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Abstract

In this work, we present a numerical application of a recently developed
transport model for semiconductors, based on the Wigner-function ap-
proach and allowing for non-parabolic band profiles. We consider the colli-
sionless, single-band time evolution of the Wigner function under the action
of a constant external field, in presence of a band profile exhibiting a satel-
lite valley, besides the minimum at the center of the Brillouin zone (similar
to the band profile of GaAs). The transport equation is solved by the
Splitting-Scheme algorithm, which is the most efficient method for solving
the correspinding classical Vlasov equation.
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1 Introduction

In the study of the transport properties of semiconductors and electronic
devices, Wigner functions are commonly used for the statistical description
of carrier ensembles and of their dynamics [1, 2]. For the most part, how-
ever, only those processes which can be adequately described within the
single-band and the parabolic-band approximations are considered. In or-
der to generalize the Wigner-function approach to those situations in which
these approximations are not satisfactory, a general multi-band transport
model was recently developed in [3, 4] (see also [5]), where a multi-band
Wigner function was introduced and the evolution equation allowed for
energy bands of arbitrary shape.

In this contribution, we investigate numerically the single-band time
evolution of an initial Gaussian shaped Wigner function describing an en-
semble of conduction electrons moving under the action of an external field
and in the presence of a non-parabolic band profile. The numerical solu-
tion is obtained with the Splitting-Scheme algorithm, which is described in
Section 3.

2 The Non-Parabolic Transport Model

The Wigner function is defined by a suitable Fourier transformation of the
density matrix [6, 7]. Let p(r,s) =< r|p|s > be the single-particle density
matrix in the space representation. Then, the corresponding single-particle
Wigner function is defined by

fle,p) = /dn <zt dlple— 7 > e, (1)
together with its inverse
_ 1 r+s ip(r—s)/h
<rlpls>= 5 [anf (S5 ) e . (2)
Usually, 2 = (r 4+ 5)/2 is identified with a center of mass variable and

n =r — s with a relative position variable.

The single-band evolution equation of the Wigner function of an en-
semble of conduction electrons moving in a semiconductor medium, in the
presence of an arbitrary band profile and under the action of an external
potential, is given by [4, 8]

of

3¢ @ P )+ (AN (2 )+ (O) (@, p,t) = 0, (3)



where the transport operator A and the pseudodifferential operator © are

defined by
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Here, f(x,n,t)is the Fourier transform of the Wigner function with respect
to the momentum variable, €(u), p € L, are the Fourier coefficients of the
energy band and 6V (z,n) = V(z + n/2) — V(2 — n/2) is the symbol of the
pseudodifferential operator, with V' (z) the external potential. The action
of the periodic potential is described by the first term, which contains the
Fourier coefficients of the energy band, and which reduces to the usual free-
streaming operator in the parabolic-band approximation. The second term
describes the action of the external potential.

3 The Splitting-Scheme Algorithm

Usually, the time-dependent or stationary transport equations that govern
the behaviour of the Wigner function are solved numerically by finite dif-
ference techniques [1]. In the numerical solution of the classical transport
equations, and more specifically of the Vlasov equation, the most efficient
method is the Splitting-Scheme algorithm [9]. A quantum version of the
Splitting-Scheme algorithm was introduced in [10, 11] for the case of a
parabolic energy-momentum dispersion relation; we now briefly describe
our generalization to the non-parabolic case.

For the numerical solution of Eq. (3), we discretize the time variable with
tn = tn—1+At, to = 0 and indicate with f,(z,p) = f(x,p,t,) the discretized
Wigner function. Suppose, now, that f,(z,p), the Wigner function at the
time ¢t = ¢,, is known. Then, the Splitting Scheme integration from time
t, to time t,4q is given by the following sequence of operations:

e (step 1): first, the equation

g1

—=+ Ag1 =0 4

En + Agq (4)
is solved for ¢1(z,p,t) from t = 0 to ¢t = At/2, with initial condition

g1(z,p,0) = fu(z,p);



e (step 2): then, the equation

dg2 i
o 4+ 0Og, =0 (5)

is solved for gy(z,p,t) from t = 0 to t = At, with initial condition
92w, p, 0) = g1(x, p, At/2);

e (step 3): finally, the equation

dgs

—= + Ag3=0 6

ot + Ags (6)
is solved again for gs(z,p,t) from t = 0 to ¢ = At/2, with initial
condition gs(z,p,0) = g2(x, p, At).

The Wigner function at the time ¢,,1; is then given by f,.11(x, p) = g3(x, p, At/2).
When the self-consistent field is not taken into account, the steps 1 and 3

can be combined into a single step, as we do in the numerical example
presented here; otherwise, the self-consistent field is calculated at the end

of step 1, which makes the Splitting Scheme a second-order algorithm in

At. For the classical Vlasov equation, the Splitting-Scheme performes an
integration along the phase-space characteristics. In that case, steps 1 and

3 correspond to a shift in the 2 direction, while step 2 corresponds to a
shift in the p direction.

Equations (4), (5) and (6) can be solved explicitely. Equation (4) can
be solved by using Fourier transforms in space. If ¢y, is the k—th Fourier
component of gy with respect to z, it is easy to see that

Gip(pt) = Gip(p, 0)e )

where v¢(p) = 203, €(u) sin(ku/2) exp(ipu/h). A similar result holds for
G(z,p,t) in equation (6). Equation (5) can be solved by using Fourier
transforms in momentum. If g3(x, n,¢) is the Fourier Transform of gy with
respect to p, we have that

Galw,m,t) = Ga(,m, 0)e~ SV @mi/h

4 Numerical results

In this example, we study the time evolution of the Wigner function of
an ensemble of electrons under the action of a constant external field and
in presence of a non-parabolic band profile. We use the model of Section



2 and solve numerically equation (3) with the Splitting-Scheme algorithm
described in Section 3. We have chosen a band profile somewhat similar
to the band profile of GaAs, with a minimum at £ = 0 a second minimum
at about half of the Brillouin zone. The band shape, shown in Figure 1, is
given by the finite Fourier expansion

e(k) = em(u)e™,
pelL
with u = la and €(p) = bie'?. Here, by = 2 eV, by = —0.05 eV, by = —0.05
eVand b3 =0.25eV, b; =0, >3 and ¢; =0, = 0,.... Also, we take
a = 5.65 107® cm (GaAs lattice period).

The external field acts on a spatial region slightly smaller than the sim-
ulation region and is derived from the potential energy

Vo, v < =Ly
Vie)=9 (Vo/2)(1—-=/L1), —L1<z<1y
07 x Z Ll.

Moreover, we impose the boundary conditions f(, pmaz) = f(2, —Prmaz) =
0, with ppas = hn/a, and f(—L,p) = f(L,p) = 0, that is the we assume
that the Wigner function vanishes at the boundary of the simulation region.
In this simulation, we have taken L = 100 ¢ L1 = 0.8 L and V5 =5 eV.

The initial Wigner function (shown in Figure 2) corresponds to a pure
state characterized by the wave function

\Il($) — e—(oz2/2)(90—900)2e—iko(av—avo)7

where zq is the initial average position, kg the initial average momentum

and « the initial momentum spread. The density matrix is then given by
p(z,z") = ¥(z)P*(2’) and the Wigner function that results is

flz,p,0) = 26—(6@/2)(96’—96’0)2—(p—hko)2/(&75)27

where the normalization ||f|| = [ | f(x,p)dz dp =1 has been used. In this

example we have 29 = —0.6 L, ko = 0 and o = 0.04 7 /a.

The time evolution of the Wigner function is shown in Figures 2 (initial
state), 3, 4 and 5, at ¢t = 0, 12, 28 and 40 fs, respectively. On the floor of the
boxes, the graph of the band profile (in the p variable) is also shown for ref-
erence. The initial Wigner distribution describes a group of electrons near
the central minimum of the band. Initially, the Wigner function evolves
according to a free-streaming law, consistent with the parabolic-band ap-
proximation (see Figure 3). Subsequently, as the portions of the Wigner



distribution enter the region where the band profile decreases, they suffer a
deceleration and the Wigner function is pushed back, as can be seen from
Figure 4. Eventually, as the centroid of the Wigner function reaches the
secondary minimum (at about ¢ = 40 fs on this example, see Figure 5), the
Wigner function approximately resumes the initial shape.
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Figure 1: Band profile ¢(k) in eV, -7 < ka < 7.



t=0 fs

Figure 2: f(z,p,t) at ¢t = 0 (initial Wigner distribution), —100 < z < 100,
—-m<p<T
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Figure 3: f(x,p,t) at t =121fs, —100 < 2 < 100, —7r < p < 7.
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Figure 4: f(x,p,t) at t =28 s, —100 < 2 < 100, —7v < p < 7.

t=40 fs

Figure 5: f(x,p,t) at t =40 fs, —100 < 2 < 100, —7r < p < 7.



