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1 Introduction and preliminaries

The purpose of this paper is to generalize the Invariance of Domain Theorem to compact perturbations
of nonlinear Fredholm maps of index zero between Banach spaces. In a recent work, Benevieri, Furi and
Pera [1] showed that an injective nonlinear Fredholm map of index zero sends open sets into open sets,
and they also generalized this result to nonlinear Fredholm maps of index zero with a perturbation of
finite dimensional range. Moreover, they raised the question whether or not the same result is true if
the perturbation is only locally compact. We give a positive answer to this problem showing that these
maps are, up to the composition with a linear isomorphism, locally α-contractive perturbations of the
identity (where α is the Kuratowski measure of noncompactness). Therefore, we can apply the following
theorem, due to Nussbaum ([4], see also Deimling [2]).

Theorem 1.1. Let E be a Banach space, U an open subset of E, and C : U → E a continuous locally
α-contractive map such that I − C is locally injective. Then I − C is an open map.

In order to do this, we have first to recall some concepts from nonlinear functional analysis, as the
notions of Fredholm map and of Kuratowski measure of noncompactness. In the sequel E and F will
denote infinite dimensional real Banach spaces, and we will assume that all the considered maps are
continuous.

A bounded linear operator L : E → F between Banach spaces is said to be Fredholm if both Ker L

and CoKerL = F/ ImL are finite dimensional. If L is a Fredholm operator, its index is defined by

ind L = dimKer L− dimCoKer L.

Let f : U → F be a map of class C1 from an open subset U of a Banach space E into a Banach space F .
We say that f is Fredholm if its Fréchet derivative f ′(x) : E → F is a Fredholm operator for any fixed
x ∈ U . A Fredholm map f : U → F is said to have index m if for every x ∈ U the derivative f ′(x) is a
Fredholm operator of index m. In this case, we denote the index of f by ind f . In particular, since the
index is locally constant, if U is connected and f is Fredholm, then ind f is the index of f ′(x) for any
given x ∈ U .
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Let A be a bounded subset of the Banach space E. The Kuratowski measure of noncompactness
α(A) of A is defined as the infimum of the real numbers d > 0 such that A admits a finite covering by
sets of diameter less than or equal to d. For the properties of the measure of noncompactness α, see e.g.
Deimling [2].

A map f : U → F from an open subset U of a Banach space E into a Banach space F is said to be
α-Lipschitz with constant k ≥ 0 if α(f(A)) ≤ kα(A) for any bounded subset A ⊆ U . If the α-Lipschitz
constant k is less than 1, then f is said to be α-contractive. We note that f is completely continuous if
and only if it is α-Lipschitz with constant k = 0. Moreover, if f is Lipschitz continuous with constant k,
then it is α-Lipschitz with the same constant k.

Let f : U → F be as above. We recall the definitions of α(f) and β(f) given in [3]. Remind that the
spaces E and F are infinite dimensional. First, we set

α(f) = sup
{

α(f(A))
α(A)

: A ⊆ U bounded, α(A) > 0
}

.

This number is related to the property of compactness of the map f . In fact, α(f) = 0 if and only if f is
completely continuous. Below we recall some other properties of α(f) (see [3] for the proofs).

Proposition 1.1. Let f, g : U → F be continuous. Then

α(λf) = |λ|α(f), λ ∈ R.(1)

|α(f)− α(g)| ≤ α(f + g) ≤ α(f) + α(g).(2)

α(f) = 0 if and only if f is completely continuous.(3)

Proposition 1.2. Let E, F,G be Banach spaces, U ⊆ E and V ⊆ F open, g : U → V and f : V → G

continuous. Then

α(f ◦ g) ≤ α(f)α(g).(4)

We recall the following definition:

β(f) = inf
{

α(f(A))
α(A)

: A ⊆ U bounded, α(A) > 0
}

.

The number β(f) is related to the properness of the map. The following properties hold.

Proposition 1.3. Let f, g : U → F be continuous. Then

β(λf) = |λ|β(f), λ ∈ R.(5)

If β(f) > 0, then f is proper on bounded closed sets.(6)

β(f) ≤ α(f).(7)

β(f)− α(g) ≤ β(f + g) ≤ β(f) + α(g).(8)

|β(f)− β(g)| ≤ α(f − g).(9)

If f is a homeomorphism and β(f) > 0, then α(f−1)β(f) = 1.(10)

Proposition 1.4. Let E, F,G be Banach spaces, U ⊆ E and V ⊆ F open, g : U → V and f : V → G

continuous. Then

β(f)β(g) ≤ β(f ◦ g) ≤ α(f)β(g).(11)
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Moreover, in the case of a linear operator, we get the following properties.

Proposition 1.5. Let L : E → F be a bounded linear operator. Then

α(L) ≤ ||L||.(12)

β(L) > 0 if and only if ImL is closed and dimKer L < +∞.(13)

We observe that property (13) of β is closely linked to Fredholm operators. In fact, one can prove
that L is Fredholm if and only if β(L) > 0 and β(L∗) > 0, where L∗ is the adjoint of L.

Let f : U → F be, as before, a map from an open subset U of a Banach space E into a Banach space
F , and let p ∈ U be fixed. We introduce the new concepts of αp(f) and βp(f).

Let Br(p) be the open ball in E centered at p with radius r. Suppose that Br(p) ⊆ U and consider
α(f |Br(p)), i.e.

α(f |Br(p)) = sup
{

α(f(A))
α(A)

: A ⊆ Br(p), α(A) > 0
}

.

This is non-decreasing as a function of r, and clearly α(f |Br(p)) ≤ α(f). Hence, the following definition
makes sense:

αp(f) = lim
r→0

α(f |Br(p)),

and in particular we have αp(f) ≤ α(f) for any p. In an analogous way, we define

βp(f) = lim
r→0

β(f |Br(p)),

and we have βp(f) ≥ β(f) for any p. It follows from these definitions that the above properties of α

and β hold, with minor changes, for αp and βp as well. Therefore, only some statements in the next
propositions will be proved.

Proposition 1.6. Let f, g : U → F be continuous and p ∈ U . Then

αp(λf) = |λ|αp(f) and βp(λf) = |λ|βp(f), λ ∈ R.(14)

βp(f) ≤ αp(f).(15)

|αp(f)− αp(g)| ≤ αp(f + g) ≤ αp(f) + αp(g).(16)

βp(f)− αp(g) ≤ βp(f + g) ≤ βp(f) + αp(g).(17)

|βp(f)− βp(g)| ≤ αp(f − g).(18)

If f is locally compact, then αp(f) = 0.(19)

If βp(f) > 0, then f is locally proper at p.(20)

If f is a local homeomorphism and βp(f) > 0,(21)

then αf(p)(f−1)βp(f) = 1.

Proposition 1.7. Let E, F,G be Banach spaces, U ⊆ E and V ⊆ F open, g : U → V and f : V → G

continuous. Fix p ∈ U and let q = g(p) ∈ V . Then

αp(f ◦ g) ≤ αq(f)αp(g).(22)

βq(f)βp(g) ≤ βp(f ◦ g) ≤ αq(f)βp(g).(23)
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Proof. Let ρ > 0 be fixed. Since g is continuous, there exists r > 0 such that g(Br(p)) ⊆ Bρ(q) for
r < r. Recall that

α(f ◦ g|Br(p)) = sup
{

α(f(g(A)))
α(A)

: A ⊆ Br(p), α(A) > 0
}

.

If A is a subset of Br(p) such that α(g(A)) > 0, then

α(f(g(A)))
α(A)

=
α(f(g(A)))

α(g(A))
α(g(A))
α(A)

.

We observe that g(A) ⊆ Bρ(q) if r < r. Hence, taking the supremum with respect to the sets A ⊆ Br(p)
such that α(A) > 0, from the above we get

α(f ◦ g|Br(p)) ≤ α(f |Bρ(q))α(g|Br(p)).

This is true for every r < r, so we can pass to the limit for r → 0 and we obtain αp(f◦g) ≤ α(f |Bρ(q))αp(g).
The latter inequality holds for arbitrary ρ > 0. Consequently, we can take the limit for ρ → 0 and we
conclude that αp(f ◦ g) ≤ αq(f)αp(g).

The proof of (23) is analogous. ¤

If L is a bounded linear operator, then the numbers αp(L) and βp(L) do not depend on p ∈ E. We
have in fact the following result.

Proposition 1.8. Let L : E → F be a bounded linear operator. Then αp(L) = α(L) and βp(L) = β(L)
for any p ∈ E.

Proof. By the property of invariance of the Kuratowski measure of noncompactness α with respect
to traslations, it is sufficient to show that α0(L) = α(L). Given c > 0, again by the properties of α

we have α(cA) = cα(A), and consequently α(L(cA)) = α(cL(A)) = cα(L(A)). Now, recall that in the
definition of α(L) the sets A must be bounded. Hence, it is clear from the above that in the linear case
the supremum does not change if we consider only sets A included in a ball of a fixed radius r > 0. That
is,

α(L) = sup
{

α(L(A))
α(A)

: A ⊆ Br(0), α(A) > 0
}

,

and consequently α0(L) = α(L).
The same argument holds for β(L), and this completes the proof. ¤

In the case of a map f of class C1, we get the following property.

Proposition 1.9. Let f : U → F be of class C1. Then, for any p ∈ U we have αp(f) = α(f ′(p)) and
βp(f) = β(f ′(p)).

Proof. We show for instance that βp(f) = β(f ′(p)). Let p ∈ U be given, and define

φ(x) = f(x)− f ′(p)(x− p).

The map φ is of class C1 and its derivative at p vanishes. Thus, for any fixed ε > 0 there exists
r > 0 such that for any x in Br(p) we have ‖φ′(x)‖ < ε. It follows that in Br(p) the map φ is
Lipschitz continuous with constant ε, and consequently it is α-Lipschitz with the same constant, that
is, α(φ|Br(p)) ≤ ε. Hence αp(φ) = 0. Applying property (18) of βp and the previous proposition, we get
βp(f) = βp(f ′(p)) = β(f ′(p)).
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The case of αp(f) is analogous. ¤

If the map f is of class C1, Proposition 1.9 yields a simple method to evaluate αp(f) and βp(f) by
linearization. As an appication of this fact, we state the following result.

Proposition 1.10. Let g : U → F and λ : U → R be maps of class C1, with λ(x) ≥ 0. Consider the
C1 map f : U → F defined by f(x) = λ(x)g(x). Then, for any p ∈ U we have αp(f) = λ(p)αp(g) and
βp(f) = λ(p)βp(g).

Proof. Let p ∈ U be fixed. By Proposition 1.9 we have αp(f) = α(f ′(p)). The linear operator
f ′(p) : E → F is defined by

f ′(p)v = (λ′(p)v)g(p) + λ(p)g′(p)v.

By property (1) of α we get α(λ(p)g′(p)) = λ(p)α(g′(p)). Moreover, the operator v 7→ (λ′(p)v)g(p) is
of finite dimensional range; hence, it is compact. By property (2) of α, this implies that α(f ′(p)) =
λ(p)α(g′(p)). Now the claim follows from the previous proposition.

The case of βp(f) is analogous. ¤

Using Proposition 1.10, we can give examples of maps f with the property that α(f) = ∞ but
αp(f) < ∞ for any p, or that β(f) = 0 but βp(f) > 0 for any p.

Example 1. Let f = λI, where I is the identity, and λ : E → R is a C1 map such that

lim
||x||→+∞

λ(x) = +∞.

By Proposition 1.10, for any fixed p ∈ E we have αp(f) = λ(p). Moreover, as we already pointed out, we
have α(f) ≥ αp(f) for any p. Thus, α(f) = ∞. In an analogous way, consider a C1 map µ : E → R such
that µ(x) > 0 for any x and

inf
x∈E

µ(x) = 0,

and define f = µI. By Proposition 1.10, for any fixed p ∈ E we have βp(f) = µ(p) > 0. On the other
hand, we have β(f) ≤ βp(f) for any p. Hence, β(f) = 0. For instance, if E is a Hilbert space with norm

|| · ||, we can take λ(x) = ||x||2 and µ(x) =
1

||x||2 + 1
.

We give now an example of a map f such that α(f) > 0, even if αp(f) = 0 for any p.

Example 2. Let E = F = `2. Fix an orthonormal basis C = {e1, e2, ...} in `2, and let ε > 0 be
such that the balls of the family {Bε(ei) : i = 1, 2, ...} are pairwise disjoint. Define U =

⋃
i Bε(ei), and

consider the map f : U → E defined by f(x) = ei if x belongs to Bε(ei). The map f is locally constant,
hence it is continuous and we have αp(f) = 0 for any p ∈ U . On the other hand, we want to show that
α(f) > 0. Since U is bounded, it suffices to prove that α(U) > 0 and α(f(U))/α(U) > 0. We observe
that α(C) =

√
2 because ‖ei− ej‖ =

√
2 for i 6= j. Consequently, α(U) ≥ √

2 since U ⊇ C. The fact that
f(U) = C implies α(f(U))/α(U) > 0, as claimed.

In the previous example the open set U is not connected. However, analogous examples with U

connected could be given by considering, instead of the orthonormal basis C, any connected finite dimen-
sional submanifold M of `2 with α(M) > 0, and taking as U a tubolar neighborhood of M . In this case,
if f : U → M is the associated retraction, we have α(f) > 0 and αp(f) = 0 for any p ∈ U .
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2 Invariance of Domain Theorem

We are now able to state and prove the main result of this paper, from which the generalization of the
Invariance of Domain Theorem will follow.

Theorem 2.1. Let E and F be Banach spaces, U an open subset of E and p ∈ U . Let f : U → F be
locally injective, and suppose that f is the sum of two maps, g and h, where g is Fredholm of index zero
and h is continuous with αp(h) < β(g′(p)). Then f(p) belongs to the interior of the image f(U) of the
map f .

Proof. By assumption, the derivative g′(p) of g at p is a Fredholm operator of index zero. Thus,
there exists a linear operator S of finite dimensional range such that L := g′(p)+S is a linear isomorphism.
Now, consider the composition L−1 ◦ f : U → E. It is sufficient to show that L−1f(p) is an interior point
of the image of this map.

We claim that there exists a neighborhood V of p with the property that the restriction L−1 ◦ f |V
is an α-contractive perturbation of the identity or, equivalently, α((I − L−1 ◦ f)|V ) < 1. Clearly, it is
enough to prove that αp(I −L−1 ◦ f) < 1. To see this, write f(x) = g(x) + Sx + h(x)− Sx. By linearity
we get

L−1f(x) = L−1(g(x) + Sx) + L−1(h(x)− Sx).

First, consider the maps T := L−1 ◦ (g +S) and φ := I−T . The latter is of class C1 and its derivative at
the point p vanishes, indeed by definition φ′(p) = I−L−1◦(g′(p)+S) = 0. Hence, given δ > 0, there exists
r > 0 such that for any x in Br(p) we have ‖φ′(x)‖ < δ. This implies that in Br(p) the map φ is Lipschitz
continuous with constant δ, and in particular α(φ|Br(p)) ≤ δ. Thus, αp(φ) = 0. On the other hand, since
L−1 ◦ S is a compact linear operator, we have α(L−1 ◦ S) = 0 and consequently αp(L−1 ◦ S) = 0. Hence,
by property (16) of αp, we only have to show that αp(L−1 ◦ h) < 1. By property (22) of αp, and since
Proposition 1.8 implies that αq(L−1) = α(L−1) for any q ∈ F , we have αp(L−1 ◦ h) ≤ α(L−1)αp(h). As
L is a linear isomorphism, by property (10) of β we get α(L−1) = β(L)−1, and by definition of L, since
S is a compact linear operator, applying property (8) of β we get β(L) = β(g′(p) + S) = β(g′(p)). Hence
α(L−1) = β(g′(p))−1 and we conclude that

αp(L−1 ◦ h) ≤ α(L−1)αp(h) = β(g′(p))−1αp(h) < 1.

As we already pointed out, the latter inequality implies αp(I − L−1 ◦ f) < 1. Consequently, there exists
a neighborhood V of p such that L−1 ◦ f |V is an α-contractive perturbation of the identity. Finally,
applying Theorem 1.1 to L−1 ◦ f |V we get that L−1f(V ) is open, and in particular the point L−1f(p)
belongs to the interior of the image of L−1 ◦ f . ¤

We give a consequence of the previous theorem, in which only the known concepts of α and β are
involved.

Corollary 2.1. Let E and F be Banach spaces, and U an open subset of E. Let f : U → F be locally
injective, and suppose that f is the sum of two maps, g and h, where g is Fredholm of index zero and h

is continuous with α(h) < β(g). Then f is an open map.

Proof. Let p ∈ U be fixed. As we already pointed out, αp(h) ≤ α(h) and βp(g) ≥ β(g). Moreover,
by Proposition 1.9 we get βp(g) = β(g′(p)). Hence, by assumption we have αp(h) < β(g′(p)), and the
assertion follows from Theorem 2.1. ¤

The following result was our starting point, we state it as a straightforward consequence of Theo-
rem 2.1.
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Corollary 2.2. Let E and F be Banach spaces, and U an open subset of E. Let f : U → F be locally
injective, and suppose that f is the sum of two maps, g and h, where g is Fredholm of index zero and h

is continuous and locally compact. Then f is an open map.

Proof. Let p ∈ U be fixed. Observe that by the local compactness of h we get αp(h) = 0, and by
Proposition 1.5, since g is Fredholm, β(g′(p)) > 0. Thus, the claim follows from Theorem 2.1. ¤

Let us remark that, for our purposes, the right assumption for the Fredholm map g is to be of index
zero. In some way this corresponds to the finite dimensional case in which the Invariance of Domain
Theorem holds only for maps acting between spaces of equal dimension. The next proposition explains
the situation.

Proposition 2.1. If f : U → F is a locally injective Fredholm map of nonzero index, then f is not an
open map.

Proof. (i) If the index of f is negative, any element of its image is a critical value and we know,
from Sard-Smale Theorem (see [5]), that the set of regular values is dense in F . Hence, the image of f

has empty interior.
(ii) Suppose that the map f is locally injective with positive index, and let ind (f) = m > 0. We

want to show that this assumption leads to a contradiction. Define f̃ : U → F ×Rm by f̃(x) = (f(x), 0).
The map f̃ is locally injective and Fredholm of index zero, as the composition of f with the inclusion
x 7→ (x, 0) from F into F × Rm. Hence, we know that f̃ is open (see [1]). On the other hand we have
f̃(U) ⊆ F × {0}, a contradiction. ¤

We conclude this paper with a local result which, in some way, generalizes Corollary 2.2. Note in fact
that a map h of class C1 with h′(p) = 0 need not be locally compact at p.

Corollary 2.3. Let E and F be Banach spaces, U an open subset of E and p ∈ U . Let g : U → F be
Fredholm of index zero, h1 : U → F locally compact, and h2 : U → F of class C1 and such that h′2(p) = 0.
Suppose that the map f = g + h1 + h2 is locally injective. Then f(p) belongs to the interior of the image
f(U) of the map f .

Proof. By Proposition 1.5, since g is Fredholm, β(g′(p)) > 0. Moreover, by the local compactness
of h1 we get αp(h1) = 0, and by Proposition 1.9 we get αp(h2) = 0. Applying Theorem 2.1 we have the
claim. ¤
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