of the Vlasov�Poisson System

The one-dimensional system (17) with periodic boundary conditions
describes a closed, undamped system and has several invariants with
respect to time, such as

S=|
L

0
|

�

&�
f 2(x, v, t) dv dx (27)

N=|
L

0
|

�

&�
f (x, v, t) dv dx (28)
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P=|
L

0
|

�

&�
vf (x, v, t) dv dx (29)

W=|
L

0 _|
�

&�

v2

2
f (x, v, t) dv+

E 2(x, t)
2 & dx (30)

which describe the conservation of the energy norm (S), the total number
of electrons (N ), total momentum (P) and total energy (W ), respectively.

The corresponding invariants for the Fourier-transformed system
(19)�(20) are:

S$=|
L

0
|

�

&�
| f� (x, ', t)|2 d' dx (31)

N=|
L

0
2?f� (x, 0, t) dx (32)

P=|
L

0
&i2? _�f� (x, ', t)

�' &'=0

dx (33)

W=|
L

0 {&? _�2f� (x, ', t)
�'2 &'=0

+
E 2(x, t)

2 = dx (34)

In the absence of an analytical ``calibration'' solution, it is important to
check how well a numerical scheme conserves these invariants.

2.6. The Well-Posedness of the Continuous Problem

The equation system (19)�(20) is valid for all ' on the real axis. In
order to simulate numerically the system on an equidistant grid, one must
however truncate the solution domain in the ' direction, so that, for example,
&'max�'�'max . Using the symmetry (25), this gives rise to boundaries at
'=0 and '='max .

The boundary '='max must be treated with care so that it does not give
rise to reflection of waves or to instabilities. One strategy is to let outgoing
waves travel out over the boundary and to give a boundary condition
equal to zero for incoming waves. This gives a mathematically well-posed
problem.
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In order to explore this idea one can study the initial value problem,

�f�
�t

&i
�2f�

�x �'
=0 (35)

f (x, ', 0)= f0(x, ') (36)

at the boundary '='max . Fourier-transforming Eq. (35) in the x direction
gives a new differential equation for the unknown function f� (kx , ', t),

�f�
�t

+kx
�f�
�'

=0 (37)

f� (kx , ', 0)= f� 0(kx , ') (38)

The general solution to this equation is

f� (kx , ', t)= f� 0('&kxt) (39)

for some arbitrary function f� 0 . It describes outgoing waves at '='max for
kx>0 and incoming waves for kx<0.

Assuming the initial condition to be zero at the boundary '='max at
the time t=0, a well-posed boundary condition is

{
�f�
�t

+kx
�f�
�'

=0,

�f�
�t

=0,

kx>0, '='max

kx�0, '='max

(40)

which can be expressed in terms of the Heaviside step function as

�f�
�t

+H(kx) kx
�f�
�'

=0, '='max (41)

where the Heaviside step function is defined as

H(kx)={1, kx>0
0, kx�0

(42)

The Heaviside function is commonly defined to take the value 1�2 for
kx=0, but the function value at that point will not make any difference
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in what follows. The boundary condition (40)�(41) allows outgoing waves
to pass over the boundary and to be lost, while incoming waves are set to
zero; the loss of the outgoing waves corresponds to the loss of the finest
structures in velocity space.

Inverse Fourier transforming Eq. (41) then gives the boundary condi-
tion for the original problem (35) as

�f�
�t

+F&1H(kx) F \&i
�2f�

�x �'+=0, '='max (43)

where the spatial Fourier transform and inverse spatial Fourier transform
is defined as

F,=|
�

&�
,(x) e&ikx x dx (44)

and

F&1,� =
1

2? |
�

&�
,� (kx) eikx x dkx (45)

respectively. The projection operator F&1H(kx) F projects a function onto
the space of functions with only positive Fourier components in the x
direction.

Problem (19) is treated according to the same idea,

�f�
�t

+F&1H(kx) F \&i
�2f�

�x �'
+i'Ef� +=0, '='max (46)

which prevents the i'Ef� term from producing spurious waves at the boundary.
The continuous problem is well-posed if the energy norm

& f� &2=|
L

x=0
|

'max

'=0
| f� | 2 d' dx=|

L

x=0
|

'max

'=0
f� f� * d' dx (47)

of the solution is bounded for all times. In the following, we prove that this
norm is monotonically decreasing with time. Taking the time derivative of
the norm gives

d & f� &2

dt
=|

L

x=0
|

'max

'=0 \ f� *
�f�
�t

+ f�
�f� *
�t + d' dx (48)
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and then replacing the time derivatives with the differential equation (19)
gives

d & f� &2

dt
=|

L

x=0
|

'max

'=0 _f� * \i
�2f�

�x �'
&i'Ef� ++ f� \&i

�2f� *
�x �'

+i'Ef� *+& d' dx

=|
L

x=0
|

'max

'=0 _i \ f� *
�2f�

�x �'
& f�

�2f� *
�x �'+&i f� f� * '(E&E*)

=0, (E real)
& d' dx

=i |
L

x=0
|

'max

'=0 _
�

�' \ f� *
�f�
�x+&

�
�x \ f

�f *
�' +& d' dx

=i |
L

x=0 _ f� *
�f�
�x&

'max

'=0

dx&i |
'max

'=0 _ f�
�f *
�' &

L

x=0

d' (49)

where the second term vanishes due to periodic boundary conditions in the
x direction, giving

d & f� &2

dt
=i |

L

x=0 _ f� *
�f�
�x &

'max

'=0

dx

=i |
L

x=0
f� *(x, 'max , t)

�f�
�x

(x, 'max , t) dx

&i |
L

x=0
f� *(x, 0, t)

�f�
�x

(x, 0, t) dx (50)

The second term in (50) vanishes because, due to the symmetry (25),
the imaginary part of the function is zero along the boundary '=0. This
yields

&i |
L

x=0
f� *(x, 0, t)

�f�
�x

(x, 0, t) dx=&i |
L

x=0
f� (R)(x, 0, t)

�f� (R)

�x
(x, 0, t) dx

=&i _1
2

f� (R)(x, 0, t)2&
L

x=0

=0 (51)

What remains is

d & f� &2

dt
=i |

L

x=0
f� *(x, 'max , t)

�f�
�x

(x, 'max , t) dx (52)
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Along the boundary '='max , the boundary condition (46) is applied.
This equation can formally be integrated with respect to time, which gives

f� (x, 'max , t)

=|
t

t$=0
F&1H(kx) F _i

�2f�
�x �'

(x, 'max , t$)&i'E(x, t$) f� (x, 'max , t$)& dt$

=F&1H(kx) F |
t

t$=0 _i
�2f�

�x �'
(x, 'max , t$)&i'E(x, t$) f� (x, 'max , t$)& dt$

=F&1H(kx) Fg(x, t) (53)

where

g(x, t)=|
t

t$=0 _i
�2f�

�x �'
(x, 'max , t$)&i'E(x, t$) f� (x, 'max , t$)& dt$ (54)

The expression (53) inserted into (52) gives

d & f� &2

dt
=i |

L

x=0
[F&1H(kx) Fg(x, t)]*

�
�x

[F&1H(kx) Fg(x, t)] dx (55)

Due to periodic boundary conditions in the x direction, the function
g can be expanded into a Fourier series,

g(x, t)= :
�

|=&�

ĝ|(t) ei2?|(x�L) (56)

Taking the Fourier transform of this expression gives

Fg(x, t)=|
�

&�
e&ikxx :

�

|=&�

ĝ|(t) ei2?|(x�L) dx

= :
�

|=&�

ĝ|(t) |
�

&�
ei((2?|�L)&kx) x dx

= :
�

|=&�

ĝ|(t) 2?$0 \2?|
L

&kx + (57)

where $0 is the Dirac delta measure.
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Multiplying this expression by the Heaviside function truncates the
infinite sum as

H(kx) Fg(x, t)= :
�

|=&�

ĝ|(t) 2?H(kx) $0 \2?|
L

&kx +
= :

�

|=1

ĝ|(t) 2?$0 \2?|
L

&kx+ (58)

since |�0 gives zero contribution to the sum.
Inverse Fourier transforming expression 58 gives

F&1H(kx) Fg(x, t)=
1

2? |
�

&�
[H(kx) Fg(x, t)] eikxx dkx

= :
�

|=1

ĝ|(t) |
�

&�
$0 \2?|

L
&kx+ eikx x dkx

= :
�

|=1

ĝ|(t) ei(2?|�L) x (59)

which, inserted into (55), gives

d & f� &2

dt
=i |

L

x=0 _ :
�

|=1

ĝ|(t) ei(2?|�L) x&* �
�x _ :

�

|=1

ĝ|(t) ei(2?|�L) x& dx

=i |
L

x=0 _ :
�

|=1

ĝ*|(t) e&i(2?|�L) x&_ :
�

|=1

ĝ|(t) i
2?|

L
e i(2?|�L) x& dx

= &
2?
L |

L

x=0
:
�

|=1

ĝ*|(t) ĝ|(t) | dx=&2? :
�

|=1

| ĝ|(t)| 2 |�0 (60)

Thus we have proved that the energy norm is non-increasing with time,
and therefore the continuous problem wit the given boundary conditions is
well-posed.

3. THE NUMERICAL APPROACH

3.1. Storage of the Solution

This section discusses the number of grid points and the amount of
data needed for storing the solution.
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When storing the distribution function f (x, v, t) on a grid there are
two problems to keep in mind.

1. The function is defined for all velocities, but numerically one has
to truncate the solution domain at some ``high'' velocity vmax ,
where the function values have become small enough.

2. The function may contain fine structures in the v direction,
and one has to have a fine enough grid to represent these fine
structures.

These two problems have their counterparts in the inverse Fourier trans-
formed variables; a less localised function in v space leads to finer structures
in the ' space, and finer structures in v space leads to a less localised func-
tion in ' space. To be precise, the two problems are converted to

1. Assuming that the maximum velocity for particles is v=vmax , then
after Fourier transforming the function f (x, v, t), the quantity
k', max=vmax will be the maximum wave number in the ' direction,
and the minimum ``wavelength'' will then be *', min=2?�k', max=
2?�vmax . According to the Nyqvist sampling theorem one needs at
least two grid points per wavelength to represent the solution, so
the condition on the grid size becomes 2'<*', min �2=?�vmax .

2. Assuming that the shortest ``wavelength'' to be resolved in the v
direction is *v, min , the highest wave number in the v direction
becomes kv, max=2?�*v, min . After Fourier transformation, this
gives a condition on the domain size in the ' direction as 'max�
kv, max=2?�*v, min .

The number of grid points needed to store the function f (x, ', t) on the
interval 0�'�'max [for negative ' one can use symmetry relation (25)] is
then

N'=
'max

2'
>2

vmax

*v, min

(61)

For storing the original function f (x, v, t) one needs to store the function
one the domain &vmax�v�vmax , with the grid size 2v<*v, min �2 accord-
ing to the sampling theorem. This gives the number of grid points in the
v direction as

Nv=
2vmax

2v
>4

vmax

*v, min

(62)
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Thus one needs twice as many grid points to store the original function
f (x, v, t) compared to storing the Fourier transformed function f� (x, ', t).
However, the function f� (x, ', t) is complex valued so the amount of data to
store is the same for f� (x, ', t) as for f (x, v, t).

3.2. Discretization

We discretize the problem on a rectangular, equidistant grid with peri-
odic boundary conditions in the x direction. In the ' direction the grid
starts at '=0 and ends at some positive '='max .

The approximate function values at the grid points are enumerated
such that

f� (xi , 'j , tk)r f� k
i, j (63)

with

xi=i 2x, i=0, 1,..., Nx&1 (64)

'j=j 2', j=0, 1,..., N' (65)

tk=k 2t, k=0, 1,..., Nt (66)

where

2x=
L

Nx
(67)

2'=
'max

N'
(68)

2t=
tend

Nt
(69)

3.3. Numerical Approximations

The Vlasov�Poisson system (19, 20) together with the boundary con-
dition (46) at '='max is approximated by a semi-discretization in x and '
space. After that, time steps are taken with the fourth-order Runge�Kutta
method.

In order to see the semi-discretization, the equations are rewritten on
the form
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�f�
�t

=i
�2f�

�x �'
&i'Ef� , 0�'<'max , 0�x<L (70)

�E(x, t)
�x

=1&2?f� (x, 0, t) (71)

�f�
�t

=F&1H(kx) F \i
�2f�

�x �'
&i'Ef� + , '='max , 0�x<L (72)

f� (L, ', t)= f� (0, ', t) (73)

Equation (71) is solved numerically to obtain E, which is then used to
calculate the right-hand sides in Eqs. (70) and (72); one can see E as a
function of f. The ' and x derivatives in Eqs. (70) and (72) are calculated
numerically, as well as the operator F&1H(kx) F in Eq. (72); the methods
will be described below. By these approximations and after discretizations
in x and ' directions according to the previous section, the equation is
approximated by the semi-discretization

�f� i, j

�t
=P( f� ) i, j (74)

where P is a grid function representing the numerical approximation of the
right-hand sides of Eqs. (70) and (72); the function P is a function of all
f� i, j . The unknown f� i, j is then discretized also in time, and the time-stepping
is done with the well-known Runge�Kutta algorithm:

1. F (1)
i, j � P( f� k), \i, j

2. F (2)
i, j � P( f� k+F (1)2t�2), \i, j

3. F (3)
i, j � P( f� k+F (2)2t�2), \i, j

4. F (4)
i, j � P( f� k+F (3)2t), \i, j

5. f� k+1
i, j � f� k

i, j+(2t�6)(F (1)
i, j+2F (2)

i, j+2F (3)
i, j+F (4)

i, j), \i, j

The steps needed for obtaining the approximation Pi, j are:

1. Calculate the electric field numerically from Eq. (71).

2. Calculate a numerical approximation of Eq. (70), for all points
including the points along the boundary '='max .

3. Apply numerically the boundary condition (72) for the points
along the boundary '='max .
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The periodic boundary condition (73) eliminates in practice the
boundary at x=L. There is no need to store the function value corre-
sponding to x=L, and, when needed, one uses the rule f� (x, ', t)=
f� (x&L, ', t) for x�L, and the rule f� (x, ', t)= f� (x+L, ', t) for x<0. The
corresponding rules for the discrete case are f� i, j= f� i&Nx , j for i�Nx and f� i, j

= f� i+Nx , j for i<0, respectively.
Due to the periodicity in the x direction, a pseudo-spectral method

can be used to calculate the x derivatives in the Eqs. (70)�(72) accurately.
The Fourier transform and its inverse in approximated by the discrete
Fourier transform and inverse discrete Fourier transform, respectively. The
discrete transforms are efficiently calculated by using the fast Fourier trans-
form (FFT) and inverse fast Fourier transform (IFFT ) algorithms. Symboli-
cally the notations FrFFT and F&1

rIFFT are used.
By using the well-known relation for the Fourier transform

�,
�x

=F&1F
�,
�x

=F&1ikx F, (75)

the corresponding approximation of the x derivative, used in the dis-
cretized case, is

�,
�x

rIFFT[ikx FFT(,)] (76)

The integration of E is approximated by

ErIFFT _ 1
ikx

FFT(1&2?f� k
i, 0)& (77)

except for kx=0. The component corresponding to kx=0 is set equal to
zero.

The numerical approximation of the x derivatives in Eqs. (70) and
(72) with

�2f�
�x �'

=
�

�' \
�f�
�x + (78)

is performed as

�f�
�x

rIFFT[ikx FFT( f� k
i, j)] (79)
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In the ' direction, the derivative v=�f� ��' is calculated using the classi-
cal fourth order Pade� scheme [5, 6]. For the inner points, the implicit
approximation

vi, j&1+4vi, j+vi, j+1=
3

2'
( f� i, j+1& f� i, j&1), j=1, 2,..., N'&1 (80)

is used. A family of similar schemes exists [6].
At the boundary '=0, the symmetry (25) and (26) is used to apply

the same approximation of the derivative at the boundary as for the inner
points. The relations f� i, &1= f� *i, 1 and vi, &1=&v*i, 1 give

&v*i, 1+4vi, 0+vi, 1=
3

2'
( f� i, 1& f� *i, 1) (81)

or, for the real and imaginary parts,

v (R)
i, 0 =0 (82)

2v (I)
i, 0 +v (I)

i, 1 =
3

2'
f� (I)

i, 1 (83)

respectively.
At the boundary '='max , a one-sided approximation,

vi, N'
+2vi, N'&1=&

1
22'

(&5f� i, N'
+4f� i, N'&1+ f� i, N'&2) (84)

is used, which gives a truncation error of order 2'3 at the boundary.
The Eqs. (80), (81) and (84) form one tridiagonal equation system

for each subscript i=0, 1,..., Nx , each system having N' complex-valued
unknowns. In practice the equation system can be divided into systems for
the real and imaginary parts separately.

At the boundary '='max the boundary condition (72) is applied, with
the help of the approximation

F&1H(kx) F,(x, 'max , t)rIFFT[H(kx) FFT(,k
i, N'

)] (85)

with ,(x, 'max , t) being the right-hand side of (70) along the boundary
'='max and ,k

i, N'
its discrete approximation.
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In order to reduce aliasing effects in the x direction, a sixth-order dis-
sipative term is added to Eq. (19), which changes into

�f�
�t

&i
�2f�

�x �'
+i'Ef� &$(2x)4 �6f�

�x6=0 (86)

where the real constant $ is chosen to some small positive number. The
sixth derivative is approximated with a centred second-order approximation.

3.4. Stability Analysis

When solving the reduced problem

�f�
�t

&i
�2f�

�x �'
=0 (87)

with an explicit scheme, the stability region is

2t<
\

KxK'
(88)

where \=- 8 for the explicit Runge�Kutta scheme, and Kx and K' are the
maximum values of the approximations of wave numbers produced by the
numerical scheme in x and ' direction, respectively.

In the x direction the spectral method gives a maximum value of the
approximated wave number equal to

Kx=
?

2x
(89)

In the ' direction the Pade� scheme, applied to a continuous function,
is

v('&2')+4v(')+v('+2')=
3

2'
[ f� ('+2')& f� ('&2')] (90)

which, with v(')=v~ exp(ik'') and f� (')= f� exp(ik' '), gives

v~ =i
3

2'
sin(k' 2')

[2+cos(k' 2')]
f� (91)
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Hence, the maximum value of the approximated wavenumber in the '
direction is

K'= max
0�k' 2'�? }

3
2'

sin(k' 2')
[2+cos(k' 2')] }=

- 3
2'

(92)

where the maximum is obtained for k' 2'=2?�3.
Inserting the expressions for \, Kx and K' into (88) then gives the

choice of 2t as

2t<
- 8

- 3 ?
2x 2'r0.522x 2' (93)

for stability at the inner points. Introducing the so-called CFL number, the
condition (93) can be expressed as

2t=CFL
- 8

- 3 ?
2x 2' (94)

where the positive number

CFL<1 (95)

for stability.
The nonlinearity and boundary conditions are not treated in this

analysis. Some numerical tests have shown that CFL=0.8 gives stability
while CFL=0.9 gives instability; see also Section 4.

3.5. The Conservation of Particles

It is easily shown that the numerical scheme conserves exactly the
total number of particles (32), approximated by the formula

N=2? :
Nx&1

i=0

f� k
i, 0 2x (96)

The sum only picks up the zeroth Fourier component of f� k
i, 0 , correspond-

ing to kx=0, and that component is left unchanged since it vanishes in the
term containing the x derivative in Eq. (19) with the approximation (79).
Along the boundary '=0 the last term in (19) also vanishes. This result
has been verified in the numerical experiments where the number of par-
ticles are conserved by the numerical scheme up to the precision of the
computer.
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4. NUMERICAL RESULTS

4.1. Reflections Off Boundaries

In order to verify that waves are absorbed by the boundary at '=
'max , and that thereby the recurrence phenomenon is reduces, a numerical
experiment was carried out. The simulation domain was chosen to be
0�x�4?, 0�'�20. The number of grid points in the x direction was
Nx=100. The initial condition was chosen according to Eq. (102) below
with the amplitude A=0.0002 and the wavenumber kx=0.5; this choice
assured that the wave was linearly damped according to known theory
[11]. Three numerical experiments can be seen in Fig. 1, which shows the
time development of the first spatial harmonic of the electric field. Curve
(a) shows a simulation with the outgoing wave boundary condition and
with the grid size 2'=2�15, and in curve (b) the grid has been made coar-
ser, 2'=2�10. As a reference, curve (c) shows a simulation with the com-
monly used [1, 3] Dirichlet-type of boundary condition f� (x, 'max , t)=0 on
the finer grid 2'=2�15.

As can be seen in Fig. 1, the solutions are initially exponentially damped,
and at about t=50 one can see some smaller reflections from the boundary,

Fig. 1. Reflections of waves against the boundary '='max .

21Outflow Boundary Conditions



followed by a much stronger reflection at t=100. The solution on the finest
grid (a) with outgoing wave boundary conditions shows a reflected wave
with the amplitude about 1�1000 of the amplitude of the initial condition
at t=0, while the solution on the somewhat coarser grid (b) shows a reflected
wave with the amplitude somewhat more than 1�100 of the initial amplitude.
With the Dirichlet-type boundary condition (c), the reflected wave is of the
same order in amplitude as the initial amplitude.

It is apparent from this numerical investigation that the outgoing wave
boundary condition prevents, to a large extent, waves from returning back
and ruining the calculations, while the simple Dirichlet-type boundary con-
dition leads to an almost total reflection of waves. These reflected waves
lead to a similar detrimental effect as the recurrence phenomenon in real
velocity space.

4.2. Nonlinear Landau Damping

In order to ascertain that the numerical scheme reproduces some
known non-linear effects, tests with larger initial amplitudes of the waves
were carried out.

A simulation was performed with the initial condition according to, in
terms of the original (x, v) variables,

f (x, v, 0)=(1+A cos(kxx)) f0(x, v) (97)

where f0 was chosen as

f0(x, v)=(2?)&1�2 exp {&
1
2 _v&

|
kx

A cos(kxx)&
2

= (98)

This is an approximation of a sinusoidal wave moving in the rightward
direction. The approximate dispersion relation for Langmuir waves yields
|=- 1+3k2

x . In the inverse Fourier transformed variables, the initial
condition is converted into

f� (x, ', 0)=[1+A cos(kxx)] f� 0(x, ') (99)

where

f� 0(x, ')=
1

2?
exp _i

|
kx

A cos(kxx) '& exp \&
1
2

'2+ (100)

which is the initial condition used in the simulation.
The wave number kx=0.25 and amplitude A=0.15 were chosen. The

simulation domain was set to 0�x�24?, 0�'�30 with Nx=300, N'=150
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Fig. 2. The development of an electrostatic wave in phase space (x, v) at four different times.
One can see particles getting trapped in the potential wells of the wave.
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and 2t=0.00875 (CFLr0.33). The numerical dissipation was set to
$=0.002. In order to visualise the solution, it was Fourier transformed
back to the real-valued function f (x, v, t) and plotted in Fig. 2. One can see
the process of electrons getting trapped and starting to oscillate in the
potential wells of the wave. As expected, the solution becomes more and
more structured due to the ballistic terms.

Another numerical experiment on nonlinear Landau damping was
carried out, with the initial condition chosen to

f (x, v, 0)=[1+A cos(kxx)] f0(v) (101)

where A=0.5, kx=0.5 and f0(v)=(2?)&1�2 exp(&v2�2); this is identical to
one of the experiments carried out by Cheng and Knorr [2].

In the inverse Fourier transformed variables the initial condition
becomes

f� (x, ', 0)=[1+A cos(kxx)] f� 0(') (102)

with f� 0(')=(2?)&1 exp(&'2�2). The simulation domain was chosen as
0�x�4? and 0�'�30 with Nx=N'=100, and the time domain was
chosen as 0�t�70 with Nt=5000 (CFLr0.71). The numerical dissipa-
tion was set to $=0.001. The amplitudes of the first three spatial com-
ponents of the electric field were plotted against time in Fig. 3. One can

Fig. 3. The first three spatial harmonics of the electric field.
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note a strong exponential damping of the amplitudes from t=0 to tr10,
in agreement with linear Landau theory. From tr20 to tr40 the modes
grow exponentially, whereafter they oscillate around equilibria as the Lan-
dau damping enters the nonlinear regime [11]. These results are in excellent
agreement with those obtained by Cheng and Knorr. These authors have
made a deeper analysis of the results [2].

In order to test the long-term properties of our numerical method,
a longer simulation was performed where the time domain was changed
to 0�t�7000 and Nt=500, 000, and the other parameters were kept
unchanged.

No numerical instability could be detected in the simulation. The
squared energy norm (47) was numerically approximated by using a sum
representation of the double integral and its value, relative to its initial
value, was plotted against the time in Fig. 4. Initially it decreases from
unity down to an equilibrium state at about 0.8130 after which it exhibits
very small fluctuations.

The time development of the total energy (34) is shown in Fig. 5.
As can be see, the energy is almost entirely conserved. In order to calculate
the second derivative in the formula for the energy, a centred sixth-order
scheme was used together with the symmetry (25).

The behaviour of the first spatial mode of the electric field is shown in
Fig. 6. The electric field is initially damped from the value 0.5 down to
somewhat below 0.05 where the damping almost stops. In a numerical

Fig. 4. The relative change for the squared norm.
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Fig. 5. The relative change of the total energy.

Fig. 6. The long-term behaviour of the amplitude of the first spatial mode of the electric field
(Function value below 0.04 have been removed).
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long-time experiment carried out by Manfredi [8], this general behavior of
the solution could also be observed, for an almost similar problem.

5. CONCLUSIONS

A high-order method for solving numerically the Fourier transformed
Vlasov�Poisson system in the velocity space has been studied, with a special
attention paid to the outflow boundary condition in the Fourier transformed
space. It was shown numerically that it is possible to reduce the recurrence
phenomenon by this method.

The boundary condition designed for the transformed system has been
proved to be well-posed in the continuous case. The numerical scheme did
not exhibit any instabilities in the numerical experiments.

Our numerical scheme conserves the total number of particles of the
system exactly and it conserves the total energy of the system to a very
high degree.

Whether or not the method described in this article is better than
existing methods will probably depend on the physical problem. Numerical
tests are needed to determine in which cases our method may be a good
alternative to existing methods.
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