Corso di Laurea in Ingegneria Informatica Anno Accademico 2017/2018 Analisi Matematica 1 - Studenti A/L Appello del 16 aprile 2018

Prova pratica - A

Nome	
N. Matricola	 Ancona, 16 aprile 2018

1. Studiare la funzione

$$f(x) = \frac{e^{|x-1|} - 1}{e^x - 1}$$

Nel tracciarne il grafico, evidenziare gli eventuali punti di discontinuità e di non derivabilità, tutti gli asintoti oltre ai punti critici e punti stazionari. Non occorre il calcolo della derivata seconda.

2. È dato l'integrale improprio

$$\int_0^{\pi/2} \frac{\sin x}{\sqrt{\cos x}} \, dx.$$

Dimostrarne la convergenza usando il criterio del confronto asintotico e calcolarne il valore.

3. Usando il criterio del confronto asintotico con serie notevoli, stabilire per quali valori di $\alpha \in \mathbb{R}$ la serie numerica

$$\sum_{n=1}^{\infty} (\sqrt{n^{\alpha}+1} - \sqrt{n^{\alpha}})$$

è convergente.

Corso di Laurea in Ingegneria Informatica Anno Accademico 2017/2018 Analisi Matematica 1 - Studenti A/L Appello del 23 febbraio 2018

Prova pratica - B

Nome	
N. Matricola	 Ancona, 16 aprile 2018

1. Studiare la funzione

$$f(x) = \frac{1 - e^{|2-x|}}{e^x - 2}$$

Nel tracciarne il grafico, evidenziare gli eventuali punti di discontinuità e di non derivabilità, tutti gli asintoti oltre ai punti critici e punti stazionari. Non occorre il calcolo della derivata seconda.

2. È dato l'integrale improprio

$$\int_0^{\pi/2} \frac{\cos x}{\sqrt{\sin x}} \, dx.$$

Dimostrarne la convergenza usando il criterio del confronto asintotico e calcolarne il valore.

3. Usando il criterio del confronto asintotico con serie notevoli, stabilire per quali valori di $\alpha \in \mathbb{R}$ la serie numerica

$$\sum_{n=1}^{\infty} \left[\ln \left(n^{\alpha} + 1 \right) - \ln \left(n^{\alpha} \right) \right]$$

è convergente.