Corso di Laurea in Ingegneria Informatica e dell'Automazione Anno Accademico 2018/2019 Analisi Numerica

Nome	
N. Matricola	 Ancona, 10 settembre 2019

Svolgere i seguenti esercizi usando uno dei seguenti linguaggi di programmazione: Matlab (preferito), Octave, C. Lo studente deve scrivere l'algoritmo autonomamante e daccapo, senza far ricorso a programmi pre-esistenti o di libreria.

1. Viene misurata la velocità di un'automobile in autostrada ad intervalli regolari, per un tempo totale di 20 minuti, ottenendo i valori riportati nella tabella (la prima colonna indica gli istanti di tempo in minuti, la seconda la velocità in km/h). Determinare lo spazio percorso usando il metodo di integrazione di Simpson.

n

100

U	100
1.25	114
2.5	125
3.75	130
5	132
6.25	137
7.5	140
8.75	141
10	141
11.25	140
12.5	137
13.75	135
15	132
16.25	125
17.5	114
18.75	110
20	100

2. Risolvere il seguente sistema di equazioni usando il metodo iterativo di Jacobi e quello di Gauss-Seidel, con una tolleranza di 10^{-8} sulla norma infinito. Calcolare il raggio spettrale della matrice ${\bf T}$ per entrambi i metodi e verificarne le proprietà di convergenza.

$$\begin{cases}
-3x_1 + x_2 + 2x_4 &= -1 \\
x_1 - 5x_2 - 2x_3 + x_4 &= 1 \\
4x_1 - x_2 + 4x_3 - x_4 &= 2 \\
x_1 - 3x_2 - x_3 + x_4 &= -1
\end{cases}$$

3. Sono date le funzioni

$$f(x) = 4(1-x)x^2;$$
 $g(x) = e^{-x}$

Dimostrare, utilizzando i valori delle funzioni e le loro derivate, che si intersecano in due punti nell'intervallo $x \in [0,1]$; determinare tali intersezioni usando il metodo di bisezione con tolleranza assoluta di 10^{-6} .