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Abstract

In this work, we introduce a multiband transport model for quan-

tum electron transport in semiconductors following the Wigner-function

approach. By using the Bloch-Floquet decomposition of the density

matrix, we obtain the Bloch-Floquet projections of the Wigner func-

tion and derive their evolution equations for energy bands of arbi-

trary shape. The equations of the model are very general and allow,

in principle, the investigation of quantum processes in which inter-

band transitions and/or non-parabolicity e�ects may occur. Finally,

we present numerical applications for some particulare cases, in which

the numerical solution can be obtained easily.
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1 Introduction

The Wigner-function approach to quantum electron transport in semicon-

ductors is widely used to describe the properties of electronic devices such

as the Resonant Tunneling Diode (RTD) and others [1, 2, 3, 4, 5]. By

making use of phase space concepts, it presents a close analogy to the clas-

sical Boltzmann-equation approach and therefore many of the analytical

and numerical techniques commonly used for the Boltzmann equation can

be adapted to the Wigner function. The physical picture o�ered by the

Wigner-function approach also remains closer to the classical one than the

picture o�ered by other quantum statistical approaches to electron trans-

port, such as the density-matrix approach [6, 7, 8] and the Green's-function

approach [9, 10, 11]. In addition, when dealing with space dependent prob-

lems in �nite domains, it is always diÆcult to devise the correct boundary

conditions to be imposed; because of the analogy with the classical Boltz-

mann equation, this diÆculty is more easily overcome with the Wigner-

function approach, since one can rely on imposing classical boundary con-

ditions in a region suÆciently far from the quantum region, where classical

e�ects dominate [3]. Finally, adding collisions to the model equations that

govern the evolution of the Wigner function is less complicated than in-

cluding collisions into the other statistical models of quantum transport

[2].

The applications of the Wigner-function formalism to semiconductor de-

vices have been limited, until now, to the description of the conduction elec-

trons that populate the region near the minimum of the conduction band.

This leads to the single-band model in conjunction with the parabolic-band

approximation. Under these conditions, conduction electrons can be con-

sidered as particles having an e�ective mass related to the curvature of the

energy band function near the minimum. The evolution equation for the

Wigner function of the conduction electrons then becomes the evolution

equation for free particles with an e�ective mass. This allows the inclusion

of any �elds (barriers or bias) by means of the standard scattering integral

(pseudodi�erential [1, 12]) operator.
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In the case of devices in which interband transitions or non-parabolicity

e�ects may occur, the single-band, e�ective mass approximation is not sat-

isfactory. A correctly de�ned Wigner function for these phenomena should

include the populations of all bands involved in the transport processes and

the evolution equation that governs the time dependence of the Wigner

function should take into account possible non-parabolicity e�ects. In this

work, we remove the single-band approximation and the parabolic band

approximation, by introducing a Wigner function which includes the popu-

lations of all energy bands and derive an evolution equation which allows for

energy bands of arbitrary shape. The resulting equations provide an exact

model for the description of collisionless electron transport in semiconduc-

tors without the single-band and the parabolic band approximations. We

also discuss the derivation of the parabolic band approximation starting

from the exact equations. On this topic, some results have already ap-

peared in the literature for particular cases. In absence of external �elds,

the evolution equations are a generalization of an earlier result for a single

band by Markowich, Mauser and Poupaud [13, 14]. A statistical descrip-

tion of multiband transport was formulated by Krieger and Iafrate [15, 16]

by making use of accelerated Bloch states in a model based on the density

matrix. A two-band kinetic model without external �elds was developed

by Kuhn and Rossi [17] and by Hess and Kuhn [18] for the description of

semiconductor lasers. The Wigner-function formalism has also been used

by Buot and Jensen [19, 20, 21, 22] to formulate multi-band models within

the framework of the Lattice-Weyl transform, in which a non-canonical def-

inition of the Wigner function, based on a discrete Fourier Transform, was

introduced.

Our multi-band model adopts a straightforward expansion of the wave

functions in Bloch states and a Bloch-state representation of the density

matrix. Probably, it is the most general way of formulating a multi-band

model with the Wigner-function approach; other formulations, such as en-

velope functions and the Kane model, have recently been explored in the

literature [23, 24].

Parts of this work have already been presented and published [25, 26, 27].
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Here, we intend to present the comprehensive work in full detail and add

some newer developments. The paper is organized as follows. In Section 2

we brie
y recall the structure of the Hamiltonian and the energy eigenvalues

and eigenfunctions for a periodic potential; in Section 3 the multi-band

Wigner function is introduced; in Section 4 we derive the evolution equation

for the multi-band Wigner function; in Section 5 some simpli�ed models

are presented and in Section 6 we show some numerical applications.

2 The Hamiltonian and the Bloch representation

We consider an ensemble of electrons moving in a semiconductor crystal.

For simplicity, we consider a one-dimensional case. The quantum dynamics

is generated by the Hamiltonian

H = H0 + V (x);

where H0 = p2=2m+ Vp(x) is the single electron Hamiltonian, which con-

tains the kinetic energy and the periodic potential Vp(x), and which will

be called the \free Hamiltonian". Also, p = �i�h@=@x is the momentum

operator, m is the electron mass, �h is Plank's constant and V (x) is the

potential due to external �elds, such as barriers or bias. Let 	m(x; k) be

the eigenfunctions and �1(k), �2(k), . . . , �m�1(k), �m(k), . . . , the (real)

eigenvalues of the free Hamiltonian H0,

H0	m(x; k) = �m(k)	m(x; k): (1)

(H0jm; k >= �m(k)jm; k > in Dirac's notation). Here, m 2 N is the band

index and k is the crystal momentum, with k 2 B and B the Brillouin

zone. The eigenfunctions 	m(x; k) are given by the Bloch functions

< xjmk >� 	m(x; k) = eikxumk(x) (2)

and form a complete orthonormal set. Here, umk(x) is the periodic part

of the Bloch function for the m-th band and the states fjmk >g, m 2 N,

k 2 B are the Bloch states. We have that umk(x+a) = umk(x), with a the

lattice period, and

eik� < xjmk >=< x+ �jmk > (3)
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8� 2 L, with L the direct lattice. The completeness and orthogonality of

the Bloch states are expressed by the relationsX
m

Z
B

dk < xjmk >< mkjx0 >= Æ(x� x0);

and Z
R

dx < mkjx >< xjnk0 >= ÆmnÆ(k � k0):

For the one-dimensional model considered here, we have thatZ
B

dk =

Z
�=a

��=a

dk:

The functions �m(k) are the energy bands of the material and are real

functions, periodic in the crystal momentum k with period 2�=a. They can

be expanded in Fourier series,

�m(k) =
X
�2L

b�m(�)eik�; (4)

with b��m(�) = b�m(��) from the reality condition of the energy bands.

3 The multi-band Wigner function

The main quantity of a quantum statistical description of an ensemble

of electrons in phase space is the Wigner function, which is de�ned by a

suitable Fourier transformation of the density matrix [1]. Let �(r; s) =<

rj�js > be the single particle density matrix in the space representation.

Then, the corresponding single-electron Wigner function [1] is de�ned by

f(x; p) =

Z
d� < x+

�

2
j�jx�

�

2
> e�ip�=�h; (5)

together with its inverse

< rj�js >=
1

2��h

Z
dpf

�
r + s

2
; p

�
eip(r�s)=�h: (6)

Usually, x = (r + s)=2 is identi�ed with a center of mass variable and

� = r � s with a relative position variable.
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In general, an electron in the crystal will be found in a statistical su-

perposition of Bloch states belonging to di�erent energy bands. In many

situations, however, it is a good approximation to consider only the elec-

tron population of a single band, usually the conduction band, in which

case the Wigner function describes only that electron population. This is

the case, for example, of the RTD; for this device, only the conduction

electrons contribute signi�cantly to the 
ow of current and a transport

model based on the single band approximation is suÆcient to calculate the

I � V curves of the device with very good accuracy [2]. If we wish to

use the Wigner-function approach to study situations in which interband

transitions occur, however, the single-band approximation is no longer sat-

isfactory and a more general theory is needed. These situations include, for

example, Zener tunneling and resonant interband tunneling diodes (RITD

[28]); also, scattering processes could induce interband transitions and dur-

ing a scattering event an electron may be in a superposition of Bloch states

belonging to di�erent bands. For a quantum statistical description of these

phenomena, the Wigner function has to contain the information about the

electron populations of all energy bands and their dynamics.

A suitable partition of the Wigner function among the energy bands

is obtained by using Bloch states and the matrix elements of the density

operator in the Bloch-state representation. By using the completeness of

the Bloch states fjmk >g in equation (5), the Wigner function can be

written as a double sum of contributions from all energy bands:

f(x; p) =
X
mn

fmn(x; p); (7)

where

fmn(x; p) =

Z
B2

dkdk0�mn(k; k
0)

Z
d� < x+

�

2
jmk >< nk0jx�

�

2
> e�ip�=�h

(8)

and

�mn(k; k
0) =< mkj�jnk0 > : (9)

The functions fmn are the projections of f onto the Floquet band subspaces.

Equation (8) can be written in a more compact form, as the result of a

projection operator Pmn acting on the Wigner function f , (Pmnf)(x; p) =
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fmn(x; p). By introducing the coeÆcients

�mn(k; k
0; x; p) =

Z
d� < x+

�

2
jmk >< nk0jx�

�

2
> e�ip�=�h; (10)

and after substituting into (8), we have:

fmn(x; p) =

Z
B2

dkdk0�mn(k; k
0; x; p)�mn(k; k

0): (11)

(the summation over repeated indeces is not used). It can be easily seen

that the coeÆcients (10) obey the following relations:

1

2��h

Z Z
�mn(k; k

0; x; p) dxdp= ÆmnÆ(k � k0) (12)Z Z
�mn(k1; k2; x; p)�m0n0(k

0

1; k
0

2; x; p) dxdp=

= Æmm0Ænn0Æ(k1 � k01)Æ(k2 � k02) (13)

The elements �mn(k; k
0) of the density matrix in the Bloch-state represen-

tation can be written in terms of the Wigner function by using (6):

�mn(k; k
0) =< mkj�jnk0 >=

Z Z
drds < mkjr >< rj�js >< sjnk0 >=

=

Z Z
drds < mkjr >< sjnk0 >

1

2��h

Z
dpf

�
r + s

2
; p

�
eip(r�s)=�h =

=
1

2��h

Z Z
��mn(k; k

0; x; p)f (x; p) dxdp;

where the change of variables x = (r+ s)=2, � = r� s has been used in the

integration over space. Finally, we obtain:

fmn(x; p) =
1

2��h

Z Z
dx0dp0Wmn(x; p; x

0; p0)f
�
x0; p0

�
� (Pmnf)(x; p):

(14)

where the integral kernel Wmn is given by

Wmn(x; p; x
0; p0) =

Z
B2

dkdk0�mn(k; k
0; x; p)��mn(k; k

0; x0; p0): (15)

Equation (14) de�nes the linear integral operator Pmn, with the kernel

Wmn, which yields the projections fmn from the total Wigner function f .

The functions fmn and the coeÆcients �mn(k
0; k00) are similar to the ones

introduced in [4, 29, 30].
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The macroscopic quantities such as particle density, current and energy,

are also expressed as a sum of band terms. It can be shown that only the

diagonal terms contribute to the total number of particles, that isZ Z
f(x; p) dxdp=

X
m

Z Z
fmm(x; p) dxdp;

which follows from the fact that
R R

Wmn(x; p; x
0; p0) dxdp = 0 for m 6= n

because of equation (12).

4 General evolution equations

The time evolution of the Wigner function is given by the sum of the time

evolutions of the band projections,

i�h
@f

@t
(x; p; t) =

X
mn

i�h
@fmn

@t
(x; p; t);

and it must follow from the Liouville-von Neumann time evolution equation

for the density matrix,

i�h
@�

@t
= [H; �]: (16)

We analyze separately the contribution to the time evolution of the Wigner

function due to the free Hamiltonian H0, and the contribution due to the

external potential V ,

@�

@t
=

�
@�

@t

�
0

+

�
@�

@t

�
V

; (17)

and
@f

@t
=

�
@f

@t

�
0

+

�
@f

@t

�
V

: (18)

Here, i�h(@�=@t)0 = [H0; �] and i�h(@�=@t)V = [V; �].

We begin by considering the time evolution of the Wigner function due

to the free Hamiltonian. From equation (11) we have:

i�h

�
@fmn

@t

�
0

(x; p; t) =

Z
B2

dkdk0 i�h

�
@�mn

@t

�
0

(k; k0; t)�mn(k; k
0; x; p);

(19)
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where

i�h

�
@�mn

@t

�
0

(k; k0; t) =< mkj[H0; �]jnk >= [�m(k)� �n(k
0)]�mn(k; k

0; t):

By substituting the above expression into equation (19) and by using equa-

tion (4) we then have:

i�h

�
@fmn

@t

�
0

(x; p; t) =

=

Z
B2

dkdk0�mn(k; k
0; x; p)[�m(k)� �n(k

0)]�mn(k; k
0; t) =

=

Z
B2

dkdk0�mn(k; k
0; x; p)X

�2L

[b�m(�)eik� � b�n(�)eik0�]�mn(k; k
0; t): (20)

In order to obtain an equation for fmn in closed form, the right hand side

of equation (20) must be rewritten in terms of fmn. By using equations

(10) and (11), and the relations

eik� < x + �=2jmk >=< x + � + �=2jmk > and eik� < mkjx � �=2 >=<

mkjx � � � �=2 >, which follow from equation (3), we �nd after some

algebra:

i�h

�
@fmn

@t

�
0

(x; p; t) =

=
X
�2L

�b�m(�)fmn(x+
�

2
; p; t)� b�n(�)fmn(x�

�

2
; p; t)

�
eip�=�h: (21)

Equations (21) are the equations that govern the time evolution of the Flo-

quet projections fmn of the Wigner function for an ensemble of electrons

moving in a semiconductor crystal in the absence of external �elds and

allowing for energy bands of arbitrary shape. These equations show that,

in the absence of external �elds, di�erent bands remain dinamically uncou-

pled and each contribution to the Wigner function evolves independently.

Equations (21) are a generalization to the multi-band case of an earlier

result obtained by Markowich, Mauser and Poupaud [13, 14] for a single

band. In the next Section, we shall relate these equations to the evolution

equations in the parabolic-band approximation.
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Next, we consider the time evolution of the Wigner function due to the

external potential and which is given by

i�h

�
@f

@t

�
V

(x; p; t) =

Z
d� < x+

�

2
j[V; �]jx�

�

2
> e�ip�=�h: (22)

We recall that the right hand side of equation (22) can be cast in the

form [1, 13]Z
d� < x+

�

2
j[V; �]jx�

�

2
> e�ip�=�h = (�(ÆV )f)(x; p; t) (23)

where �(ÆV ) is the pseudodi�erential operator with symbol ÆV (x; �) =

V (x+ �=2)� V (x� �=2),

(�(ÆV )f)(x; p; t) =

Z
d�ÆV (x; �) bf(x; �; t)e�ip�=�h; (24)

and bf (x; �; t) = 1

2��h

Z
dpf(x; p; t)eip�=�h

is the Fourier transform of the Wigner function with respect to the mo-

mentum variable.

Equations (23) and (24) are very often written in a di�erent form. By

introducing the potential transfer function,

VW (x; p) =
1

2��h

Z
d�ÆV (x; �)e�ip�=�h; (25)

we have

(�(ÆV )f)(x; p; t) =

Z
d�ÆV (x; �) bf(x; �; t)e�ip�=�h =

=
1

2��h

Z
d�ÆV (x; �)

Z
dp0f(x; p0; t)e�i(p�p

0)�=�h =

=

Z
dp0f(x; p0; t)VW (x; p� p0):

The time evolution of fmn due to the external potential can be obtained

by acting on both sides of equation (22) with the operator Pmn de�ned in

(14). From equation (23) we have:

Pmn(�(ÆV )f)(x; p; t) =

10



=
1

2��h

Z Z
dx0dp0Wmn(x; p; x

0; p0)(�(ÆV )f)(x0; p0; t) =

=
1

2��h

Z Z
dx0dp0Wmn(x; p; x

0; p0)

Z
d�ÆV (x0; �) bf(x0; �; t)e�ip0�=�h =

=
1

2��h

Z
dx0

Z
dp0Wmn(x; p; x

0; p0)e�ip
0
�=�h

Z
d�ÆV (x0; �) bf(x0; �; t) =

=

Z Z
dx0d�cWmn(x; p; x

0;��)ÆV (x0; �) bf(x0; �; t)
where cWmn(x; p; x

0; �) =
1

2��h

Z
dp0Wmn(x; p; x

0; p0)eip
0
�=�h

is the Fourier transform of Wmn with respect to the second momentum

variable.

Finally, we obtain:

i�h

�
@fmn

@t

�
V

(x; p; t) =

Z Z
dx0d�cWmn(x; p; x

0;��)ÆV (x0; �) bf(x0; �; t)
(26)

or, by using the potential transfer function (25),

i�h

�
@fmn

@t

�
V

(x; p; t) =

1

2��h

Z
dx0

Z Z
dp0dp00Wmn(x; p; x

0; p00)f(x0; p0; t)VW (x0; p00 � p0):

The full time evolution of the Floquet projection fmn of the Wigner func-

tion, due both to the periodic potential of the crystal lattice and to the

external potential, is obtained by adding the two contributions of equation

(21) and equation (26):

i�h
@fmn

@t
=

=
X
�2L

�b�m(�)fmn(x+
�

2
; p; t)� b�n(�)fmn(x�

�

2
; p; t)

�
eip�=�h +

+

Z Z
dx0d�cWmn(x; p; x

0;��)ÆV (x0; �) bf(x0; �; t): (27)

4.1 Quantum e�ects for linear and quadratic potentials

It is well known that, for particles having a parabolic energy-momentum

dispersion relation and subject to linear and/or quadratic potentials, the
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force term of the transport equation for the Wigner function, represented

by a pseudodi�erential operator, reduces to the classical di�erential term

of the collisionless Boltzmann equation (the Vlasov equation). This fact is

sometimes expressed by saying that, for linear and/or quadratic potentials,

quantum e�ects do not appear in the dynamics. We now show that a similar

property holds in the multiband case.

For both linear and quadratic potentials, the symbol ÆV of the pseudod-

i�erential operator factors in the form

ÆV (x; �) = V (x+ �=2)� V (x� �=2) = �F (x)�

where F (x) is the force. For a linear potential, V (x) = �Ex, we have

F (x) = E and for a quadratic potential, V (x) = �x2=2, we have F (x) =

��x. In either case, the standard pseudodi�erential operator with the po-

tential becomes the di�erential operator in momentum space of the classical

Boltzmann equation:

�(ÆV )f =

Z
d�ÆV (x; �) bf(x; �)e�ip�=�h = �F (x)

Z
d�� bf(x; �)e�ip�=�h =

= �F (x)
Z
d� bf(x; �)�i�h @

@p

�
e�ip�=�h = �i�hF (x)

@f

@p
:

In the multiband case a more general result is obtained. From equation

(26) we have:

i�h

�
@fmn

@t

�
V

(x; p; t) = Pmn(�(ÆV )f)(x; p; t) = �i�hPmn

�
F
@f

@p

�
(x; p; t)

(28)

which, in the case of a constant applied external �eld E, becomes�
@fmn

@t

�
V

(x; p; t) = �EPmn

�
@f

@p

�
(x; p; t): (29)

Note that, in general,

Pmn

�
@f

@p

�
6=

@fmn

@p
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5 Derivation of simpli�ed models from the exact

general equations

Equations (27) are the most general time evolution equations that can

be written for the Floquet projections of the multi-band Wigner function

in presence of external �elds and in absence of collisions. The action of

the periodic potential is described by the �rst term, which contains the

Fourier coeÆcients of the energy bands, and which reduces to the usual

free-streaming operator in the parabolic-band approximation (see Section

5.1.1). The second term describes the action of the external potential. We

note that, while the �rst term requires only the knowledge of the energy

band functions, the second term requires the knowledge of the Bloch eigen-

functions of the material of interest. Therefore, the model equations (27)

are very hard to solve in full generality in practical applications, and the

derivation of a set of simpli�ed models is desirable.

In the following subsections, we illustrate some of these simpli�ed mod-

els; we divide them into two groups: models without external �elds and

models with external �elds. Though external �elds are present in most

semiconductor applications, the models without external �elds are useful

to emphasize some of the theoretical aspects of the problem.

5.1 Models without external �elds

5.1.1 Single band model in the parabolic band approximation

Here, we analyze the �rst term of equation (27) for a single band and show

how it reduces to the free-streaming operator in the parabolic-band approx-

imation. The single-band model with the parabolic band approximation is

used to describe the electron population near the minimum of the conduc-

tion band. In the single band model, the total Wigner function f coincides

with the Floquet projection of the conduction band and the sum over m

and n in equation (7) collapses to a single term, say m = n = 1. Equation

(21) with m = n = 1 then gives the time evolution of the Wigner function
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of the conduction carriers for a band of arbitrary shape.

In the single band model, with the parabolic band approximation and

in the absence of external potentials, the evolution equation for the Wigner

function f is simply given by the free streaming part of the usual transport

equation. That is, for a parabolic band �(k) having a minimum at k = 0,

we have
@f

@t
+

p

m�

@f

@x
= 0;

where

m� = �h2

 
@2�

@k2

!
�1

k=0

is the e�ective mass. If the energy band attains its minimum at k = k�,

the evolution equation is

@f

@t
+
p� �hk�

m�

@f

@x
= 0 (30)

and

m� = �h2

 
@2�

@k2

!
�1

k=k�

: (31)

Equation (30) can be easily derived from equation (21) for a single band,

i�h
@f

@t
(x; p; t) =

X
�2L

b�(�) �f(x+ �

2
; p; t)� f(x�

�

2
; p; t)

�
eip�=�h; (32)

where we have omitted the band index from the band energy function (�(k)

instead of �m(k)) and from the band projection (f instead of fmn) of the

Wigner function. We shall also write @f=@t for (@f=@t)0 throughout this

and the next Section. By expanding the nonlocal terms in the square

brackets in a Taylor series about � = 0, we obtain:

i�h
@f

@t
(x; p; t) = �i

�
@�

@k

�
p=�h

@f

@x
+ i

1

4!

"
@3�

@k3

#
p=�h

@3f

@x3
+ : : : :

For a parabolic band, given by

�(k) = �(k�) +
�h2(k� k�)2

2m�
; (33)
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the derivatives of the energy band of third and higher order vanish identi-

cally, while �
@�

@k

�
p=�h

=
�h

m�
(p� �hk�);

and we obtain the evolution equation (30) for the Wigner function. No-

tice that the �rst non-parabolicity correction is proportional to the third

derivative of the energy band and it involves the third partial derivative of

the Wigner function with respect to the space variable.

5.1.2 Two-band band model in the parabolic band approxima-

tion

It is interesting to consider a simple two-band model in the parabolic band

approximation to study the o�-diagonal Floquet projections of the Wigner

function, which arise in this case. In a two-band model, the Wigner function

and its evolution equation are given by equations (7) and (21) where now

m = 0; 1 and n = 0; 1. The Wigner function is given by the sum of four

contributions, f00, f01, f10 and f11. It can be seen easily from equations

(10), (14) and (15) that f01 = f�10, while f00 and f11 are real. Each of the

four contributions evolves according to equations (21). In the parabolic

band approximation, the di�erential equations for f00 and f11 are identical

to equation (30):

@f00

@t
+

p� �hk0

m0

@f00

@x
= 0 (34)

@f11

@t
+

p� �hk1

m1

@f11

@x
= 0; (35)

wherem0 andm1 are the e�ective masses for band 0 and band 1 respectively

and k0 and k1 are the values of the crystal momentum at which band 0 and

band 1 attain their minimum. The evolution equations for f01 and f10 = f�01

have instead a di�erent structure. A simple calculation shows that:

i�h
@f01

@t
=

("
�0(k0) +

(p� �hk0)
2

2m0

#
�

"
�1(k1) +

(p� �hk1)
2

2m1

#)
f01(x; p) +

�
i�h

2

�
p� �hk0

m0

+
p� �hk1

m1

�
@f01

@x
�
1

8

 
�h2

m0

�
�h2

m1

!
@2f01

@x2
: (36)
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which follows from equation (21) after expanding fmn(x��=2; p; t) in Taylor
series about � = 0 and using parabolic pro�les for the two bands. By

introducing the frequencies

!01 = (�0(k0)� �1(k1))=�h


01(p) = !01 + (p� �hk0)
2=(2m0�h)� (p� �hk1)

2=(2m1�h)

and the new function

g01(x; p; t) = f01(x; p; t)e
i
01(p)t;

equation (36) can be cast in the more elegant form

@g01

@t
+
1

2

�
p� �hk0

m0

+
p� �hk1

m1

�
@g01

@x
�
i�h

8

�
1

m0

�
1

m1

�
@2g01

@x2
= 0: (37)

Note that in the de�nition of the Wigner function (7) f01 and f10 appear

only in the combination f01 + f10, consistently with the Wigner function

being real.

Equation (36) shows that the time evolution of f01 is given by three con-

tributions: an oscillatory term, a free streaming term and a di�usive term

with imaginary di�usion coeÆcient. The frequency of the oscillatory term,


01, is proportional to the di�erence of the total energies of the particles

of the two bands; the velocity of the free streaming term is an average of

the relative velocities of the particle with respect to the two minima and

the imaginary di�usion coeÆcient vanishes when the two e�ective masses

are equal.

Equations (34), (35) and (37) completely describe the time evolution of

all the components of the Wigner function in a two band model with the

parabolic-band approximation and in the absence of external �elds. Note

that these evolution equations are uncoupled.

5.2 Models with external �elds

5.2.1 Single-band model with arbitrary band pro�le

As in Subsection 5.1.1, the total Wigner function f coincides with the

Floquet projection of the conduction band and the sum over m and n in

16



equation (7) collapses to a single term, say m = n = 1. The time evolution

of the Wigner function is then obtained by considering equations (32), (22),

(23) and (24) and is given by

i�h
@f

@t
(x; p; t) =

X
�2L

b�(�) �f(x+ �

2
; p; t)� f(x�

�

2
; p; t)

�
eip�=�h +

+

Z
d�ÆV (x; �) bf(x; �; t)e�ip�=�h: (38)

and describes the evolution of the conduction carriers for a band of arbitrary

shape. We shall illustrate this model with a numerical example in the next

Section.

5.2.2 Multi-band model in the Luttinger-Kohn approximation

The Luttinger-Kohn model [31] considers the carrier populations near min-

ima (or maxima) of the energy bands and it is therefore to be used in con-

junction with the parabolic-band approximation. For the Bloch states near

the minimum (or maximum) of the band, the periodic parts of the actual

Bloch functions, umk(x), are replaced with the set of functions umkm(x), i.e.

the Bloch functions at the bottom (or top) of the band, here assumed at

k = km. The functions e
ikxumkm(x) also form a complete set [31], and any

wave function can be expanded in their basis. In this Section, we use the

Luttinger-Kohn basis for expressing the Floquet projections of the Wigner

function and for writing the evolution equations. The action of the free

Hamiltonian is treated in the parabolic-band approximation.

If the m�th band has an extremum at k = km, we can approximate

< xjmk >� umkm(x)e
ikx: (39)

Since the functions umkm(x) are periodic functions with period a, we can

introduce their Fourier expansion,

umkm(x) =

1X
m0=�1

bUm

m0eiKm
0x;

17



where,Km = 2�m=a are vectors of the reciprocal lattice withK�m = �Km.

The coeÆcients �mn de�ned by equation (10) become:

�mn(k; k
0; x; p) = 2�

X
m0n0

bUm

m0
bUn�

n0
ei(Km

0�K
n
0+k�k0)x

Æ

�
Km0 +Kn0

2
+
k + k0

2
�
p

�h

�
;

and the integral kernel Wmn de�ned by equation (15) becomes:

Wmn(x; p; x
0; p0) = 4�2

X
M

bUm

m0
bUn�

n0
bUm�

m00
bUn

n00
ei[(Km

0�K
n
0 )x�(K

m
00�K

n
00 )x

0]

Z
B2

dkdk0ei(k�k
0)(x�x0)Æ

�
Km0 +Kn0

2
+
k + k0

2
�

p

�h

�
Æ

�
Km00 +Kn00

2
+
k + k0

2
�
p0

�h

�
;

where
P
M

=
P

m0n0m00n00
. The integral over k and k0 can be carried out by

introducing the variables

k+ =
k + k0

2
; k� =

k + k0

2
;

so thatZ
B2

dkdk0 =

Z
�=a

��=a

dk

Z
�=a

��=a

dk0 = 2

Z
�=a

��=a

dk�

Z
�=a�jk�j

��=a+jk�j
dk+:

After some algebra and with careful evaluation of the integration domains,

we obtain:

Wmn(x; p; x
0; p0) = 8�2

X
M

bUm

m0
bUn�

n0
bUm�

m00
bUn

n00e
i[(K

m
0�K

n
0)x�(K

m
00�K

n
00)x0]

Æ

�
p� p0

�h
�
Km0 +Kn0

2
+
Km00 +Kn00

2

�
H
�
�

a
�
���� p�h � Km0 +Kn0

2

�����
sin 2[�=a� jp=�h� (Km0 +Kn0)=2j](x� x0)

x� x0
(40)

with H(x) the Heaviside function. The Floquet projection fmn of the

Wigner function then becomes:

fmn(x; p) = 4�
X
M

bUm

m0
bUn�

n0
bUm�

m00
bUn

n00e
i(K

m
0�K

n
0)x
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H
�
�

a
�
����p�h � Km0 +Kn0

2

�����Z
dx0

sin 2[�=a� jp=�h� (Km0 +Kn0)=2j](x� x0)

x� x0

f

�
x0; p� �h

Km0 +Kn0 �Km00 �Kn00

2

�
e�i(Km

00�K
n
00)x0 :

In order to write the evolution equations, we need the Fourier transform of

the integral kernel Wmn in the Luttinger-Kohn basis. It is easy to see that

cWmn(x; p; x
0; �) = 4�

X
M

bUm

m0
bUn�

n0
bUm�

m00
bUn

n00
ei[(Km

0�K
n
0 )x�(K

m
00�K

n
00 )x0]

ei(p�(Km
0+K

n
0�K

m
00�K

n
00 )=2)�=�hH

�
�

a
�
����p�h � Km0 +Kn0

2

�����
sin 2[�=a� jp=�h� (Km0 +Kn0)=2j](x� x0)

x� x0

and, by substituting into equation (26), we obtain:

i�h

�
@fmn

@t

�
V

(x; p; t) = (�mnf)(x; p; t); (41)

where �mn is an operator acting on the whole Wigner function f and is

given by

(�mnf)(x; p; t) =

Z Z
dx0d�cWmn(x; p; x

0;��)ÆV (x0; �) bf(x0; �; t) =
= 4�

X
M

bUm

m0
bUn�

n0
bUm�

m00
bUn

n00
ei(Km

0�K
n
0)xH

�
�

a
�
����p�h � Km0 +Kn0

2

�����Z
dx0e�i(Km

00�K
n
00 )x0 sin 2[�=a� jp=�h� (Km0 +Kn0)=2j](x� x0)

x� x0Z
d�ÆV (x0; �)e�i(p�(Km

0+K
n
0�K

m
00�K

n
00)=2)�=�h bf(x0; �; t): (42)

If we consider a two-band model with the parabolic band approximation,

the evolution equations for the Floquet projections of the Wigner function

are then given by the system:

@f00

@t
+
p� �hk0

m0

@f00

@x
+

i

�h
(�00f)(x; p) = 0 (43)

@f11

@t
+
p� �hk1

m1

@f11

@x
+

i

�h
(�11f)(x; p) = 0; (44)
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i�h
@f01

@t
=

("
�0(k0) +

(p� �hk0)
2

2m0

#
�

"
�1(k1) +

(p� �hk1)
2

2m1

#)
f01(x; p) +

�
i�h

2

�
p� �hk0

m0

+
p� �hk1

m1

�
@f01

@x
�
1

8

 
�h2

m0

�
�h2

m1

!
@2f01

@x2
+

+ (�01f)(x; p); (45)

where � is the operator given by equation (42),m0 andm1 are the e�ective

masses for band 0 and band 1 respectively and k0 and k1 are the values of

the crystal momentum at which band 0 and band 1 attain their minimum.

5.2.3 A two-band model with empty-lattice eigenfunctions

A di�erent simpli�cation of the transport equations can be obtained by

using the Bloch functions of the empty lattice, that is periodic plane waves.

Here, we consider only the two lowest energy bands, given by

�0(k) =
�h2k2

2m
(46)

�1(k) =
�h2

2m
[H(k)(k �K)2 +H(�k)(k +K)2]; (47)

with K = 2�=a and m the bare electron mass, and whose eigenfunctions

are

	0k(x) = < xj0k >=
1

p
2�

eikx (48)

	1k(x) = < xj1k >=
1

p
2�

(H(k)e�iKx +H(�k)eiKx)eikx: (49)

For the coeÆcients �mn de�ned in (10) we �nd that:

�00(k; k
0; x; p) = ei(k�k

0)xÆ

�
k + k0

2
�

p

�h

�
�01(k; k

0; x; p) = ei(k�k
0)x

�
H(k0)eiKxÆ

�
k + k0

2
�
K

2
�

p

�h

�
+

+ H(�k0)e�iKxÆ

�
k + k0

2
+
K

2
�

p

�h

��
�11(k; k

0; x; p) = ei(k�k
0)x

�
H(k)H(k0)Æ

�
k + k0

2
�K �

p

�h

�
+
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+
h
H(k)H(�k0)e�2iKx +H(�k)H(k0)e2iKx

i
Æ

�
k + k0

2
�

p

�h

�
+

+ H(�k)H(�k0)Æ
�
k + k0

2
+K �

p

�h

��
and the integral kernel Wmn becomes:

W00(x; p; x
0; p0) = 2

sin 2(�=a� jp=�hj)(x� x0)

x� x0
H
�
�

a
� j

p

�h
j
�
Æ

�
p� p0

�h

�
W01(x; p; x

0; p0) = 2Æ

�
p� p0

�h

�
� eH��3�hK

4
; p; 0

�
ei(�1+�2+K)(x�x0) sin(�2 � �1)(x� x0)

x � x0
+

+ eH�0; p; 3�hK
4

�
ei(�3+�4�K)(x�x0) sin(�4 � �3)(x� x0)

x � x0

�
W11(x; p; x

0; p0) = 2Æ

�
p� p0

�h

�
� eH���hK; p;�

�hK

2

�
sin 2(K=4� jp=�h+ 3K=4j)(x� x0)

x� x0
+

+ eH��hK
2
; p; �hK

�
sin 2(K=4� jp=�h� 3K=4j)(x� x0)

x� x0
+

+2H
�
K

4
�
����p�h
����� sin 2(K=4� jp=�hj)(x� x0)

x� x0
cos

3

2
K(x� x0)

�
;

where the function eH(a; x; b)� H(x�a)H(b�x) has been introduced, and

�1(p) = �
K

2
+

����p�h +
K

2

����
�2(p) =

K

4
�
����p�h +

K

4

����
�3(p) = �

K

4
+

����p�h � K

4

����
�4(p) =

K

2
�
����p�h � K

2

���� :
This gives for the band projections fmn:

f00(x; p) =

=
1

�
H
�
K

2
�
���� p�h
����� Z sin 2(K=2� jp=�hj)(x� x0)

x� x0
f(x0; p)dx0 (50)

f01(x; p) =
1

�

Z
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� eH��3�hK

4
; p; 0

�
ei(�1+�2+K)(x�x0) sin(�2 � �1)(x� x0)

x� x0
+

+ eH�0; p; 3�hK
4

�
ei(�3+�4�K)(x�x0) sin(�4 � �3)(x� x0)

x� x0

�
f(x0; p)dx0 (51)

f11(x; p) =
1

�

Z
� eH���hK; p;�

�hK

2

�
sin 2(K=4� jp=�h+ 3K=4j)(x� x0)

x� x0
+

+ eH��hK
2
; p; �hK

�
sin 2(K=4� jp=�h� 3K=4j)(x� x0)

x� x0
+

+2H
�
K

4
�
����p�h
����� sin 2(K=4� jp=�hj)(x� x0)

x� x0
cos

3

2
K(x� x0)

�
f(x0; p)dx0: (52)

By using the �rst equality of equation (20), the contribution of the periodic

potential to the time evolution of the Floquet projections of the Wigner

function can be expressed in the form

i�h

�
@fmn

@t

�
0

(x; p; t) =
1

2��h

Z Z
dx0dp0Kmn(x; p; x

0; p0)f
�
x0; p0; t

�
(53)

where the integral kernel

Kmn(x; p; x
0; p0) =

Z
B2

dkdk0[�m(k)��n(k0)]�mn(k; k
0; x; p)��mn(k; k

0; x0; p0):

(54)

has been introduced. After some steps, we �nd that

Kmn(x; p; x
0; p0) =

�hp

im

@Wmn

@x
(x; p; x0; p0)

which gives �
@fmn

@t

�
0

(x; p; t) +
p

m

@fmn

@x
(x; p; t) = 0: (55)

The Fourier transform of Wmn in the plane-wave basis is:

cW00(x; p; x
0; �) =

1

�

sin 2(�=a� jp=�hj)(x� x0)

x� x0
H
�
�

a
�
���� p�h
����� eip�=�hcW01(x; p; x

0; �) =

=
1

�

� eH��3�hK

4
; p; 0

�
ei(�1+�2+K)(x�x0) sin(�2 � �1)(x� x0)

x� x0
+
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+ eH�0; p; 3�hK
4

�
ei(�3+�4�K)(x�x0) sin(�4 � �3)(x� x0)

x� x0

�
eip�=�h

cW11(x; p; x
0; �) =

=
1

�

� eH���hK; p;�
�hK

2

�
sin 2(K=4� jp=�h+ 3K=4j)(x� x0)

x� x0
+

+ eH��hK
2
; p; �hK

�
sin 2(K=4� jp=�h� 3K=4j)(x� x0)

x� x0
+

+2H
�
K

4
�
���� p�h
����� sin 2(K=4� jp=�hj)(x� x0)

x � x0
cos

3

2
K(x� x0)

�
eip�=�h

and, by substituting in equations (27) for m;n = 0; 1, we obtain for the

time evolution of the Floquet projections of the Wigner function:

@f00

@t
+

p

m

@f00

@x
+

i

�h
(�00f)(x; p) = 0

@f11

@t
+

p

m

@f11

@x
+

i

�h
(�11f)(x; p) = 0;

@f01

@t
+

p

m

@f01

@x
+

i

�h
(�01f)(x; p) = 0;

where � is an operator acting on the total Wigner function f and is given

by

(�00f)(x; p) =
1

�
H
�
�

a
�
����p�h
����� Z dx0

sin 2(�=a� jp=�hj)(x� x0)

x� x0Z
d�ÆV (x0; �) bf(x0; �; t)e�ip�=�h

(�01f)(x; p) =
1

�

Z
dx0� eH��3�hK

4
; p; 0

�
ei(�1+�2+K)(x�x0) sin(�2 � �1)(x� x0)

x� x0
+

+ eH�0; p; 3�hK
4

�
ei(�3+�4�K)(x�x0) sin(�4 � �3)(x� x0)

x� x0

�
Z
d�ÆV (x0; �) bf(x0; �; t)e�ip�=�h

(�11f)(x; p) =
1

�

Z
dx0� eH���hK; p;�
�hK

2

�
sin 2(K=4� jp=�h+ 3K=4j)(x� x0)

x� x0
+

+ eH��hK
2
; p; �hK

�
sin 2(K=4� jp=�h� 3K=4j)(x� x0)

x� x0
+
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+2H
�
K

4
�
����p�h
����� sin 2(K=4� jp=�hj)(x� x0)

x� x0
cos

3

2
K(x� x0)

�
Z
d�ÆV (x0; �) bf(x0; �; t)e�ip�=�h

Equations (50)-(52) show that the Floquet projections of the Wigner func-

tion given by this model are functions with compact support and cover

di�erent portions of the phase space. The support of the projection f00 on

the lower band, for example, corresponds to the �rst Brillouin zone; the

supports of the other projections are larger and extend beyond the �rst

Brillouin zone.

Unfortunately, the equations of this two-band model are very hard to

approach numerically, because of the presence of convolution integrals of

highly oscillatory functions. Therefore, the numerical techniques and ex-

amples regarding this model are left for future work. In the next Section,

we present a numerical example in which these diÆculties are overcome by

considering a space-homogeneous electron population.

6 Numerical examples

In this Section we present some simple numerical applications of our model.

6.1 Freestreaming evolution

In this section, by using the single-band model without external �elds of

Section 5.1.1, we shall discuss the parabolic band approximation by com-

paring the solution of equation (32) with the solution of the corresponding

free-streaming equation (30) in a simple case. For the comparison, we use

dimensionless variables: the space variable x is measured in units of a, the

momentum p in units of �h=a, time t in units of ma2=�h, the crystal momen-

tum k in units of 1=a and energy in units of �h2=(ma2). In the dimensionless

variables, equation (32) for a single band becomes

@f

@t
(x; p; t) =

1

i

X
�2L

b�(�) �f(x+ �

2
; p; t)� f(x�

�

2
; p; t)

�
eip�=�h (56)
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Figure 1: Band pro�le �(k) = 1 � cos k + 0:4 cos 2k, �� � k � � (dimensionless

units).

and the free-streaming equation (30) becomes

@f

@t
+ p

@f

@x
= 0:

Also, we have chosen �(k) = 1 � cosk + 0:4 cos2k, �� � k � � (thus

k� = 0), for the band pro�le, which is shown in Figure 1, and which has a

parabolicity region that covers about one half of the Brillouin zone. Note

that, with these dimensionless quantities, the phase-space momentum p

and the crystal momentum k, though di�erent variables, are measured in

the same units. We have followed the time evolution of an initial Gaussian

shaped Wigner function in phase space, according to the exact equation

and according to the free-streaming approximation. The initial Wigner

function corresponds to a pure state characterized by the wave function

	(x) = e��(x�x0)
2

e�ik0(x�x0);

where x0 is the initial average position, k0 the initial average momentum

and � the initial momentum spread. The density matrix is then given by

�(x; x0) = 	(x)	�(x0) and the Wigner function that results is

f(x; p; 0) =

r
2�

�
e�2�(x�x0)

2
�(p�k0)

2
=(2�):
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Figure 2: (A) f(x; p) as a function of x, �20 � x � 20 for p = 0:5 and (B) f(x; p)

as a function of p, �� � p � �, for x = 0, for � = 0:02 and t = 20; exact solution

from equation (57) (dashed line), free-streaming approximation from equation (30)

(solid line). Dimensionless variables as de�ned in the text.

We have performed the comparison for two di�erent values of the momen-

tum spread, � = 0:02 and � = 0:2. The former, corresponds to a narrow

(in momentum) wave packet, whose time evolution is not a�ected by the

states near the edges of the band, where non-parabolicity e�ects are impor-

tant. The latter, instead, corresponds to a broad wave packet, for which

we expect that non-parabolicity e�ects are important from the very early

evolution. Equation (56) can be solved explicitely by using Fourier Trans-

forms in space. If bfk is the k�th Fourier component of f with respect to

x, it is easy to see that

bfk(p; t) = bfk(p; 0)ei
k(p)t (57)

where


k(p) = 2i
X
�

b�(�) sin k�
2
eip�=�h:

The main features of the comparison are shown in Figures 2, 3 and 4.

Figure 2 refers to the case with � = 0:02, Figures 3 and 4 to the case with

� = 0:2. Figures 2 and 4 show f(x; p) (A) as a function of x for p = 0:5

and (B) as a function of p for x = 0, at t = 20 (in our dimensionless units).
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The dashed lines represent the exact solution and the solid lines represent

the free-streaming approximation.

These �gures con�rm that the free-streaming approximation gives an

accurate description of the evolution of a wave packet having a narrow mo-

mentum spread, such that only momentum states belonging to the parabol-

icity region of the band contribute to the Wigner function. The e�ects of

non-parabolicity become important in the evolution of a wave packet hav-

ing a wide momentum spread, and they result in oscillations of the Wigner

function in phase space, that cannot be properly described by the free-

streaming approximation.

x

p

f

Figure 3: f(x; p) for � = 0:2 at t = 20, �20 � x � 20, �� � p � �.

6.2 A homogeneous two-band model in empty lattice with

constant external �eld

In this example, we use the two-band model of Section 5.2.3, which corre-

sponds to considering an empty lattice, to illustrate an interband transition

of a spatially homogeneous electron population under the action of a con-

stant electric �eld. For a constant �eld, we know that the pseudodi�erential

operator in the evolution equation for the Wigner function reduces to the
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Figure 4: (A) f(x; p) as a function of x, �20 � x � 20 for p = 0:5 and (B) f(x; p)

as a function of p, �� � p � �, for x = 0, for � = 0:2 and t = 20; exact solution

from (57) (dashed line), free-streaming approximation from equation (30) (solid

line). Dimensionless variables as de�ned in the text.

standard di�erential operator of the Boltzmann equation. Furthermore, for

a homogeneous population in empty lattice the streaming term is absent.

The governing equation for the total Wigner function is therefore

@f

@t
�E

@f

@p
= 0: (58)

The dynamics resulting from this equation can then be followed for the

total Wigner function, while the band projections f00, f01 and f11 are not

needed for the dynamics. Moreover, since f10 = f�01, only the real part of

f01, Re(f01), is needed. For a homogeneous Wigner function f(x; p) = f(p),

equations (50)-(52) become:

f00(p) = H
�
K

2
�
���� p�h
����� f(p) (59)

Re(f01)(x; p) = 0 (60)

f11(x; p) =

� eH���hK; p;�
�hK

2

�
+ eH��hK

2
; p; �hK

��
f(p): (61)

We study an electron population characterized by a wave function initially

belonging to the band m = 0. In the representation in which the density
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matrix is diagonal in the crystal momentum k, we have

�(x; x0) =

Z
	0k(x)	

�

0k(x
0)w(k)dk (62)

with w(k) a probability distribution. We have chosen w(k) = exp[�(k=�k)2]
with �k = 0:1. The corresponding Wigner function f is then spatially ho-

mogeneous and is given by

f(p; t = 0) = H
�
K

2
�
���� p�h
�����w� p�h

�
: (63)

At the initial time t = 0 we then have f(p; 0) = f00(p), which is shown in

Figure 5A. Figures 5B, 5C and 5D show the time evolution of the Wigner

function at t = 1, t = 1:2 and t = 1:4. The Wigner function, which initially

occupies only the lower band, moves towards higher energies and occupies

the higher band. As the distribution moves rigidly towards higher mo-

menta, it starts crossing the boundary of the Brillouin zone in momentum

space. The portion of the Wigner function which has exited the Brillouin

zone is taken up by the projection of f onto the next energy band subspace.

While the Wigner momentum variable p ranges over the whole real line,

the di�erent portions of the p space correspond to the Floquet projections

of f onto the band subspaces. We emphasize that this behaviour is a con-

sequence of using the lattice-periodic plane waves (48)-(49) for our Bloch

functions and is to be regarded only as a tool for clarifying the concepts;

the application of this model to a real situation will modify the general

picture described above.

6.3 Single band with non-parabolic pro�le with external

�eld

In this example, we study the time evolution of an ensemble of electrons

under the action of a constant external �eld and in presence of a non-

parabolic band pro�le. We use the model of Section 5.2.1 and solve nu-

merically equation (38) by a splitting algorithm. We have chosen a band

pro�le that resembles closely the band pro�le of GaAs, with a minimum at

k = 0 a second minimum at about half of the Brillouin zone. The band
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shape is shown in Figure 6A. This band pro�le is given by the �nite Fourier

expansion

�(k) =
X
�2L

b�m(�)eik�;
with � = la and b�(�) = ble

i�
l . Here, b0 = 2 eV, b1 = �0:05 eV, b2 = �0:05

eV and b3 = 0:25 eV, bl = 0, l > 3 and �l = 0, l = 0; : : :. Also, we take

a = 5:65 10�8 cm (GaAs lattice period).

The external �eld acts on a spatial region slightly smaller than the sim-

ulation region and is derived from the potential energy

V (x) =

8>><>>:
V0; x � �L1

(V0=2)(1� x=L1); �L1 � x � L1

0; x � L1:

We have taken L = 100 a L1 = 0:8 L and V0 = 5 eV. The potential

energy is shown in Figure 6B.

The initial Wigner function (shown in Figure 7A) corresponds to a pure

state characterized by the wave function

	(x) = e�(�
2
=2)(x�x0)

2

e�ik0(x�x0);

where x0 is the initial average position, k0 the initial average momentum

and � the initial momentum spread. The density matrix is then given by

�(x; x0) = 	(x)	�(x0). The Wigner function that results is

f(x; p; 0) = 2e�(�
2
=2)(x�x0)

2
�(p��hk0)

2
=(��h)2 ;

where the normalization

jjf jj =
Z Z

f(x; p)dx dp= 1

has been used. In this example we have x0 = �0:6 L, k0 = 0 and � = 0:08

�=a.

The time evolution of the Wigner function is shown in Figures 7A, 7B,

8A, 8B, 9A, 9B and 10, at t = 0, 4, 12, 20, 28, 36 and 40 fs, respec-

tively. On the 
oor of the boxes, the graph of the band pro�le (in the
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p variable) is also shown for reference, together with the positions of the

secondary maxima and minima. The initial Wigner distribution describes

a group of electrons near the central minimum of the band. Initially, the

Wigner function evolves according to a free-streaming law, consistent with

the parabolic-band approximation (see �gure 7B and 8A), until the front

tail reaches the non-parabolicity region of the band (see �gure 8B). Subse-

quently, as the portions of the Wigner distribution enter the region where

the band pro�le decreases, it su�ers a deceleration and it is pushed back.

This is clear from the horseshoe-like shape of the Wigner function that

appears in Figures 9A and 9B. Eventually, at t = 40 fs on this example,

all portions of the Wigner function reach the secondary minimum and the

shape of the function is rebuilt for the most part. Oscillations on the body

of the Wigner distribution can be observed during the transit through the

non-parabolicity region in p-space.
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Figure 5: f00(p) (solid line) and f11(p) (dashed line) as functions of p, �K=(2�) �

p � K=(2�), for E = 0:4 and (A) t = 0, (B) t = 1, (C) t = 1:2 and (D) t = 1:4.
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Figure 7: f(x; p; t) at (A) t = 0 (initial Wigner distribution) and (B) t = 4 fs,
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Figure 8: f(x; p; t) at (A) t = 12 fs and (B) t = 20 fs, �100 � x � 100,

�� � p � �.
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Figure 9: f(x; p; t) at (A) t = 28 fs and (B) t = 36 fs, �100 � x � 100,

�� � p � �.

37



t=40 fs
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Figure 10: f(x; p; t) at t = 40 fs, �100 � x � 100, �� � p � �.
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