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@ The Vibrating String Equation

© Second order PDEs

© The D’Alembert solution

@ The Klein-Gordon and the telegrapher’s equations
@ Solutions on the real line (Fourier Transforms)

@ Finite domains

@ Non homogeneous problems and resonances
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The vibrating string equation
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The vibrating string equation

T (x+Ax)
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The vibrating string equation

T (x+Ax)

Newton’s law for Am along x and y gives

0=T(x+ Az) cosf —T(z) cos
No horizontal displacement
= T(zx+ Azx) cos § =T(x) cosa =T
0%u

Amw =T(z+ Az) sinf —T(z) sinc
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The vibrating string equation

With Am = p Az and by substituting from (1):

0*u _ Ty tan B — tana 2 9u (4 Az, t) — (z,1) _)02@

a2 p Ax Az 0x?

0%u 0%u
@ Y o @

which is called wave equation (in 1-D).
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The vibrating string equation

With Am = p Az and by substituting from (1):

0%u _ Tptan —tana _ 2 %(ZE-I-AZEJ)—%(%@ 02 d*u
o2 P) Ax - Ax 02

0%u 0%u
@ Y o @

which is called wave equation (in 1-D).

Generalizing to 2 or 3 dimensions:

Pu

— — v Au=0

ot?
The wave equation describes virtually all wave phenomena: sound waves, light
waves, waves in fluids, gases and plasmas, waves in solids, etc.
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Quasilinear second order PDEs
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Quasilinear second order PDEs

General form in 2 variables

The wave equation is a particular case of a second-order PDE; the most general form
is
0%u 0%u 0%u
a=—+2b——+c-— =d 3
Ox? + oxdy + oy? (3)

where a = a(z, y, u, Ou/dz, du/dy), and so for b, ¢ and d (quasilinearity).
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Quasilinear second order PDEs

General form in 2 variables

The wave equation is a particular case of a second-order PDE; the most general form
is

a@ +2b_62u +C@

Ox? oxdy oy?

where a = a(z, y, u, Ou/dz, du/dy), and so for b, ¢ and d (quasilinearity).

=d (3)

Boundary Value and Initial Value Problems

A differential equation possesses a family of solutions, and auxiliary conditions need
to be specified in order to assure uniqueness of the solution. There are two sorts of
auxiliary conditions:
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Quasilinear second order PDEs

General form in 2 variables

The wave equation is a particular case of a second-order PDE; the most general form
is

0%u 0%u 0%u

— +2b—— — =d 3
“ Ox? + oxdy te oy? (3)
where a = a(z, y, u, Ou/dz, du/dy), and so for b, ¢ and d (quasilinearity).

Boundary Value and Initial Value Problems

A differential equation possesses a family of solutions, and auxiliary conditions need
to be specified in order to assure uniqueness of the solution. There are two sorts of
auxiliary conditions:

@ Initial Value (Cauchy) Problem: when the auxiliary conditions are imposed on
the function and its derivatives along a line belonging to the domain of the
independent variables;
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Quasilinear second order PDEs

General form in 2 variables

The wave equation is a particular case of a second-order PDE; the most general form
is

0%u 0%u 0%u

— +2b—— — =d 3
“ Ox? + oxdy te oy? (3)
where a = a(z, y, u, Ou/dz, du/dy), and so for b, ¢ and d (quasilinearity).

Boundary Value and Initial Value Problems

A differential equation possesses a family of solutions, and auxiliary conditions need
to be specified in order to assure uniqueness of the solution. There are two sorts of
auxiliary conditions:

@ Initial Value (Cauchy) Problem: when the auxiliary conditions are imposed on
the function and its derivatives along a line belonging to the domain of the
independent variables;

@ Boundary Value Problem: the solution is sought for in a domain £ € R" and
the auxiliary conditions are imposed on the function (or its derivatives) on the
boundary 0f2 of the domain.
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Quasilinear second order PDEs

Initial Value and Boundary Value Problems
Cauchy Problem:

v u(w,y) = h(x,y)
k %(w,y) = ¢(v,y) On v
' o) = v(z)

Boundary Value Problem:

u(z,y) = f(x,y)
or On 09
; o

wave equation
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Quasilinear second order PDEs

Cauchy problem

Existence and uniqueness of the solution starting from assigned values of u, du/dz
and du/dy on a smooth curve in the (z,y) plane. Let

{w = f(s)

y = 4g(s)

be a parametric representation of a curve v in the (z,y) plane.
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Quasilinear second order PDEs

Cauchy problem

Existence and uniqueness of the solution starting from assigned values of u, du/dz
and du/dy on a smooth curve in the (z,y) plane. Let

{219

be a parametric representation of a curve v in the (z,y) plane.

Cauchy problem

We must prescribe
u(x(s),y(s)) = h(s) (4)
0 (r(s), 9(5)) = 6() (5)

ou
a—y(x(s), y(s)) = (s) (6)

and find the conditions for existence and uniqueness of the solution.
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Quasilinear second order PDEs

Let us differentiate (5) and (6) w.r. to s; by adding these to the differential
equation (3) we have the following system:

0%u 0%u

5 16+ 5o (9) =) @
0%u 0%u

G 116+ 55 () = (o) ®
0%u 0%u 0%u

a@+2bm+ca—y2—d, (9)

where the partial derivatives are to be considered as unknowns.

o F
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Quasilinear second order PDEs

Let us differentiate (5) and (6) w.r. to s; by adding these to the differential
equation (3) we have the following system:

0%u 0%u

@f(3)+ax—ayg(5)=¢(3) (7)
Pu 0u ,
axayf(S)Jra—yzg(S)—lﬁ(S) (8)
0%u 0%u 0%u
a@+2b—amay+ca—y2—d, (9)

where the partial derivatives are to be considered as unknowns.

Unique solution if the determinant

f'(s) g'(s) 0
A=| 0 f’(s) g'(s) [=alg ()] —2bf(s)g'(s)+c[f'(s)]>#0
a 2 @

If A =0, vis called characteristic curve.
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Classification

>quation

fHac




Classification
The condition a[g'(s)]? — 2b f'(s) ¢'(s) + c[f'(s)]? = 0 is equivalent to

a{ywq2_2b¢@>

7(s) fis) o0
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Classification
The condition a[g'(s)]? — 2b f'(s) ¢'(s) + c[f'(s)]? = 0 is equivalent to

) {g'@r_%g'(s)

) fis) o0

o If b2 — ac > 0 we have

f'(s) a

and the equation is called hyperbolic.

(10)
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Classification
The condition a[g'(s)]? — 2b f'(s) ¢'(s) + c[f'(s)]? = 0 is equivalent to

) {g'@r_%g'(s)

) fis) o0

o If b2 — ac > 0 we have

= 10
7 a (o)
and the equation is called hyperbolic.

o If b2 — ac < 0 we have no solutions for g’(s)/f’(s) and the equation is
called elliptic
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Classification
The condition a[g'(s)]? — 2b f'(s) ¢'(s) + c[f'(s)]? = 0 is equivalent to

) [9’“)]2_21)9’(8)

) fis) o0

o If b2 — ac > 0 we have

= 10
7 a (o)
and the equation is called hyperbolic.

o If b2 — ac < 0 we have no solutions for g’(s)/f’(s) and the equation is
called elliptic

o If b2 — ac = 0 we have
g'(s) b
f'(s)  a

and the equation is called parabolic.
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Classification

Characteristics

@ Thus, hyperbolic equations possess two families of (real) characteristic curves in
the (z,y) plane;
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Classification

Characteristics

@ Thus, hyperbolic equations possess two families of (real) characteristic curves in
the (z,y) plane;

@ parabolic equations have one family;
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Classification

Characteristics

@ Thus, hyperbolic equations possess two families of (real) characteristic curves in
the (z,y) plane;

@ parabolic equations have one family;

@ elliptic equations have none (or have complex characteristics);
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Classification

Characteristics

Thus, hyperbolic equations possess two families of (real) characteristic curves in
the (z,y) plane;

parabolic equations have one family;
elliptic equations have none (or have complex characteristics);

If @, b and ¢ depend only on z and y (linear equation), equation (10) can be

written as
d. b+ Vb2 —
= = (@) (11)

and it becomes a set of two differential equations for the characteristic curves.
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Classification

Characteristics

@ Thus, hyperbolic equations possess two families of (real) characteristic curves in
the (z,y) plane;

@ parabolic equations have one family;
@ clliptic equations have none (or have complex characteristics);

@ If a, b and ¢ depend only on z and y (linear equation), equation (10) can be

written as
d. b+ Vb2 —
= = (@) (11)

and it becomes a set of two differential equations for the characteristic curves.

Role of the characteristic curves

@ In time dependent problems, one can say, qualitatively, that the characteristics
are the lines along which solutions are “transported”;
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Classification

Characteristics

@ Thus, hyperbolic equations possess two families of (real) characteristic curves in
the (z,y) plane;

@ parabolic equations have one family;
@ clliptic equations have none (or have complex characteristics);

@ If a, b and ¢ depend only on z and y (linear equation), equation (10) can be

written as
d. b+ Vb2 —
L AEVT A @) (1)

and it becomes a set of two differential equations for the characteristic curves.

Role of the characteristic curves

@ In time dependent problems, one can say, qualitatively, that the characteristics
are the lines along which solutions are “transported”;

@ The presence of two families of characteristics in hyperbolic equations
corresponds to counter-propagating wave forms;
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Classification

Role of the characteristic curves

o the presence of one family of characteristics in parabolic equations
corresponds to relaxation towards a statistical equilibrium (e.g., in gases);
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Classification

Role of the characteristic curves

e the presence of one family of characteristics in parabolic equations
corresponds to relaxation towards a statistical equilibrium (e.g., in gases);

e elliptic equations, which do not possess characteristics, describe static
problems (e.g., static electric fields due to a charge distribution,
steady-state temperature distributions, linear elasticity problems and
more).
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Classification

Role of the characteristic curves

e the presence of one family of characteristics in parabolic equations
corresponds to relaxation towards a statistical equilibrium (e.g., in gases);

e elliptic equations, which do not possess characteristics, describe static
problems (e.g., static electric fields due to a charge distribution,
steady-state temperature distributions, linear elasticity problems and
more).

Prototypical equations

0%u 5 0%u b2 —ac=1v2>0
W fion: 7~ 55 =0 ’
dye equation o2 Ox2 hyperbolic equation
; ou . 0%u —0 2 — ac = 0
t tion: ot o2 ’
catiequation ot dx? parabolic equation
- o O | O _ b —ac=—1<0,
aplace equation: 0x2 Oy

elliptic equation
14 / 44




Classification

Canonical form

o
0%u 0%u 0%u
—a— +2b—— tc—
0x? Oxdy Oy?
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Classification

Canonical form
)

Lu—aaQ—u—i-Z _82u —l—cazu
T Oa2 Oxdy

o
e Polynomial form (a, b, ¢ constants for simplicity)

0 0 0 0
L = _— B — —_— = I
v=a <3x M 8y) (ax A2 oy

)

pr(A) = aX? + 20X +c=a(X— A1) (A — A2) and, by analogy,
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Classification

@ Reduction to canonical form (after linear transformation to (&,7)):
()\176>\2€R):Lu

2
~ % hyperbolic case
Ui
2 2
or also Lu ~ ZTZ — g—nq;
()\1 =X € R)

2
:LUN@

2 parabolic case
n
0? 0?
M=X€C): Lu~ 8_51; I 3 Z elliptic case
Lucio Demeio - DIISM
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The D’Alembert solution
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Back to the wave equation

Characteristics

From equation (11) with
_ _ _ 2
a=1,b=0,c=—v v4vt=¢

A T—vt=n
dx Y
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Back to the wave equation

Characteristics

From equation (11) with

a=1,b=0,c=—v> st Y 7
d_y — Ay r—vt=n
dz
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Back to the wave equation

Characteristics
From equation (11) with
_ _ _ _9
a=1,b=0,c=—v vt ut=¢
dy

A T—vt=n
dx Y

Canonical Form
The transformation (z,t) — (&,7) leads to:

o a0

a2 U Bz2

°U
oton
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Back to the wave equation

Characteristics
From equation (11) with ‘
a:].,bZO,C:—’U2 x+vt:£ (N Pl )
Iy _ +v T—vt=n
dx

Canonical Form
The transformation (z,t) — (&,7) leads to:

9%u 5 0% _ *U .
w Va0 T ey "
General Solution
U(¢,n) =F(E +Gn) (12)
u(z,t) = F(z+vt) + Gz —vt) (13)

Lucio Demeio - DIISM wave equation
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D’Alembert’s form of the solution

Initial value problem

@ We prescribe the initial data
u(z,0) = h(z)
ou
% @,0) = %(@)

Lucio Demeio - DIISM wave equation
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D’Alembert’s form of the solution

Initial value problem

@ We prescribe the initial data

u(z,0) = h(z)
ou
2 (a,0) = (a)

@ Equations (12) and (13) give:

F(z) + G(x) = h(z)
v[F'(z) = G'(z)] = ¢(=)

Lucio Demeio - DIISM wave equation
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D’Alembert’s form of the solution

Initial value problem

@ We prescribe the initial data

u(z,0) = h(z)
ou

@ Equations (12) and (13) give:

F(z) + G(z) = h(zx)
v[F'(z) — G'(2)] = ¢(2)

@ and, by differentiating (16):

(o) - P ) £ 0)
G/(m) _ v h/(.’E;; "p(x)
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D’Alembert’s form of the solution

o After integration

h(z) 1
T 20 /W”A

g ) o

(20)

(21)

o F
meio - DIISM
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D’Alembert’s form of the solution

o After integration

Fz) = @ +om /0 " p(Ndr (20)
G = "2 _ L /O "y (21)

e We finally obtain the d’Alembert solution of the Initial Value Problem:

u(z,t) = F(z +vt) + Gz —vt) =
x+vt

1 1
= i[h(x +vt)+ h(z—vt)] + %/ PY(N)dX  (22)

rz—vt
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D’Alembert’s form of the solution

o After integration

F(x)z@—l— ’

x

[\
|"‘ d|"

<
S—S—

PY(A)dA (20)
¥

G(z) = @ - (\)dA (21)

e We finally obtain the d’Alembert solution of the Initial Value Problem:

u(z,t) = F(z +vt) + Gz —vt) =
x+vt

1 1
= i[h(x +vt)+ h(z—vt)] + ﬁ/ PY(N)dX  (22)

rz—vt

@ Works well on infinite domains; on a finite domain, we must use it
piecewise and take reflections into account.
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Dependence domain and Influence cone

Domain of dependence

e From the d’Alembert form (22), we see that u(z,t) depends upon the
values of the functions h and 9 in the interval [x — vt,z + v¢] on the
x—axis. This is called domain of dependence.
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Dependence domain and Influence cone

Domain of dependence

e From the d’Alembert form (22), we see that u(z,t) depends upon the
values of the functions h and 9 in the interval [x — vt,z + v¢] on the
x—axis. This is called domain of dependence.

@ The meaning is that the solution at position z and time ¢ depends upon
the initial data within [z — v ¢,z 4 vt] and not outside this interval.
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Dependence domain and Influence cone

Domain of dependence

e From the d’Alembert form (22), we see that u(z,t) depends upon the
values of the functions h and 9 in the interval [x — vt,z + v¢] on the
x—axis. This is called domain of dependence.

@ The meaning is that the solution at position z and time ¢ depends upon
the initial data within [z — v ¢,z 4 vt] and not outside this interval.

Cone of influence

We also see that the initial condition at x = x influences the solution at later
times within the cone (a triangle in a plane) delimited by the surfaces
29 —vt=0and o +vt = 0. This is called cone of influence.

it
€
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Dependence domain and Influence cone

Domain of dependence

e From the d’Alembert form (22), we see that u(z,t) depends upon the
values of the functions h and 9 in the interval [x — vt,z + v¢] on the
x—axis. This is called domain of dependence.

@ The meaning is that the solution at position z and time ¢ depends upon
the initial data within [z — v ¢,z 4 vt] and not outside this interval.

Cone of influence

We also see that the initial condition at x = x influences the solution at later
times within the cone (a triangle in a plane) delimited by the surfaces
29 —vt=0and o +vt = 0. This is called cone of influence.

These concepts are consistent with the experience of a finite propagation
speed.
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Dependence domain and Influence cone

! (z,¢)

-t T+t T

Domain of dependence
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Dependence domain and Influence cone

t (,t) T,- vt z,+ vt

Tr-vt T+t X, €T

Domain of dependence Cone of in fluence
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The Klein-Gordon and the telegrapher’s
equations
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The Klein-Gordon and the telegrapher’s
equations

The Klein-Gordon equation

If the vibrating string is subjected to a uniformly distributed elastic force, we
obtain the Klein-Gordon equation:

%u d%u
i — 2?2 552 Tu=0 (23)

where v is a constant (e.g., proportional to the elastic constant).

Lucio Demeio - DIISM

wave equation 24 / 44



The Klein-Gordon and the telegrapher’s
equations

The telegrapher’s equation

Propagation of waves rarely happens without dissipation; when taken into
account, we obtain the telegrapher’s equation (or transmission line equation):

0%u 82 8

where A is a damping constant.

Lucio Demeio - DIISM
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Solutions on the real line (Fourier Transforms)
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Solutions by Fourier Transforms

The wave equation

Assume that u(z,t) can be written as a Fourier integral (which means that
|u(z,t)| — O fast enough as x — +00)

u(ac,t)z/ ik, 1) &% dk m,n:%/ w(z,t) e F

and substitute in the wave equation. One obtains
0*u
ot?
with w(k) = kv. The general solution is given by

+wk)’T=0

a(k,t) = A(k) e* + B(k)e ™"

Inversion of the Fourier transform gives back the d’Alembert solution.

Lucio Demeio - DIISM
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Solutions by Fourier Transforms

The wave equation

Assume that u(z,t) can be written as a Fourier integral (which means that
|u(z,t)| — O fast enough as x — +00)

u(x,t)z/ Ak, 1) € di a(k,t):%/ we,t) e *od

and substitute in the wave equation. One obtains
0*u 2~
W + w(k) u=20
with w(k) = kv. The general solution is given by
a(k,t) = A(k) e* + B(k)e ™"

Inversion of the Fourier transform gives back the d’Alembert solution.

However, the Fourier form says something very important: the solution of the wave
equation can be written as a superposition of plave waves with constant group

velocity vy = dw/dk = v, so there is no dispersion.

Lucio Demeio - DIISM wave equation
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Solutions by Fourier Transforms

The Klein-Gordon Equation
Again, let

>~ : e .
’U,(x, t) = / ﬁ(k, t) ezkm dk ﬂ(k), t) = % / U(I, t) e—zkmdm
. e

and substitute in the Klein-Gordon equation. One obtains

ot?

with w(k) = \/k?v2 + . The general solution is again given by

a(k, t) = A(k) e + B(k)e ™t

Lucio Demeio - DIISM wave equation
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Solutions by Fourier Transforms

The Klein-Gordon Equation
Again, let

>~ : e .
U(x,t) = / a(k?,t) ezkm dk ﬂ(k,t) = — / U(I,t) e—lkxdm

and substitute in the Klein-Gordon equation. One obtains

ot?

with w(k) = \/k?v2 + . The general solution is again given by

a(k, t) = A(k) e + B(k)e ™t

Now the group velocity vy = dw/dk is not constant and there is dispersion:
waves with different &’s propagate at different speeds and the shape (signal)
acquires a distorsion in time.

4
Lucio Demeio - DIISM wave equation 28 / 44



Solutions by Fourier Transforms

The telegrapher’s equation
Again, with

w(w,t) = / Akt e kT dk k1) /
—00
and v = 0, one obtains
0%u ou

w—FQ/\E +w(k)2ﬂ:O

with w(k) = kv. The general solution is again given by

a(k,t) = e [A1(k) e + Ag(k) e ] for |k| <

= e_At [Bl(k) e + Bg(k‘)e_iut]

S>>

for |k| >
where Q = VA2 — k202 and v = Vk2v2 — \2.

Lucio Demeio - DIISM
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Solutions by Fourier Transforms

The telegrapher’s equation
Again, with

u(x,t):/ Akt e kT dk k1) 1/

and v = 0, one obtains

N L
w—FQ/\E—Fw(k) u=20

with w(k) = kv. The general solution is again given by

a(k,t) = e [A1(k) e + Ag(k) e ] for |k| <

=e M [Bi(k)e™* + Ba(k)e ™'] for |k| >
where Q = VA2 — k202 and v = Vk2v2 — \2.

“Lucio Demeio - DIISM

wave equation

I
29 / 44



An example

Initial condition

We compare solutions of the wave equation, the Klein-Gordon equation and
the telegrapher’s equation with initial condition

u(z,0) = R %(I,O) =0

(black line: wave eq., red line: Klein-Gordon, blue line: telegr.)

Lucio Demeio - DIISM

wave equation



An example

Initial condition
We compare solutions of the wave equation, the Klein-Gordon equation and
the telegrapher’s equation with initial condition
2 ou
u(z,0) = e /2 —(2,0)=0
ot
(black line: wave eq., red line: Klein-Gordon, blue line: telegr.)
v
1 1 1
0.8 0.8] 0.8
0.6 0.6 0.6
0 04 04
o
-0.2 0.2 -0.2}
9 6 3 0 3 6 9 9 6 3 0 3 6 9 9] 6 3 0 3 6
1 1 1
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
o o
-0.2 -0.2} 0.2
9 6 3 0 3 6 9 9 6 3 0 3 6 9 9 6 3 [ 3 6
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The wave equation on a finite domain
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The wave equation on a finite domain

Vector space with scalar product

Consider now the wave equation in the interval 0 < z < [. On a finite domain,
we must impose two boundary conditions (the equation is of 2"? order in x).
Let

u(0,t) = u(l,t) =0 (25)

be the homogeneous Dirichlet boundary conditions and consider the linear
operator

0?u
022
defined on all twice differentiable functions on [0,!] with boundary conditions
(25). Equipped with the scalar product

Lu=

!
(u,v) = /0 u(z) v(x) de

it becomes a vector space with scalar product (pre-Hilbert space) and it is
easily seen that L is a self-adjoint operator w.r. to this scalar product.
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The wave equation on a finite domain
Eigenfunctions

Then, L has a set of real eigenvalues, k2 = (nm/l)2, for n = 1,2, ... and real

orthogonal eigenfunctions ¢, (), given by

On(x) = \/? sin k,,

which form an orthonormal basis for the vector space, that is

l
(6 &) = /0 el ) = B

o F
Lucio Demeio - DIISM
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The wave equation on a finite domain

Eigenfunctions

Then, L has a set of real eigenvalues, k2 = (nn/l)?, for n = 1,2,.

orthogonal eigenfunctions ¢, (), given by

On(x) = \/g sin k,,

which form an orthonormal basis for the vector space, that is

l
(¢na ¢m) = /0 ¢n(x) ¢m(x) dz = dmn

.. and real

(26)

(27)

Eigenfunction expansion

Then, any function of this vector space can be expressed as

ch ) o (x ch \/ismk:c
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The wave equation on a finite domain

Solution of the wave equation
By substituting (28) into the wave equation (2) we obtain

Mg

{én(t) $n(2) = v* ca(t) ()} =

3
Il
-

{én(t) ¢ () +v° cu(t) Ldn(x)} =0

M3

3
Il
—

{En(t) n(x) + v ca(t) ki pn(z)} =0

NERANgE:

3
I
=

By taking the scalar product with ¢,, we obtain
Em(t) + w2, em(t) =
whose general solution is

cm(t) = Ap coSwmt + By, Sinwmt

Lucio Demeio - DIISM wave equation
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The wave equation on a finite domain

Solution of the wave equation

The general solution of the wave equation (2) can then be written as a superposition
of all eigenfunctions as

u(z,t) = i {A,, coswnt + By sinwpt} ¢n(z) (29)

n=1

Each of the terms in the sum is called mode of vibration or “free vibrations”. The
general solution is thus a linear superposition of the vibration modes.
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The wave equation on a finite domain

Solution of the wave equation

The general solution of the wave equation (2) can then be written as a superposition
of all eigenfunctions as

u(z,t) = i {A,, coswnt + By sinwpt} ¢n(z) (29)

n=1

Each of the terms in the sum is called mode of vibration or “free vibrations”. The
general solution is thus a linear superposition of the vibration modes.

Initial conditions

The wave equation must be accompanied by the initial conditions (14)-(15):

u(z,0) = h(z)  SH(,0) = ()

from which the coefficents A,, and B,, can be determined:

! l
A = /0 he)én(a)de  Bo= - /0 ¥(@) $n(a) d

v
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The wave equation on a finite domain

The Klein-Gordon equation and the telegrapher’s equation

By following similar steps, we may write the general solutions of the
Klein-Gordon equation (23) and the telegrapher’s equation (24):

u(z,t) = Z {4, coswnt+ B, sinw,t} ¢, (x) (K.-G.) (30)

n=1

u(z,t) = e M Z {4,, cosvpt + By, sinvpt} ¢p(x) (telegr.) (31)

n=1

where the frequencies now are w, = y/v? k2 + v and v,, = y/v2 k2 — \2. We
again observe dispersion in the Klein-Gordon equation and both dispersion
and diffusion in the telegrapher’s equation.
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The wave equation on a finite domain

The Klein-Gordon equation and the telegrapher’s equation

By following similar steps, we may write the general solutions of the
Klein-Gordon equation (23) and the telegrapher’s equation (24):

u(z,t) = Z {4, coswpt + By, sinw,t} én(z) (K.-G.) (30)

u(z,t) = e Z {4,, cosv,t + B, sinv,t} ¢p(z) (telegr.) (31)

n=1

where the frequencies now are w, = y/v? k2 + v and v,, = y/v2 k2 — \2. We

again observe dispersion in the Klein-Gordon equation and both dispersion
and diffusion in the telegrapher’s equation.

Numerical simulations

FiniteDomain.W, FiniteDomain.KG, FiniteDomain.tele,
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Non homogeneous problems
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Non homogeneous problems

Generalities

Non homogeneous terms arise whenever nonhomogeneous boundary conditions or
external forces are present. As customary in these cases, the solution is a sum of the

general solution of the homogeneous problem and a particular solution of the
complete equation.

Lucio Demeio - DIISM

wave equation



Non homogeneous problems

Generalities

Non homogeneous terms arise whenever nonhomogeneous boundary conditions or
external forces are present. As customary in these cases, the solution is a sum of the
general solution of the homogeneous problem and a particular solution of the
complete equation.

Nonhomogeneous boundary conditions

oz Y 0a2
u(0,t) =0 u(l,t) = A

General solution: u(z,t) = up(x) + @(z,t) with up(z) and @ such that

2~ 2~
2 ] ; 0"t o°u
—v-u, =0 stationary solution Y _ ALl =

v =
ot? ox?
up(0) =0 up(l) = A u(0,t) = a(l,t) =0

which gives up(z) = Ax/l.
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Non homogeneous problems

The solution then is:

n=1

(a2, 1) = A% I Z {4,, coswnt + B, sinw,t} ¢n(x)

where now the coefficients A, and B,, are given by

A, = /0 l (@)~ 4%] pu@)dz B,

Wn

l
A ¥(x) on(z) do
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Non homogeneous problems
The solution then is:

n=1

(a2, 1) = A% I Z {4,, coswnt + B, sinw,t} ¢n(x)

where now the coefficients A, and B,, are given by

1 1
X
A, = / [h@) =A%) ul@)de Bo=— [ 0(x)ou(a)da
0 l wn Jo
Numerical simulations
FiniteDomain. WNH
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Non homogeneous problems

External loads, e.g. gravity

0*u 26u

u(0,t) = O u(l,t)=A
General solution: u(z,t) = up(z) + a(x,t) with u,(z) and 4 such that

v? ul! p T k=0 stationary solution

w0 =0 ) =0 Pi_ o
o o " 07
which gives (0,4) = a(l, t) =
kx
up(z) = 55 (& =1)

Lucio Demeio - DIISM
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Non homogeneous problems

The solution then is

kx

(x—1)+ Z {4,, coswnt + B, sinw,t} ¢n(x)
n=1

where now the coefficients A, and B,, are given by

Anz/o [h(x) ko

S (m—l)] b (2) dz
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Non homogeneous problems

The solution then is

kx

(x—1)+ Z {4,, coswnt + B, sinw,t} ¢n(x)
n=1

where now the coefficients A, and B,, are given by

Anz/o [h(x) ko

S (m—l)] b (2) dz

1 l
B, =— [ ¢(z)du(z)dx
wn 0
Numerical simulations
FiniteDomain. WNH
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Non homogeneous problems
Exteral excitations and resonances

Resonance phenomena occur when harmonic external sources (forcing terms) or
harmonic boundary conditions are present:

Sources: Non hom. b.c.:

32u 2 821/, 82U 2 82u

@ Va2 @Y Y e T

u(0,t) =0 u(l,t) =0 u(0,t) =0 u(l,t) = f(t)

Consider the case of harmonic boundary conditions with f(¢) = Ao sin ut. The
unknown function can be written as

u(z,t) = Ao % sin ut + a(x, t)

Then, @ obeys the equation (looks like a problem with source)

— A, T2
92 "V oz = Ao 7 sin pt (32)
a(0,t) = u(l,t) =0

Lucio Demeio - DIISM wave equation
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Non homogeneous problems

External excitation
We expand @ in the usual eigenfunctions:

oo

a(x,t) = Z () ¢ ().

After substituting into equation (32):

Z {Cn +wn Cn )} ¢n($) = AO%’“Lz Sinlit with Wn = ’Ukn

and, by taking scalar products with the ¢n,’s,
Em(t) 4+ w2, em(t) = Ay I I ™2 sinpt with vy = (2, dm(z))
whose general solution is

A 2
em(t) = Am COSwmt + By sinwmt + =2 ™

1 m sin /Lt
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Non homogeneous problems

Solution of the wave equation

The general solution of the wave equation (2) can then be written as a superposition

of all eigenfunctions as

u(z,t) = AOTsm,ut—FZ{A coswnt + Bn smwnt—|—A—

n=1
With the initial conditions
ou

u(z,0) = h(zx)

we have for the coefficients A,, and B,:

A, = /Ol h(z) — én(z) dz

0
l

12

T sin ,ut} on ()
w2 — p?

B, — L {/l [¢(x) — Ao %] (@) da — O

Wn,

l

Numerical simulations: FiniteDomain. WNH

(”w%
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