Scuola di Dottorato THE WAVE EQUATION

Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche

E

《曰》 《圖》 《臣》 《臣》

- 1 The Vibrating String Equation
- 2 Second order PDEs
- **3** The D'Alembert solution
- 4 The Klein-Gordon and the telegrapher's equations
- **5** Solutions on the real line (Fourier Transforms)
- 6 Finite domains
- 7 Non homogeneous problems and resonances

《曰》 《圖》 《臣》 《臣》

(ロ) (部) (E) (E) (E)

E

Newton's law for Δm along x and y gives

$$0 = T(x + \Delta x) \cos \beta - T(x) \cos \alpha$$
No horizontal displacement
$$\Rightarrow T(x + \Delta x) \cos \beta = T(x) \cos \alpha \equiv T_0$$

$$\Delta m \frac{\partial^2 u}{\partial t^2} = T(x + \Delta x) \sin \beta - T(x) \sin \alpha$$
(1)

イロト イヨト イヨト イヨト

æ

With $\Delta m = \rho \Delta x$ and by substituting from (1):

$$\frac{\partial^2 u}{\partial t^2} = \frac{T_0}{\rho} \frac{\tan\beta - \tan\alpha}{\Delta x} = v^2 \frac{\frac{\partial u}{\partial x}(x + \Delta x, t) - \frac{\partial u}{\partial x}(x, t)}{\Delta x} \to v^2 \frac{\partial^2 u}{\partial x^2}$$

$$\frac{\partial^2 u}{\partial t^2} - v^2 \, \frac{\partial^2 u}{\partial x^2} = 0$$

which is called *wave equation* (in 1-D).

イロト イヨト イヨト イヨト

(2)

With $\Delta m = \rho \Delta x$ and by substituting from (1):

$$\frac{\partial^2 u}{\partial t^2} = \frac{T_0}{\rho} \frac{\tan\beta - \tan\alpha}{\Delta x} = v^2 \frac{\frac{\partial u}{\partial x}(x + \Delta x, t) - \frac{\partial u}{\partial x}(x, t)}{\Delta x} \to v^2 \frac{\partial^2 u}{\partial x^2}$$

$$\frac{\partial^2 u}{\partial t^2} - v^2 \,\frac{\partial^2 u}{\partial x^2} = 0$$

which is called *wave equation* (in 1-D).

Generalizing to 2 or 3 dimensions:

$$\frac{\partial^2 u}{\partial t^2} - v^2 \,\Delta u = 0$$

The wave equation describes virtually all wave phenomena: sound waves, light waves, waves in fluids, gases and plasmas, waves in solids, etc.

イロト イヨト イヨト イヨト

(2)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □

General form in 2 variables

The wave equation is a particular case of a second-order PDE; the most general form is

$$a\frac{\partial^2 u}{\partial x^2} + 2b\frac{\partial^2 u}{\partial x \partial y} + c\frac{\partial^2 u}{\partial y^2} = d$$
(3)

《曰》 《圖》 《臣》 《臣》

where $a = a(x, y, u, \partial u / \partial x, \partial u / \partial y)$, and so for b, c and d (quasilinearity).

General form in 2 variables

The wave equation is a particular case of a second-order PDE; the most general form is

$$a\frac{\partial^2 u}{\partial x^2} + 2b\frac{\partial^2 u}{\partial x \partial y} + c\frac{\partial^2 u}{\partial y^2} = d$$
(3)

イロト イヨト イヨト イヨト

where $a = a(x, y, u, \partial u / \partial x, \partial u / \partial y)$, and so for b, c and d (quasilinearity).

Boundary Value and Initial Value Problems

A differential equation possesses a family of solutions, and auxiliary conditions need to be specified in order to assure uniqueness of the solution. There are two sorts of auxiliary conditions:

General form in 2 variables

The wave equation is a particular case of a second-order PDE; the most general form is

$$a\frac{\partial^2 u}{\partial x^2} + 2b\frac{\partial^2 u}{\partial x \partial y} + c\frac{\partial^2 u}{\partial y^2} = d$$
(3)

<ロト <回ト < 注ト < 注・

where $a = a(x, y, u, \partial u / \partial x, \partial u / \partial y)$, and so for b, c and d (quasilinearity).

Boundary Value and Initial Value Problems

A differential equation possesses a family of solutions, and auxiliary conditions need to be specified in order to assure uniqueness of the solution. There are two sorts of auxiliary conditions:

• Initial Value (Cauchy) Problem: when the auxiliary conditions are imposed on the function and its derivatives along a line belonging to the domain of the independent variables;

э

General form in 2 variables

The wave equation is a particular case of a second-order PDE; the most general form is

$$a\frac{\partial^2 u}{\partial x^2} + 2b\frac{\partial^2 u}{\partial x \partial y} + c\frac{\partial^2 u}{\partial y^2} = d$$
(3)

イロト イヨト イヨト イヨト

where $a = a(x, y, u, \partial u / \partial x, \partial u / \partial y)$, and so for b, c and d (quasilinearity).

Boundary Value and Initial Value Problems

A differential equation possesses a family of solutions, and auxiliary conditions need to be specified in order to assure uniqueness of the solution. There are two sorts of auxiliary conditions:

- Initial Value (Cauchy) Problem: when the auxiliary conditions are imposed on the function and its derivatives along a line belonging to the domain of the independent variables;
- Boundary Value Problem: the solution is sought for in a domain $\Omega \in \mathbb{R}^n$ and the auxiliary conditions are imposed on the function (or its derivatives) on the boundary $\partial \Omega$ of the domain.

Initial Value and Boundary Value Problems

Cauchy Problem:

$$\begin{split} u(x,y) &= h(x,y) \\ \frac{\partial u}{\partial x}(x,y) &= \phi(x,y) \\ \frac{\partial u}{\partial y}(x,y) &= \psi(x,y) \end{split} \tag{On } \gamma$$

Boundary Value Problem:

$$\begin{split} u(x,y) &= f(x,y) \\ \text{or} & \text{On } \partial \Omega \\ \frac{\partial u}{\partial n}(x,y) &= \psi(x,y) \end{split}$$

イロト イヨト イヨト イヨト

E

Cauchy problem

Existence and uniqueness of the solution starting from assigned values of u, $\partial u/\partial x$ and $\partial u/\partial y$ on a smooth curve in the (x, y) plane. Let

$$\begin{cases} x = f(s) \\ y = g(s) \end{cases}$$

be a parametric representation of a curve γ in the (x, y) plane.

《曰》 《圖》 《臣》 《臣》

Cauchy problem

Existence and uniqueness of the solution starting from assigned values of u, $\partial u/\partial x$ and $\partial u/\partial y$ on a smooth curve in the (x, y) plane. Let

$$\begin{cases} x = f(s) \\ y = g(s) \end{cases}$$

be a parametric representation of a curve γ in the (x, y) plane.

Cauchy problem We must prescribe

$$u(x(s), y(s)) = h(s) \tag{4}$$

$$\frac{\partial u}{\partial x}(x(s), y(s)) = \phi(s) \tag{5}$$

$$\frac{\partial u}{\partial y}(x(s), y(s)) = \psi(s) \tag{6}$$

イロト イロト イヨト イヨト

and find the conditions for existence and uniqueness of the solution.

Lucio Demeio - DIISM

Let us differentiate (5) and (6) w.r. to s; by adding these to the differential equation (3) we have the following system:

$$\frac{\partial^2 u}{\partial x^2} f'(s) + \frac{\partial^2 u}{\partial x \, \partial y} g'(s) = \phi'(s) \tag{7}$$

$$\frac{\partial^2 u}{\partial x \,\partial y} f'(s) + \frac{\partial^2 u}{\partial y^2} g'(s) = \psi'(s) \tag{8}$$

$$a\frac{\partial^2 u}{\partial x^2} + 2b\frac{\partial^2 u}{\partial x \partial y} + c\frac{\partial^2 u}{\partial y^2} = d,$$
(9)

《曰》 《圖》 《臣》 《臣》

where the partial derivatives are to be considered as unknowns.

Let us differentiate (5) and (6) w.r. to s; by adding these to the differential equation (3) we have the following system:

$$\frac{\partial^2 u}{\partial x^2} f'(s) + \frac{\partial^2 u}{\partial x \, \partial y} g'(s) = \phi'(s) \tag{7}$$

$$\frac{\partial^2 u}{\partial x \, \partial y} f'(s) + \frac{\partial^2 u}{\partial y^2} g'(s) = \psi'(s) \tag{8}$$

$$a\frac{\partial^2 u}{\partial x^2} + 2b\frac{\partial^2 u}{\partial x \partial y} + c\frac{\partial^2 u}{\partial y^2} = d,$$
(9)

where the partial derivatives are to be considered as unknowns.

Unique solution if the determinant

$$\Delta = \begin{vmatrix} f'(s) & g'(s) & 0\\ 0 & f'(s) & g'(s)\\ a & 2b & c \end{vmatrix} = a \left[g'(s)\right]^2 - 2b f'(s) g'(s) + c \left[f'(s)\right]^2 \neq 0$$

If $\Delta = 0$, γ is called *characteristic curve*.

The condition $a [g'(s)]^2 - 2 b f'(s) g'(s) + c [f'(s)]^2 = 0$ is equivalent to

$$a \left[\frac{g'(s)}{f'(s)}\right]^2 - 2b \frac{g'(s)}{f'(s)} + c = 0$$

・ロット 4日マット キャット

The condition $a [g'(s)]^2 - 2 b f'(s) g'(s) + c [f'(s)]^2 = 0$ is equivalent to

$$a \left[\frac{g'(s)}{f'(s)}\right]^2 - 2b \frac{g'(s)}{f'(s)} + c = 0$$

• If $b^2 - ac > 0$ we have

$$\frac{g'(s)}{f'(s)} = \frac{b \pm \sqrt{b^2 - ac}}{a}$$

and the equation is called *hyperbolic*.

(10)

The condition $a [g'(s)]^2 - 2 b f'(s) g'(s) + c [f'(s)]^2 = 0$ is equivalent to

$$a \left[\frac{g'(s)}{f'(s)}\right]^2 - 2b \frac{g'(s)}{f'(s)} + c = 0$$

• If $b^2 - ac > 0$ we have

$$\frac{g'(s)}{f'(s)} = \frac{b \pm \sqrt{b^2 - ac}}{a}$$
(10)

and the equation is called *hyperbolic*.

• If $b^2 - a c < 0$ we have no solutions for g'(s)/f'(s) and the equation is called *elliptic*

The condition $a [g'(s)]^2 - 2 b f'(s) g'(s) + c [f'(s)]^2 = 0$ is equivalent to

$$a \left[\frac{g'(s)}{f'(s)}\right]^2 - 2b \frac{g'(s)}{f'(s)} + c = 0$$

• If $b^2 - ac > 0$ we have

$$\frac{g'(s)}{f'(s)} = \frac{b \pm \sqrt{b^2 - a c}}{a}$$
(10)

and the equation is called *hyperbolic*.

- If $b^2 a c < 0$ we have no solutions for g'(s)/f'(s) and the equation is called *elliptic*
- If $b^2 ac = 0$ we have

$$\frac{g'(s)}{f'(s)} = \frac{b}{a}$$

and the equation is called *parabolic*.

Characteristics

• Thus, hyperbolic equations possess two families of (real) characteristic curves in the (x, y) plane;

Characteristics

- Thus, hyperbolic equations possess two families of (real) characteristic curves in the (x, y) plane;
- parabolic equations have one family;

イロト イヨト イヨト イヨト

Characteristics

- Thus, hyperbolic equations possess two families of (real) characteristic curves in the (x, y) plane;
- parabolic equations have one family;
- elliptic equations have none (or have complex characteristics);

イロト イヨト イヨト イヨト

Characteristics

- Thus, hyperbolic equations possess two families of (real) characteristic curves in the (x, y) plane;
- parabolic equations have one family;
- elliptic equations have none (or have complex characteristics);
- If a, b and c depend only on x and y (linear equation), equation (10) can be written as

$$\frac{dy}{dx} = \frac{b \pm \sqrt{b^2 - ac}}{a} \equiv \lambda_{\pm}(x, y) \tag{11}$$

イロト イヨト イヨト イヨト

and it becomes a set of two differential equations for the characteristic curves.

Characteristics

- Thus, hyperbolic equations possess two families of (real) characteristic curves in the (x, y) plane;
- parabolic equations have one family;
- elliptic equations have none (or have complex characteristics);
- If a, b and c depend only on x and y (linear equation), equation (10) can be written as

$$\frac{dy}{dx} = \frac{b \pm \sqrt{b^2 - ac}}{a} \equiv \lambda_{\pm}(x, y) \tag{11}$$

イロト イヨト イヨト イヨト

and it becomes a set of two differential equations for the characteristic curves.

Role of the characteristic curves

• In time dependent problems, one can say, qualitatively, that the characteristics are the lines along which solutions are "transported";

Characteristics

- Thus, hyperbolic equations possess two families of (real) characteristic curves in the (x, y) plane;
- parabolic equations have one family;
- elliptic equations have none (or have complex characteristics);
- If a, b and c depend only on x and y (linear equation), equation (10) can be written as

$$\frac{dy}{dx} = \frac{b \pm \sqrt{b^2 - ac}}{a} \equiv \lambda_{\pm}(x, y) \tag{11}$$

イロト イヨト イヨト イヨト

and it becomes a set of two differential equations for the characteristic curves.

Role of the characteristic curves

- In time dependent problems, one can say, qualitatively, that the characteristics are the lines along which solutions are "transported";
- The presence of two families of characteristics in hyperbolic equations corresponds to counter-propagating wave forms;

Role of the characteristic curves

• the presence of one family of characteristics in parabolic equations corresponds to relaxation towards a statistical equilibrium (e.g., in gases);

イロト イヨト イヨト イヨト

Role of the characteristic curves

- the presence of one family of characteristics in parabolic equations corresponds to relaxation towards a statistical equilibrium (e.g., in gases);
- elliptic equations, which do not possess characteristics, describe static problems (e.g., static electric fields due to a charge distribution, steady-state temperature distributions, linear elasticity problems and more).

イロト イヨト イヨト イヨト

Role of the characteristic curves

- the presence of one family of characteristics in parabolic equations corresponds to relaxation towards a statistical equilibrium (e.g., in gases);
- elliptic equations, which do not possess characteristics, describe static problems (e.g., static electric fields due to a charge distribution, steady-state temperature distributions, linear elasticity problems and more).

Prototypical equations

Wave equation:

$$\frac{\partial^2 u}{\partial t^2} - v^2 \,\frac{\partial^2 u}{\partial x^2} = 0$$

$$b^2 - ac = v^2 > 0,$$

hyperbolic equation

Heat equation:

Laplace equation:

 $\frac{\partial u}{\partial t} - \kappa \, \frac{\partial^2 u}{\partial x^2} = 0$

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

 $b^2 - ac = 0,$ parabolic equation

$$b^2 - ac = -1 < 0,$$

elliptic equation

Canonical form

۲

$$Lu = a \frac{\partial^2 u}{\partial x^2} + 2b \frac{\partial^2 u}{\partial x \partial y} + c \frac{\partial^2 u}{\partial y^2}$$

Canonical form

۲

$$Lu = a \frac{\partial^2 u}{\partial x^2} + 2 b \frac{\partial^2 u}{\partial x \partial y} + c \frac{\partial^2 u}{\partial y^2}$$

• Polynomial form (a, b, c constants for simplicity) $p_L(\lambda) = a\lambda^2 + 2b\lambda + c = a(\lambda - \lambda_1)(\lambda - \lambda_2)$ and, by analogy,

$$Lu = a \left(\frac{\partial}{\partial x} - \lambda_1 \frac{\partial}{\partial y}\right) \left(\frac{\partial}{\partial x} - \lambda_2 \frac{\partial}{\partial y}\right) u$$

・ロト ・回ト ・ヨト ・ヨト

• Reduction to canonical form (after linear transformation to (ξ, η)):

$$\begin{aligned} &(\lambda_1 \neq \lambda_2 \in \mathbb{R}) : Lu \sim \frac{\partial^2 u}{\partial \xi \partial \eta} & \text{hyperbolic case} \\ &\text{or also} & Lu \sim \frac{\partial^2 u}{\partial \xi^2} - \frac{\partial^2 u}{\partial \eta^2} \\ &(\lambda_1 = \lambda_2 \in \mathbb{R}) : Lu \sim \frac{\partial^2 u}{\partial \eta^2} & \text{parabolic case} \\ &(\lambda_1 = \lambda_2^* \in \mathbb{C}) : Lu \sim \frac{\partial^2 u}{\partial \xi^2} + \frac{\partial^2 u}{\partial \eta^2} & \text{elliptic case} \end{aligned}$$

E

《口》 《國》 《注》 《注》

The D'Alembert solution

(ロ) (部) (E) (E) (E)

Back to the wave equation

Characteristics

From equation (11) with

$$a = 1, b = 0, c = -v^2$$

 $\frac{dy}{dx} = \pm v$
 $x + v t = \xi$
 $x - v t = \eta$

E

イロト イヨト イヨト イヨト
Back to the wave equation

Characteristics

From equation (11) with

$$a = 1, b = 0, c = -v^2$$

 $\frac{dy}{dx} = \pm v$
 $x + v t = \xi$
 $x - v t = \eta$

E

イロト イヨト イヨト イヨト

Back to the wave equation

Characteristics

From equation (11) with

$$a = 1, b = 0, c = -v^2$$

 $\frac{dy}{dx} = \pm v$
 $x + v t = \xi$
 $x - v t = \eta$

Canonical Form

The transformation $(x,t) \rightarrow (\xi,\eta)$ leads to:

$$\frac{\partial^2 u}{\partial t^2} - v^2 \frac{\partial^2 u}{\partial x^2} = 0 \qquad \Longrightarrow \qquad \frac{\partial^2 U}{\partial \xi \partial \eta} = 0$$

E

Back to the wave equation

Characteristics

From equation (11) with

$$a = 1, b = 0, c = -v^2$$

 $\frac{dy}{dx} = \pm v$
 $x + v t = \xi$
 $x - v t = \eta$

Canonical Form

The transformation $(x,t) \rightarrow (\xi,\eta)$ leads to:

$$\frac{\partial^2 u}{\partial t^2} - v^2 \frac{\partial^2 u}{\partial x^2} = 0 \qquad \Longrightarrow \qquad \frac{\partial^2 U}{\partial \xi \partial \eta} = 0$$

General Solution

$$U(\xi, \eta) = F(\xi) + G(\eta)$$
(12)
 $u(x,t) = F(x+vt) + G(x-vt)$ (13)

Initial value problem

• We prescribe the initial data

$$u(x,0) = h(x)$$
(14)
$$\frac{\partial u}{\partial t}(x,0) = \psi(x)$$
(15)

Initial value problem

• We prescribe the initial data

$$u(x,0) = h(x) \tag{14}$$

$$\frac{\partial u}{\partial t}(x,0) = \psi(x) \tag{15}$$

• Equations (12) and (13) give:

$$F(x) + G(x) = h(x)$$
(16)
 $v [F'(x) - G'(x)] = \psi(x)$ (17)

Initial value problem

• We prescribe the initial data

$$u(x,0) = h(x) \tag{14}$$

$$\frac{\partial u}{\partial t}(x,0) = \psi(x) \tag{15}$$

• Equations (12) and (13) give:

$$F(x) + G(x) = h(x)$$
(16)
 $v [F'(x) - G'(x)] = \psi(x)$ (17)

• and, by differentiating (16):

$$F'(x) = \frac{v h'(x) + \psi(x)}{2 v}$$
(18)

$$G'(x) = \frac{v h'(x) - \psi(x)}{2 v}$$
(19)

• After integration

$$F(x) = \frac{h(x)}{2} + \frac{1}{2v} \int_0^x \psi(\lambda) d\lambda$$
(20)
$$G(x) = \frac{h(x)}{2} - \frac{1}{2v} \int_0^x \psi(\lambda) d\lambda$$
(21)

20 / 44

E

• After integration

$$F(x) = \frac{h(x)}{2} + \frac{1}{2v} \int_0^x \psi(\lambda) d\lambda$$
(20)
$$G(x) = \frac{h(x)}{2} - \frac{1}{2v} \int_0^x \psi(\lambda) d\lambda$$
(21)

イロト イヨト イヨト イヨト

• We finally obtain the d'Alembert solution of the Initial Value Problem:

$$u(x,t) = F(x+vt) + G(x-vt) =$$

= $\frac{1}{2}[h(x+vt) + h(x-vt)] + \frac{1}{2v} \int_{x-vt}^{x+vt} \psi(\lambda)d\lambda$ (22)

20 / 44

• After integration

$$F(x) = \frac{h(x)}{2} + \frac{1}{2v} \int_0^x \psi(\lambda) d\lambda$$
(20)
$$G(x) = \frac{h(x)}{2} - \frac{1}{2v} \int_0^x \psi(\lambda) d\lambda$$
(21)

イロト イヨト イヨト イヨト

• We finally obtain the d'Alembert solution of the Initial Value Problem:

$$u(x,t) = F(x+vt) + G(x-vt) =$$

= $\frac{1}{2}[h(x+vt) + h(x-vt)] + \frac{1}{2v} \int_{x-vt}^{x+vt} \psi(\lambda)d\lambda$ (22)

• Works well on infinite domains; on a finite domain, we must use it piecewise and take reflections into account.

Domain of dependence

• From the d'Alembert form (22), we see that u(x,t) depends upon the values of the functions h and ψ in the interval [x - vt, x + vt] on the x-axis. This is called *domain of dependence*.

・ロト ・日ト ・ヨト ・ヨト

Domain of dependence

- From the d'Alembert form (22), we see that u(x,t) depends upon the values of the functions h and ψ in the interval [x vt, x + vt] on the x-axis. This is called *domain of dependence*.
- The meaning is that the solution at position x and time t depends upon the initial data within [x v t, x + v t] and not outside this interval.

・ロト ・回ト ・ヨト ・ヨト

Domain of dependence

- From the d'Alembert form (22), we see that u(x,t) depends upon the values of the functions h and ψ in the interval [x vt, x + vt] on the x-axis. This is called *domain of dependence*.
- The meaning is that the solution at position x and time t depends upon the initial data within [x v t, x + v t] and not outside this interval.

Cone of influence

We also see that the initial condition at $x = x_0$ influences the solution at later times within the cone (a triangle in a plane) delimited by the surfaces $x_0 - vt = 0$ and $x_0 + vt = 0$. This is called *cone of influence*.

《曰》 《圖》 《臣》 《臣》

Domain of dependence

- From the d'Alembert form (22), we see that u(x,t) depends upon the values of the functions h and ψ in the interval [x vt, x + vt] on the x-axis. This is called *domain of dependence*.
- The meaning is that the solution at position x and time t depends upon the initial data within [x v t, x + v t] and not outside this interval.

Cone of influence

We also see that the initial condition at $x = x_0$ influences the solution at later times within the cone (a triangle in a plane) delimited by the surfaces $x_0 - v t = 0$ and $x_0 + v t = 0$. This is called *cone of influence*.

These concepts are consistent with the experience of a finite propagation speed.

E

The Klein-Gordon and the telegrapher's equations

E

The Klein-Gordon and the telegrapher's equations

The Klein-Gordon equation

If the vibrating string is subjected to a uniformly distributed elastic force, we obtain the Klein-Gordon equation:

$$\frac{\partial^2 u}{\partial t^2} - v^2 \frac{\partial^2 u}{\partial x^2} + \gamma u = 0 \tag{23}$$

(ロ) (日) (日) (日) (日)

where γ is a constant (e.g., proportional to the elastic constant).

The Klein-Gordon and the telegrapher's equations

The telegrapher's equation

Propagation of waves rarely happens without dissipation; when taken into account, we obtain the telegrapher's equation (or transmission line equation):

$$\frac{\partial^2 u}{\partial t^2} - v^2 \frac{\partial^2 u}{\partial x^2} + 2\lambda \frac{\partial u}{\partial t} + \gamma u = 0$$
(24)

(ロ) (日) (日) (日) (日)

where λ is a damping constant.

Solutions on the real line (Fourier Transforms)

(ロ) (部) (E) (E) (E)

The wave equation

Assume that u(x,t) can be written as a Fourier integral (which means that $|u(x,t)| \to 0$ fast enough as $x \to \pm \infty$)

$$u(x,t) = \int_{-\infty}^{\infty} \widehat{u}(k,t) e^{i k x} dk \qquad \widehat{u}(k,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} u(x,t) e^{-i k x} dx$$

and substitute in the wave equation. One obtains

$$\frac{\partial^2 \widehat{u}}{\partial t^2} + \omega(k)^2 \,\widehat{u} = 0$$

with $\omega(k) = k v$. The general solution is given by

$$\widehat{u}(k,t) = A(k) e^{i\omega t} + B(k) e^{-i\omega t}$$

Inversion of the Fourier transform gives back the d'Alembert solution.

・ロト ・回ト ・ヨト ・ヨト

The wave equation

Assume that u(x,t) can be written as a Fourier integral (which means that $|u(x,t)| \to 0$ fast enough as $x \to \pm \infty$)

$$u(x,t) = \int_{-\infty}^{\infty} \hat{u}(k,t) e^{i k x} dk \qquad \hat{u}(k,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} u(x,t) e^{-i k x} dx$$

and substitute in the wave equation. One obtains

$$\frac{\partial^2 \widehat{u}}{\partial t^2} + \omega(k)^2 \,\widehat{u} = 0$$

with $\omega(k) = k v$. The general solution is given by

$$\widehat{u}(k,t) = A(k) e^{i\omega t} + B(k)e^{-i\omega t}$$

Inversion of the Fourier transform gives back the d'Alembert solution.

However, the Fourier form says something very important: the solution of the wave equation can be written as a superposition of plave waves with constant group velocity $v_g = d\omega/dk = v$, so there is no dispersion.

The Klein-Gordon Equation

Again, let

$$u(x,t) = \int_{-\infty}^{\infty} \hat{u}(k,t) e^{i \, k \, x} \, dk \qquad \hat{u}(k,t) = \frac{1}{2\pi} \, \int_{-\infty}^{\infty} u(x,t) \, e^{-i \, k \, x} dx$$

and substitute in the Klein-Gordon equation. One obtains

$$\frac{\partial^2 \widehat{u}}{\partial t^2} + \omega(k)^2 \, \widehat{u} = 0$$

with $\omega(k) = \sqrt{k^2 v^2 + \gamma}$. The general solution is again given by

$$\widehat{u}(k,t) = A(k) e^{i\omega t} + B(k) e^{-i\omega t}$$

・ロト ・回ト ・ヨト ・ヨト ・ヨ

The Klein-Gordon Equation

Again, let

$$u(x,t) = \int_{-\infty}^{\infty} \hat{u}(k,t) e^{i \, k \, x} \, dk \qquad \hat{u}(k,t) = \frac{1}{2\pi} \, \int_{-\infty}^{\infty} u(x,t) \, e^{-i \, k \, x} dx$$

and substitute in the Klein-Gordon equation. One obtains

$$\frac{\partial^2 \widehat{u}}{\partial t^2} + \omega(k)^2 \, \widehat{u} = 0$$

with $\omega(k) = \sqrt{k^2 v^2 + \gamma}$. The general solution is again given by

$$\widehat{u}(k,t) = A(k) e^{i\omega t} + B(k) e^{-i\omega t}$$

Now the group velocity $v_g = d\omega/dk$ is not constant and there is dispersion: waves with different k's propagate at different speeds and the shape (signal) acquires a distorsion in time.

Lucio Demeio - DIISM

The telegrapher's equation

Again, with

$$u(x,t) = \int_{-\infty}^{\infty} \hat{u}(k,t) e^{i \, k \, x} \, dk \qquad \hat{u}(k,t) = \frac{1}{2\pi} \, \int_{-\infty}^{\infty} u(x,t) \, e^{-i \, k \, x} dx$$

and $\gamma = 0$, one obtains

$$\frac{\partial^2 \widehat{u}}{\partial t^2} + 2\lambda \frac{\partial \widehat{u}}{\partial t} + \omega(k)^2 \, \widehat{u} = 0$$

with $\omega(k) = k v$. The general solution is again given by

$$\widehat{u}(k,t) = e^{-\lambda t} \left[A_1(k) e^{\Omega t} + A_2(k) e^{-\Omega t} \right] \quad \text{for} \quad |k| \le \frac{\lambda}{v}$$
$$= e^{-\lambda t} \left[B_1(k) e^{i\nu t} + B_2(k) e^{-i\nu t} \right] \quad \text{for} \quad |k| > \frac{\lambda}{v}$$

where $\Omega = \sqrt{\lambda^2 - k^2 v^2}$ and $\nu = \sqrt{k^2 v^2 - \lambda^2}$.

イロト イヨト イヨト イヨト

The telegrapher's equation

Again, with

$$u(x,t) = \int_{-\infty}^{\infty} \hat{u}(k,t) e^{i \, k \, x} \, dk \qquad \hat{u}(k,t) = \frac{1}{2\pi} \, \int_{-\infty}^{\infty} u(x,t) \, e^{-i \, k \, x} dx$$

and $\gamma = 0$, one obtains

$$\frac{\partial^2 \widehat{u}}{\partial t^2} + 2\lambda \frac{\partial \widehat{u}}{\partial t} + \omega(k)^2 \, \widehat{u} = 0$$

with $\omega(k) = k v$. The general solution is again given by

$$\widehat{u}(k,t) = e^{-\lambda t} \left[A_1(k) e^{\Omega t} + A_2(k) e^{-\Omega t} \right] \quad \text{for} \quad |k| \le \frac{\lambda}{v}$$
$$= e^{-\lambda t} \left[B_1(k) e^{i\nu t} + B_2(k) e^{-i\nu t} \right] \quad \text{for} \quad |k| > \frac{\lambda}{v}$$

where $\Omega = \sqrt{\lambda^2 - k^2 v^2}$ and $\nu = \sqrt{k^2 v^2 - \lambda^2}$.

An example

Initial condition

We compare solutions of the wave equation, the Klein-Gordon equation and the telegrapher's equation with initial condition

$$u(x,0) = e^{-x^2/2}$$
 $\frac{\partial u}{\partial t}(x,0) = 0$

(black line: wave eq., red line: Klein-Gordon, blue line: telegr.)

・ロト ・回ト ・ヨト ・ヨト

An example

Initial condition

We compare solutions of the wave equation, the Klein-Gordon equation and the telegrapher's equation with initial condition

$$u(x,0) = e^{-x^2/2}$$
 $\frac{\partial u}{\partial t}(x,0) = 0$

(black line: wave eq., red line: Klein-Gordon, blue line: telegr.)

Lucio Demeio - DIISM

wave equation

イロト イロト イヨト イヨト 二日

Vector space with scalar product

Consider now the wave equation in the interval $0 \le x \le l$. On a finite domain, we must impose two boundary conditions (the equation is of 2^{nd} order in x). Let

$$u(0,t) = u(l,t) = 0$$
(25)

イロト イヨト イヨト

be the homogeneous Dirichlet boundary conditions and consider the linear operator

$$L \, u = -\frac{\partial^2 u}{\partial x^2}$$

defined on all twice differentiable functions on [0, l] with boundary conditions (25). Equipped with the scalar product

$$(u,v) = \int_0^l u(x) v(x) \, dx$$

it becomes a vector space with scalar product (pre-Hilbert space) and it is easily seen that L is a self-adjoint operator w.r. to this scalar product.

Eigenfunctions

Then, L has a set of real eigenvalues, $k_n^2 = (n\pi/l)^2$, for n = 1, 2, ... and real orthogonal eigenfunctions $\phi_n(x)$, given by

$$\phi_n(x) = \sqrt{\frac{2}{l}} \sin k_n x \tag{26}$$

which form an orthonormal basis for the vector space, that is

$$(\phi_n, \phi_m) = \int_0^l \phi_n(x) \, \phi_m(x) \, dx = \delta_{mn} \tag{27}$$

Eigenfunctions

Then, L has a set of real eigenvalues, $k_n^2 = (n\pi/l)^2$, for n = 1, 2, ... and real orthogonal eigenfunctions $\phi_n(x)$, given by

$$\phi_n(x) = \sqrt{\frac{2}{l}} \sin k_n x \tag{26}$$

which form an orthonormal basis for the vector space, that is

$$(\phi_n, \phi_m) = \int_0^l \phi_n(x) \, \phi_m(x) \, dx = \delta_{mn} \tag{27}$$

Eigenfunction expansion

Then, any function of this vector space can be expressed as

$$u(x,t) = \sum_{n=1}^{\infty} c_n(t) \phi_n(x) = \sum_{n=1}^{\infty} c_n(t) \sqrt{\frac{2}{l}} \sin k_n x$$
(28)

Solution of the wave equation

By substituting (28) into the wave equation (2) we obtain

$$\sum_{n=1}^{\infty} \left\{ \ddot{c}_n(t) \phi_n(x) - v^2 c_n(t) \phi_n''(x) \right\} = 0$$

$$\sum_{n=1}^{\infty} \left\{ \ddot{c}_n(t) \phi_n(x) + v^2 c_n(t) L \phi_n(x) \right\} = 0$$

$$\sum_{n=1}^{\infty} \left\{ \ddot{c}_n(t) \phi_n(x) + v^2 c_n(t) k_n^2 \phi_n(x) \right\} = 0$$

$$\sum_{n=1}^{\infty} \left\{ \ddot{c}_n(t) + \omega_n^2 c_n(t) \right\} \phi_n(x) = 0 \quad \text{with} \quad \omega_n = v k_n$$

By taking the scalar product with ϕ_m we obtain

$$\ddot{c}_m(t) + \omega_m^2 c_m(t) = 0$$

whose general solution is

 $c_m(t) = A_m \, \cos \omega_m t + B_m \, \sin \omega_m t$

Lucio Demeio - DIISM

Solution of the wave equation

The general solution of the wave equation (2) can then be written as a superposition of all eigenfunctions as

$$u(x,t) = \sum_{n=1}^{\infty} \{A_n \, \cos \omega_n t + B_n \, \sin \omega_n t\} \, \phi_n(x) \tag{29}$$

Each of the terms in the sum is called *mode of vibration* or "free vibrations". The general solution is thus a linear superposition of the vibration modes.

・ロト ・回ト ・ヨト ・ヨト

Solution of the wave equation

The general solution of the wave equation (2) can then be written as a superposition of all eigenfunctions as

$$u(x,t) = \sum_{n=1}^{\infty} \{A_n \, \cos \omega_n t + B_n \, \sin \omega_n t\} \, \phi_n(x) \tag{29}$$

Each of the terms in the sum is called *mode of vibration* or "free vibrations". The general solution is thus a linear superposition of the vibration modes.

Initial conditions

The wave equation must be accompanied by the initial conditions (14)-(15):

$$u(x,0) = h(x)$$
 $\frac{\partial u}{\partial t}(x,0) = \psi(x)$

from which the coefficients A_n and B_n can be determined:

$$A_n = \int_0^l h(x) \phi_n(x) dx \qquad B_n = \frac{1}{\omega_n} \int_0^l \psi(x) \phi_n(x) dx$$

The Klein-Gordon equation and the telegrapher's equation By following similar steps, we may write the general solutions of the Klein-Gordon equation (23) and the telegrapher's equation (24):

$$u(x,t) = \sum_{n=1}^{\infty} \{A_n \cos \omega_n t + B_n \sin \omega_n t\} \phi_n(x) \quad \text{(K.-G.)} \quad (30)$$
$$u(x,t) = e^{-\lambda t} \sum_{n=1}^{\infty} \{A_n \cos \nu_n t + B_n \sin \nu_n t\} \phi_n(x) \quad \text{(telegr.)} \quad (31)$$

where the frequencies now are $\omega_n = \sqrt{v^2 k_n^2 + \gamma}$ and $\nu_n = \sqrt{v^2 k_n^2 - \lambda^2}$. We again observe dispersion in the Klein-Gordon equation and both dispersion and diffusion in the telegrapher's equation.

・ロト ・回ト ・ヨト ・ヨト

The Klein-Gordon equation and the telegrapher's equation By following similar steps, we may write the general solutions of the Klein-Gordon equation (23) and the telegrapher's equation (24):

$$u(x,t) = \sum_{n=1}^{\infty} \{A_n \cos \omega_n t + B_n \sin \omega_n t\} \phi_n(x) \quad \text{(K.-G.)} \quad (30)$$
$$u(x,t) = e^{-\lambda t} \sum_{n=1}^{\infty} \{A_n \cos \nu_n t + B_n \sin \nu_n t\} \phi_n(x) \quad \text{(telegr.)} \quad (31)$$

where the frequencies now are $\omega_n = \sqrt{v^2 k_n^2 + \gamma}$ and $\nu_n = \sqrt{v^2 k_n^2 - \lambda^2}$. We again observe dispersion in the Klein-Gordon equation and both dispersion and diffusion in the telegrapher's equation.

Numerical simulations

FiniteDomain.W, FiniteDomain.KG, FiniteDomain.tele,

Lucio Demeio - DIISM

イロト イヨト イヨト イヨト
(ロ) (部) (E) (E) (E)

Generalities

Non homogeneous terms arise whenever nonhomogeneous boundary conditions or external forces are present. As customary in these cases, the solution is a sum of the general solution of the homogeneous problem and a particular solution of the complete equation.

イロト イヨト イヨト イヨト

Generalities

Non homogeneous terms arise whenever nonhomogeneous boundary conditions or external forces are present. As customary in these cases, the solution is a sum of the general solution of the homogeneous problem and a particular solution of the complete equation.

Nonhomogeneous boundary conditions

$$\frac{\partial^2 u}{\partial t^2} - v^2 \frac{\partial^2 u}{\partial x^2} = 0$$
$$u(0,t) = 0 \qquad u(l,t) = A$$

General solution: $u(x,t) = u_p(x) + \tilde{u}(x,t)$ with $u_p(x)$ and \tilde{u} such that

 $-v^2 u_p'' = 0$ stationary solution $u_p(0) = 0$ $u_p(l) = A$

which gives $u_p(x) = A x/l$.

$$\begin{aligned} \frac{\partial^2 \tilde{u}}{\partial t^2} - v^2 \, \frac{\partial^2 \tilde{u}}{\partial x^2} &= 0\\ \tilde{u}(0,t) &= \tilde{u}(l,t) = 0 \end{aligned}$$

イロト イロト イヨト イヨト

The solution then is:

$$u(x,t) = A \frac{x}{l} + \sum_{n=1}^{\infty} \{A_n \cos \omega_n t + B_n \sin \omega_n t\} \phi_n(x)$$

where now the coefficients A_n and B_n are given by

$$A_n = \int_0^l \left[h(x) - A \frac{x}{l} \right] \phi_n(x) \, dx \qquad B_n = \frac{1}{\omega_n} \int_0^l \psi(x) \, \phi_n(x) \, dx$$

The solution then is:

$$u(x,t) = A \frac{x}{l} + \sum_{n=1}^{\infty} \{A_n \cos \omega_n t + B_n \sin \omega_n t\} \phi_n(x)$$

where now the coefficients A_n and B_n are given by

$$A_n = \int_0^l \left[h(x) - A \frac{x}{l} \right] \phi_n(x) \, dx \qquad B_n = \frac{1}{\omega_n} \int_0^l \psi(x) \, \phi_n(x) \, dx$$

Numerical simulations FiniteDomain.WNH

・ロト ・回ト ・ヨト ・ヨト

External loads, e.g. gravity

$$\frac{\partial^2 u}{\partial t^2} - v^2 \frac{\partial^2 u}{\partial x^2} + k = 0$$
$$u(0,t) = 0 \qquad u(l,t) = A$$

General solution: $u(x,t) = u_p(x) + \tilde{u}(x,t)$ with $u_p(x)$ and \tilde{u} such that

$$-v^2 u_p'' + k = 0$$
 stationary solution
 $u_p(0) = 0$ $u_p(l) = 0$

which gives

$$u_p(x) = \frac{k x}{2 v^2} (x - l)$$

$$\frac{\partial^2 \tilde{u}}{\partial t^2} - v^2 \frac{\partial^2 \tilde{u}}{\partial x^2} = 0$$

$$\tilde{v}(0,t) = \tilde{u}(l,t) = 0$$

(日) (四) (王) (王) (王)

The solution then is:

$$u(x,t) = \frac{kx}{2v^2} (x-l) + \sum_{n=1}^{\infty} \{A_n \cos \omega_n t + B_n \sin \omega_n t\} \phi_n(x)$$

where now the coefficients A_n and B_n are given by

$$A_n = \int_0^l \left[h(x) - \frac{kx}{2v^2} (x - l) \right] \phi_n(x) \, dx \qquad B_n = \frac{1}{\omega_n} \int_0^l \psi(x) \, \phi_n(x) \, dx$$

イロト イヨト イヨト イヨト

The solution then is:

$$u(x,t) = \frac{kx}{2v^2} (x-l) + \sum_{n=1}^{\infty} \{A_n \cos \omega_n t + B_n \sin \omega_n t\} \phi_n(x)$$

where now the coefficients A_n and B_n are given by

$$A_n = \int_0^l \left[h(x) - \frac{k x}{2 v^2} (x - l) \right] \phi_n(x) \, dx \qquad B_n = \frac{1}{\omega_n} \int_0^l \psi(x) \, \phi_n(x) \, dx$$

Numerical simulations FiniteDomain.WNH

・ロト ・回ト ・ヨト ・ヨト

Exteral excitations and resonances

Resonance phenomena occur when harmonic external sources (forcing terms) or harmonic boundary conditions are present:

Sources:Non hom. b.c.: $\frac{\partial^2 u}{\partial t^2} - v^2 \frac{\partial^2 u}{\partial x^2} = f(x,t)$ $\frac{\partial^2 u}{\partial t^2} - v^2 \frac{\partial^2 u}{\partial x^2} = 0$ u(0,t) = 0u(l,t) = 0u(0,t) = 0u(l,t) = 0

Consider the case of harmonic boundary conditions with $f(t) = A_0 \sin \mu t$. The unknown function can be written as

$$u(x,t) = A_0 \frac{x}{l} \sin \mu t + \tilde{u}(x,t)$$

Then, \tilde{u} obeys the equation (looks like a problem with source)

$$\frac{\partial^2 \tilde{u}}{\partial t^2} - v^2 \frac{\partial^2 \tilde{u}}{\partial x^2} = A_0 \frac{x}{l} \mu^2 \sin \mu t$$

$$\tilde{u}(0,t) = \tilde{u}(l,t) = 0$$
(32)

External excitation

We expand \tilde{u} in the usual eigenfunctions:

$$\tilde{u}(x,t) = \sum_{n=1}^{\infty} c_n(t) \phi_n(x).$$

After substituting into equation (32):

$$\sum_{n=1}^{\infty} \left\{ \ddot{c}_n(t) + \omega_n^2 c_n(t) \right\} \phi_n(x) = A_0 \frac{x}{l} \mu^2 \sin \mu t \quad \text{with} \quad \omega_n = v \, k_n$$

and, by taking scalar products with the ϕ_m 's,

$$\ddot{c}_m(t) + \omega_m^2 c_m(t) = A_0 \frac{\gamma_m}{l} \mu^2 \sin \mu t$$
 with $\gamma_m = (x, \phi_m(x))$

whose general solution is

$$c_m(t) = A_m \cos \omega_m t + B_m \sin \omega_m t + \frac{A_0}{l} \frac{\gamma_m \mu^2}{\omega_m^2 - \mu^2} \sin \mu t$$

Solution of the wave equation

The general solution of the wave equation (2) can then be written as a superposition of all eigenfunctions as

$$u(x,t) = A_0 \frac{x}{l} \sin \mu t + \sum_{n=1}^{\infty} \left\{ A_n \cos \omega_n t + B_n \sin \omega_n t + \frac{A_0}{l} \frac{\gamma_n \mu^2}{\omega_n^2 - \mu^2} \sin \mu t \right\} \phi_n(x)$$

With the initial conditions

$$u(x,0) = h(x)$$
 $\frac{\partial u}{\partial t}(x,0) = \psi(x)$

we have for the coefficients A_n and B_n :

$$A_{n} = \int_{0}^{l} h(x) - \phi_{n}(x) dx$$
$$B_{n} = \frac{1}{\omega_{n}} \left\{ \int_{0}^{l} \left[\psi(x) - A_{0} \frac{\mu x}{l} \right] \phi_{n}(x) dx - \frac{A_{0} \mu \gamma_{n}}{l} \left(1 + \frac{\mu^{2}}{\omega_{n}^{2} - \mu^{2}} \right) \right\}$$

Numerical simulations: FiniteDomain.WNH

Lucio Demeio - DIISM

44 / 44

イロト イヨト イヨト イヨト