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The vibrating string equation
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Newton’s law for ∆m along x and y gives

0 = T (x+ ∆x) cosβ − T (x) cosα

No horizontal displacement

⇒ T (x+ ∆x) cosβ = T (x) cosα ≡ T0

∆m
∂2u

∂t2
= T (x+ ∆x) sinβ − T (x) sinα (1)
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The vibrating string equation

With ∆m = ρ∆x and by substituting from (1):

∂2u

∂t2
=
T0

ρ

tanβ − tanα

∆x
= v2

∂u
∂x (x+ ∆x, t)− ∂u

∂x (x, t)

∆x
→ v2 ∂

2u

∂x2

∂2u

∂t2
− v2 ∂

2u

∂x2
= 0 (2)

which is called wave equation (in 1−D).

Generalizing to 2 or 3 dimensions:

∂2u

∂t2
− v2 ∆u = 0

The wave equation describes virtually all wave phenomena: sound waves, light
waves, waves in fluids, gases and plasmas, waves in solids, etc.
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Quasilinear second order PDEs
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Quasilinear second order PDEs

General form in 2 variables
The wave equation is a particular case of a second-order PDE; the most general form
is

a
∂2u

∂x2
+ 2 b

∂2u

∂x∂y
+ c

∂2u

∂y2
= d (3)

where a = a(x, y, u, ∂u/∂x, ∂u/∂y), and so for b, c and d (quasilinearity).

Boundary Value and Initial Value Problems

A differential equation possesses a family of solutions, and auxiliary conditions need
to be specified in order to assure uniqueness of the solution. There are two sorts of
auxiliary conditions:

Initial Value (Cauchy) Problem: when the auxiliary conditions are imposed on
the function and its derivatives along a line belonging to the domain of the
independent variables;

Boundary Value Problem: the solution is sought for in a domain Ω ∈ Rn and
the auxiliary conditions are imposed on the function (or its derivatives) on the
boundary ∂Ω of the domain.

Lucio Demeio - DIISM wave equation 7 / 44



Quasilinear second order PDEs

General form in 2 variables
The wave equation is a particular case of a second-order PDE; the most general form
is

a
∂2u

∂x2
+ 2 b

∂2u

∂x∂y
+ c

∂2u

∂y2
= d (3)

where a = a(x, y, u, ∂u/∂x, ∂u/∂y), and so for b, c and d (quasilinearity).

Boundary Value and Initial Value Problems

A differential equation possesses a family of solutions, and auxiliary conditions need
to be specified in order to assure uniqueness of the solution. There are two sorts of
auxiliary conditions:

Initial Value (Cauchy) Problem: when the auxiliary conditions are imposed on
the function and its derivatives along a line belonging to the domain of the
independent variables;

Boundary Value Problem: the solution is sought for in a domain Ω ∈ Rn and
the auxiliary conditions are imposed on the function (or its derivatives) on the
boundary ∂Ω of the domain.

Lucio Demeio - DIISM wave equation 7 / 44



Quasilinear second order PDEs

General form in 2 variables
The wave equation is a particular case of a second-order PDE; the most general form
is

a
∂2u

∂x2
+ 2 b

∂2u

∂x∂y
+ c

∂2u

∂y2
= d (3)

where a = a(x, y, u, ∂u/∂x, ∂u/∂y), and so for b, c and d (quasilinearity).

Boundary Value and Initial Value Problems

A differential equation possesses a family of solutions, and auxiliary conditions need
to be specified in order to assure uniqueness of the solution. There are two sorts of
auxiliary conditions:

Initial Value (Cauchy) Problem: when the auxiliary conditions are imposed on
the function and its derivatives along a line belonging to the domain of the
independent variables;

Boundary Value Problem: the solution is sought for in a domain Ω ∈ Rn and
the auxiliary conditions are imposed on the function (or its derivatives) on the
boundary ∂Ω of the domain.

Lucio Demeio - DIISM wave equation 7 / 44



Quasilinear second order PDEs

General form in 2 variables
The wave equation is a particular case of a second-order PDE; the most general form
is

a
∂2u

∂x2
+ 2 b

∂2u

∂x∂y
+ c

∂2u

∂y2
= d (3)

where a = a(x, y, u, ∂u/∂x, ∂u/∂y), and so for b, c and d (quasilinearity).

Boundary Value and Initial Value Problems

A differential equation possesses a family of solutions, and auxiliary conditions need
to be specified in order to assure uniqueness of the solution. There are two sorts of
auxiliary conditions:

Initial Value (Cauchy) Problem: when the auxiliary conditions are imposed on
the function and its derivatives along a line belonging to the domain of the
independent variables;

Boundary Value Problem: the solution is sought for in a domain Ω ∈ Rn and
the auxiliary conditions are imposed on the function (or its derivatives) on the
boundary ∂Ω of the domain.

Lucio Demeio - DIISM wave equation 7 / 44



Quasilinear second order PDEs

Initial Value and Boundary Value Problems

Ω

∂Ω

γ

xO

y

Ω

xO

y

Cauchy Problem:

u(x, y) = h(x, y)

∂u

∂x
(x, y) = φ(x, y)

∂u

∂y
(x, y) = ψ(x, y)

On γ

Boundary Value Problem:

u(x, y) = f(x, y)

or
∂u

∂n
(x, y) = ψ(x, y)

On ∂Ω
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Quasilinear second order PDEs

Cauchy problem

Existence and uniqueness of the solution starting from assigned values of u, ∂u/∂x
and ∂u/∂y on a smooth curve in the (x, y) plane. Let{

x = f(s)
y = g(s)

be a parametric representation of a curve γ in the (x, y) plane.

Cauchy problem

We must prescribe

u(x(s), y(s)) = h(s) (4)

∂u

∂x
(x(s), y(s)) = φ(s) (5)

∂u

∂y
(x(s), y(s)) = ψ(s) (6)

and find the conditions for existence and uniqueness of the solution.
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Quasilinear second order PDEs

Let us differentiate (5) and (6) w.r. to s; by adding these to the differential
equation (3) we have the following system:

∂2u

∂x2
f ′(s) +

∂2u

∂x ∂y
g′(s) = φ′(s) (7)

∂2u

∂x ∂y
f ′(s) +

∂2u

∂y2
g′(s) = ψ′(s) (8)

a
∂2u

∂x2
+ 2 b

∂2u

∂x∂y
+ c

∂2u

∂y2
= d, (9)

where the partial derivatives are to be considered as unknowns.

Unique solution if the determinant

∆ =

∣∣∣∣∣∣
f ′(s) g′(s) 0

0 f ′(s) g′(s)
a 2 b c

∣∣∣∣∣∣ = a [g′(s)]2 − 2 b f ′(s) g′(s) + c [f ′(s)]2 6= 0

If ∆ = 0, γ is called characteristic curve.
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Classification
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Classification

The condition a [g′(s)]2 − 2 b f ′(s) g′(s) + c [f ′(s)]2 = 0 is equivalent to

a

[
g′(s)

f ′(s)

]2

− 2 b
g′(s)

f ′(s)
+ c = 0

If b2 − a c > 0 we have

g′(s)

f ′(s)
=
b±
√
b2 − a c
a

(10)

and the equation is called hyperbolic.

If b2 − a c < 0 we have no solutions for g′(s)/f ′(s) and the equation is
called elliptic

If b2 − a c = 0 we have
g′(s)

f ′(s)
=
b

a

and the equation is called parabolic.

Lucio Demeio - DIISM wave equation 12 / 44



Classification

The condition a [g′(s)]2 − 2 b f ′(s) g′(s) + c [f ′(s)]2 = 0 is equivalent to

a

[
g′(s)

f ′(s)

]2

− 2 b
g′(s)

f ′(s)
+ c = 0

If b2 − a c > 0 we have

g′(s)

f ′(s)
=
b±
√
b2 − a c
a

(10)

and the equation is called hyperbolic.

If b2 − a c < 0 we have no solutions for g′(s)/f ′(s) and the equation is
called elliptic

If b2 − a c = 0 we have
g′(s)

f ′(s)
=
b

a

and the equation is called parabolic.

Lucio Demeio - DIISM wave equation 12 / 44



Classification

The condition a [g′(s)]2 − 2 b f ′(s) g′(s) + c [f ′(s)]2 = 0 is equivalent to

a

[
g′(s)

f ′(s)

]2

− 2 b
g′(s)

f ′(s)
+ c = 0

If b2 − a c > 0 we have

g′(s)

f ′(s)
=
b±
√
b2 − a c
a

(10)

and the equation is called hyperbolic.

If b2 − a c < 0 we have no solutions for g′(s)/f ′(s) and the equation is
called elliptic

If b2 − a c = 0 we have
g′(s)

f ′(s)
=
b

a

and the equation is called parabolic.

Lucio Demeio - DIISM wave equation 12 / 44



Classification

The condition a [g′(s)]2 − 2 b f ′(s) g′(s) + c [f ′(s)]2 = 0 is equivalent to

a

[
g′(s)

f ′(s)

]2

− 2 b
g′(s)

f ′(s)
+ c = 0

If b2 − a c > 0 we have

g′(s)

f ′(s)
=
b±
√
b2 − a c
a

(10)

and the equation is called hyperbolic.

If b2 − a c < 0 we have no solutions for g′(s)/f ′(s) and the equation is
called elliptic

If b2 − a c = 0 we have
g′(s)

f ′(s)
=
b

a

and the equation is called parabolic.

Lucio Demeio - DIISM wave equation 12 / 44



Classification

Characteristics

Thus, hyperbolic equations possess two families of (real) characteristic curves in
the (x, y) plane;

parabolic equations have one family;

elliptic equations have none (or have complex characteristics);

If a, b and c depend only on x and y (linear equation), equation (10) can be
written as

dy

dx
=
b±
√
b2 − a c
a

≡ λ±(x, y) (11)

and it becomes a set of two differential equations for the characteristic curves.

Role of the characteristic curves

In time dependent problems, one can say, qualitatively, that the characteristics
are the lines along which solutions are “transported”;

The presence of two families of characteristics in hyperbolic equations
corresponds to counter-propagating wave forms;
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Classification

Role of the characteristic curves
the presence of one family of characteristics in parabolic equations
corresponds to relaxation towards a statistical equilibrium (e.g., in gases);

elliptic equations, which do not possess characteristics, describe static
problems (e.g., static electric fields due to a charge distribution,
steady-state temperature distributions, linear elasticity problems and
more).

Prototypical equations

Wave equation:
∂2u

∂t2
− v2 ∂

2u

∂x2
= 0 b2 − a c = v2 > 0,

hyperbolic equation

Heat equation:
∂u

∂t
− κ ∂

2u

∂x2
= 0 b2 − a c = 0,

parabolic equation

Laplace equation:
∂2u

∂x2
+
∂2u

∂y2
= 0 b2 − a c = −1 < 0,

elliptic equation
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Classification

Canonical form

Lu = a
∂2u

∂x2
+ 2 b

∂2u

∂x∂y
+ c

∂2u

∂y2

Polynomial form (a, b, c constants for simplicity)
pL(λ) = aλ2 + 2 b λ+ c = a(λ− λ1) (λ− λ2) and, by analogy,

Lu = a

(
∂

∂x
− λ1

∂

∂y

) (
∂

∂x
− λ2

∂

∂y

)
u
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Classification

Reduction to canonical form (after linear transformation to (ξ, η)):

(λ1 6= λ2 ∈ R) : Lu ∼ ∂2u

∂ξ∂η
hyperbolic case

or also Lu ∼ ∂2u

∂ξ2
− ∂2u

∂η2

(λ1 = λ2 ∈ R) : Lu ∼ ∂2u

∂η2
parabolic case

(λ1 = λ∗2 ∈ C) : Lu ∼ ∂2u

∂ξ2
+
∂2u

∂η2
elliptic case
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The D’Alembert solution
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Back to the wave equation

Characteristics
From equation (11) with
a = 1, b = 0, c = −v2

dy

dx
= ±v

x+ v t = ξ

x− v t = η

Canonical Form
The transformation (x, t)→ (ξ, η) leads to:

∂2u

∂t2
− v2 ∂

2u

∂x2
= 0 =⇒ ∂2U

∂ξ∂η
= 0

General Solution

U(ξ, η) = F (ξ) +G(η) (12)

u(x, t) = F (x+ v t) +G(x− v t) (13)
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D’Alembert’s form of the solution

Initial value problem

We prescribe the initial data

u(x, 0) = h(x) (14)

∂u

∂t
(x, 0) = ψ(x) (15)

Equations (12) and (13) give:

F (x) +G(x) = h(x) (16)

v [F ′(x)−G′(x)] = ψ(x) (17)

and, by differentiating (16):

F ′(x) =
v h′(x) + ψ(x)

2 v
(18)

G′(x) =
v h′(x)− ψ(x)

2 v
(19)
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D’Alembert’s form of the solution

After integration

F (x) =
h(x)

2
+

1

2 v

∫ x

0

ψ(λ)dλ (20)

G(x) =
h(x)

2
− 1

2 v

∫ x

0

ψ(λ)dλ (21)

We finally obtain the d’Alembert solution of the Initial Value Problem:

u(x, t) = F (x+ v t) +G(x− v t) =

=
1

2
[h(x+ v t) + h(x− v t)] +

1

2 v

∫ x+v t

x−v t
ψ(λ)dλ (22)

Works well on infinite domains; on a finite domain, we must use it
piecewise and take reflections into account.
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Dependence domain and Influence cone

Domain of dependence

From the d’Alembert form (22), we see that u(x, t) depends upon the
values of the functions h and ψ in the interval [x− v t, x+ v t] on the
x−axis. This is called domain of dependence.

The meaning is that the solution at position x and time t depends upon
the initial data within [x− v t, x+ v t] and not outside this interval.

Cone of influence
We also see that the initial condition at x = x0 influences the solution at later
times within the cone (a triangle in a plane) delimited by the surfaces
x0 − v t = 0 and x0 + v t = 0. This is called cone of influence.

These concepts are consistent with the experience of a finite propagation
speed.
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The Klein-Gordon and the telegrapher’s
equations
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The Klein-Gordon and the telegrapher’s
equations

The Klein-Gordon equation

If the vibrating string is subjected to a uniformly distributed elastic force, we
obtain the Klein-Gordon equation:

∂2u

∂t2
− v2 ∂

2u

∂x2
+ γu = 0 (23)

where γ is a constant (e.g., proportional to the elastic constant).

x

x,tu( )
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The Klein-Gordon and the telegrapher’s
equations

The telegrapher’s equation

Propagation of waves rarely happens without dissipation; when taken into
account, we obtain the telegrapher’s equation (or transmission line equation):

∂2u

∂t2
− v2 ∂

2u

∂x2
+ 2λ

∂u

∂t
+ γu = 0 (24)

where λ is a damping constant.

x

x,tu( )

x

x,tu( )
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Solutions on the real line (Fourier Transforms)
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Solutions by Fourier Transforms

The wave equation

Assume that u(x, t) can be written as a Fourier integral (which means that
|u(x, t)| → 0 fast enough as x→ ±∞)

u(x, t) =

∫ ∞
−∞

û(k, t) ei k x dk û(k, t) =
1

2π

∫ ∞
−∞

u(x, t) e−i k xdx

and substitute in the wave equation. One obtains

∂2û

∂t2
+ ω(k)2 û = 0

with ω(k) = k v. The general solution is given by

û(k, t) = A(k) eiωt +B(k)e−iωt

Inversion of the Fourier transform gives back the d’Alembert solution.

However, the Fourier form says something very important: the solution of the wave
equation can be written as a superposition of plave waves with constant group
velocity vg = dω/dk = v, so there is no dispersion.
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Solutions by Fourier Transforms

The Klein-Gordon Equation

Again, let

u(x, t) =

∫ ∞
−∞

û(k, t) ei k x dk û(k, t) =
1

2π

∫ ∞
−∞

u(x, t) e−i k xdx

and substitute in the Klein-Gordon equation. One obtains

∂2û

∂t2
+ ω(k)2 û = 0

with ω(k) =
√
k2 v2 + γ. The general solution is again given by

û(k, t) = A(k) eiωt +B(k)e−iωt

Now the group velocity vg = dω/dk is not constant and there is dispersion:
waves with different k’s propagate at different speeds and the shape (signal)
acquires a distorsion in time.
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Solutions by Fourier Transforms

The telegrapher’s equation

Again, with

u(x, t) =

∫ ∞
−∞

û(k, t) ei k x dk û(k, t) =
1

2π

∫ ∞
−∞

u(x, t) e−i k xdx

and γ = 0, one obtains

∂2û

∂t2
+ 2λ

∂û

∂t
+ ω(k)2 û = 0

with ω(k) = k v. The general solution is again given by

û(k, t) = e−λt
[
A1(k) eΩt +A2(k) e−Ωt

]
for |k| ≤ λ

v

= e−λt
[
B1(k) eiνt +B2(k)e−iνt

]
for |k| > λ

v

where Ω =
√
λ2 − k2 v2 and ν =

√
k2 v2 − λ2.

The solution shows both dispersion and diffusion.
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An example

Initial condition
We compare solutions of the wave equation, the Klein-Gordon equation and
the telegrapher’s equation with initial condition

u(x, 0) = e−x
2/2 ∂u

∂t
(x, 0) = 0

(black line: wave eq., red line: Klein-Gordon, blue line: telegr.)
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The wave equation on a finite domain
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The wave equation on a finite domain

Vector space with scalar product

Consider now the wave equation in the interval 0 ≤ x ≤ l. On a finite domain,
we must impose two boundary conditions (the equation is of 2nd order in x).
Let

u(0, t) = u(l, t) = 0 (25)

be the homogeneous Dirichlet boundary conditions and consider the linear
operator

Lu = −∂
2u

∂x2

defined on all twice differentiable functions on [0, l] with boundary conditions
(25). Equipped with the scalar product

(u, v) =

∫ l

0

u(x) v(x) dx

it becomes a vector space with scalar product (pre-Hilbert space) and it is
easily seen that L is a self-adjoint operator w.r. to this scalar product.
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The wave equation on a finite domain

Eigenfunctions

Then, L has a set of real eigenvalues, k2
n = (nπ/l)2, for n = 1, 2, ... and real

orthogonal eigenfunctions φn(x), given by

φn(x) =

√
2

l
sin kn x (26)

which form an orthonormal basis for the vector space, that is

(φn, φm) =

∫ l

0

φn(x)φm(x) dx = δmn (27)

Eigenfunction expansion

Then, any function of this vector space can be expressed as

u(x, t) =

∞∑
n=1

cn(t)φn(x) =

∞∑
n=1

cn(t)

√
2

l
sin kn x (28)
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The wave equation on a finite domain

Solution of the wave equation

By substituting (28) into the wave equation (2) we obtain

∞∑
n=1

{
c̈n(t)φn(x)− v2 cn(t)φ′′n(x)

}
= 0

∞∑
n=1

{
c̈n(t)φn(x) + v2 cn(t)Lφn(x)

}
= 0

∞∑
n=1

{
c̈n(t)φn(x) + v2 cn(t) k2n φn(x)

}
= 0

∞∑
n=1

{
c̈n(t) + ω2

n cn(t)
}
φn(x) = 0 with ωn = v kn

By taking the scalar product with φm we obtain

c̈m(t) + ω2
m cm(t) = 0

whose general solution is

cm(t) = Am cosωmt+Bm sinωmt
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The wave equation on a finite domain

Solution of the wave equation

The general solution of the wave equation (2) can then be written as a superposition
of all eigenfunctions as

u(x, t) =

∞∑
n=1

{An cosωnt+Bn sinωnt} φn(x) (29)

Each of the terms in the sum is called mode of vibration or “free vibrations”. The
general solution is thus a linear superposition of the vibration modes.

Initial conditions
The wave equation must be accompanied by the initial conditions (14)-(15):

u(x, 0) = h(x)
∂u

∂t
(x, 0) = ψ(x)

from which the coefficents An and Bn can be determined:

An =

∫ l

0

h(x)φn(x) dx Bn =
1

ωn

∫ l

0

ψ(x)φn(x) dx
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The wave equation on a finite domain

The Klein-Gordon equation and the telegrapher’s equation

By following similar steps, we may write the general solutions of the
Klein-Gordon equation (23) and the telegrapher’s equation (24):

u(x, t) =

∞∑
n=1

{An cosωnt+Bn sinωnt} φn(x) (K.-G.) (30)

u(x, t) = e−λt
∞∑
n=1

{An cos νnt+Bn sin νnt} φn(x) (telegr.) (31)

where the frequencies now are ωn =
√
v2 k2

n + γ and νn =
√
v2 k2

n − λ2. We
again observe dispersion in the Klein-Gordon equation and both dispersion
and diffusion in the telegrapher’s equation.

Numerical simulations
FiniteDomain.W, FiniteDomain.KG, FiniteDomain.tele,
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Non homogeneous problems
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Non homogeneous problems

Generalities
Non homogeneous terms arise whenever nonhomogeneous boundary conditions or
external forces are present. As customary in these cases, the solution is a sum of the
general solution of the homogeneous problem and a particular solution of the
complete equation.

Nonhomogeneous boundary conditions

∂2u

∂t2
− v2 ∂

2u

∂x2
= 0

u(0, t) = 0 u(l, t) = A

General solution: u(x, t) = up(x) + ũ(x, t) with up(x) and ũ such that

−v2 u′′p = 0 stationary solution

up(0) = 0 up(l) = A

which gives up(x) = Ax/l.

∂2ũ

∂t2
− v2 ∂

2ũ

∂x2
= 0

ũ(0, t) = ũ(l, t) = 0
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−v2 u′′p = 0 stationary solution

up(0) = 0 up(l) = A

which gives up(x) = Ax/l.

∂2ũ
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ũ(0, t) = ũ(l, t) = 0

Lucio Demeio - DIISM wave equation 38 / 44



Non homogeneous problems

The solution then is:

u(x, t) = A
x

l
+

∞∑
n=1

{An cosωnt+Bn sinωnt} φn(x)

where now the coefficients An and Bn are given by

An =

∫ l

0

[
h(x)−A x

l

]
φn(x) dx Bn =

1

ωn

∫ l

0

ψ(x)φn(x) dx

Numerical simulations
FiniteDomain.WNH
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Non homogeneous problems

External loads, e.g. gravity

∂2u

∂t2
− v2 ∂

2u

∂x2
+ k = 0

u(0, t) = 0 u(l, t) = A

General solution: u(x, t) = up(x) + ũ(x, t) with up(x) and ũ such that

−v2 u′′p + k = 0 stationary solution

up(0) = 0 up(l) = 0

which gives

up(x) =
k x

2 v2
(x− l)

∂2ũ

∂t2
− v2 ∂

2ũ

∂x2
= 0

ũ(0, t) = ũ(l, t) = 0
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Non homogeneous problems

The solution then is:

u(x, t) =
k x

2 v2
(x− l) +

∞∑
n=1

{An cosωnt+Bn sinωnt} φn(x)

where now the coefficients An and Bn are given by

An =

∫ l

0

[
h(x)− k x

2 v2
(x− l)

]
φn(x) dx Bn =

1

ωn

∫ l

0

ψ(x)φn(x) dx

Numerical simulations
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where now the coefficients An and Bn are given by

An =

∫ l

0

[
h(x)− k x

2 v2
(x− l)

]
φn(x) dx Bn =

1

ωn

∫ l

0

ψ(x)φn(x) dx

Numerical simulations
FiniteDomain.WNH
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Non homogeneous problems

Exteral excitations and resonances
Resonance phenomena occur when harmonic external sources (forcing terms) or
harmonic boundary conditions are present:

Sources:

∂2u

∂t2
− v2 ∂

2u

∂x2
= f(x, t)

u(0, t) = 0 u(l, t) = 0

Non hom. b.c.:

∂2u

∂t2
− v2 ∂

2u

∂x2
= 0

u(0, t) = 0 u(l, t) = f(t)

Consider the case of harmonic boundary conditions with f(t) = A0 sinµt. The
unknown function can be written as

u(x, t) = A0
x

l
sinµt+ ũ(x, t)

Then, ũ obeys the equation (looks like a problem with source)

∂2ũ

∂t2
− v2 ∂

2ũ

∂x2
= A0

x

l
µ2 sinµt (32)

ũ(0, t) = ũ(l, t) = 0
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Non homogeneous problems

External excitation
We expand ũ in the usual eigenfunctions:

ũ(x, t) =

∞∑
n=1

cn(t)φn(x).

After substituting into equation (32):

∞∑
n=1

{
c̈n(t) + ω2

n cn(t)
}
φn(x) = A0

x

l
µ2 sinµt with ωn = v kn

and, by taking scalar products with the φm’s,

c̈m(t) + ω2
m cm(t) = A0

γm
l
µ2 sinµt with γm = (x, φm(x))

whose general solution is

cm(t) = Am cosωmt+Bm sinωmt+
A0

l

γm µ2

ω2
m − µ2

sinµt
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Non homogeneous problems

Solution of the wave equation

The general solution of the wave equation (2) can then be written as a superposition
of all eigenfunctions as

u(x, t) = A0
x

l
sinµt+

∞∑
n=1

{
An cosωnt+Bn sinωnt+

A0

l

γn µ
2

ω2
n − µ2

sinµt

}
φn(x)

With the initial conditions

u(x, 0) = h(x)
∂u

∂t
(x, 0) = ψ(x)

we have for the coefficients An and Bn:

An =

∫ l

0

h(x)− φn(x) dx

Bn =
1

ωn

{∫ l

0

[
ψ(x)−A0

µx

l

]
φn(x) dx− A0 µγn

l

(
1 +

µ2

ω2
n − µ2

)}
Numerical simulations: FiniteDomain.WNH
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