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We define a notion of degree for a class of perturbations of nonlinear Fredholm maps
of index zero between infinite-dimensional real Banach spaces. Our notion extends the
degree introduced by Nussbaum for locally α-contractive perturbations of the identity,
as well as the recent degree for locally compact perturbations of Fredholm maps of index
zero defined by the first and third authors.

1. Introduction

In this paper, we define a concept of degree for a special class of perturbations of
(nonlinear) Fredholm maps of index zero between (infinite-dimensional real) Banach
spaces, called α-Fredholm maps. The definition is based on the following two numbers
(see, e.g., [10]) associated with a map f : Ω→ F from an open subset of a Banach space E
into a Banach space F:

α( f )= sup

{
α
(
f (A)

)
α(A)

: A⊆Ω bounded, α(A) > 0

}
,

ω( f )= inf

{
α
(
f (A)

)
α(A)

: A⊆Ω bounded, α(A) > 0

}
,

(1.1)

where α is the Kuratowski measure of noncompactness (in [10] ω( f ) is denoted by β( f ),
however, since ω is the last letter of the Greek alphabet, we prefer the notation ω( f ) as in
[8]).

Roughly speaking, the α-Fredholm maps are of the type f = g − k, where g is Fred-
holm of index zero and k satisfies, locally, the inequality

α(k) < ω(g). (1.2)

These maps include locally compact perturbations of Fredholm maps (called quasi-
Fredholm maps, for short) since, when g is Fredholm and k is locally compact, one has
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α(k) = 0 and ω(g) > 0, locally. Moreover, they also contain the α-contractive perturba-
tions of the identity (called α-contractive vector fields), where, following Darbo [5], a map
k is α-contractive if α(k) < 1.

The degree obtained in this paper is a generalization of the degree for quasi-Fredholm
maps defined for the first time in [14] by means of the Elworthy-Tromba theory. The
latter degree has been recently redefined in [3] avoiding the use of the Elworthy-Tromba
construction and using as a main tool a natural concept of orientation for nonlinear
Fredholm maps introduced in [1, 2]. Our construction is based on this new definition.

The paper ends by showing that for α-contractive vector fields, our degree coincides
with the degree defined by Nussbaum in [12, 13].

2. Orientability for Fredholm maps

In this section, we give a summary of the notion of orientability for nonlinear Fredholm
maps of index zero between Banach spaces introduced in [1, 2].

The starting point is a preliminary definition of a concept of orientation for linear
Fredholm operators of index zero between real vector spaces (at this level no topological
structure is needed).

Recall that, given two real vector spaces E and F, a linear operator L : E→ F is said to
be (algebraic) Fredholm if the spaces KerL and coKerL = F/ ImL are finite-dimensional.
The index of L is the integer

indL= dimKerL−dimcoKerL. (2.1)

Given a Fredholm operator of index zero L, a linear operator A : E → F is called a
corrector of L if

(i) ImA has finite dimension,
(ii) L+A is an isomorphism.

We denote by �(L) the nonempty set of correctors of L and we define in �(L) the follow-
ing equivalence relation. Given A,B ∈�(L), consider the automorphism

T = (L+B)−1(L+A)= I − (L+B)−1(B−A) (2.2)

of E. Clearly, the image of K = (L+B)−1(B−A) is finite dimensional. Hence, given any
finite-dimensional subspace E0 of E containing the image of K , the restriction of T to
E0 is an automorphism of E0. Therefore, its determinant is well defined and nonzero. It
is easy to check that this value does not depend on E0 (see [1]). Thus, the determinant
of T , detT in symbols, is well defined as the determinant of the restriction of T to any
finite-dimensional subspace of E containing the image of K .

We say that A is equivalent to B or, more precisely, A is L-equivalent to B, if

det
(
(L+B)−1(L+A)

)
> 0. (2.3)

In [1], it is shown that this is actually an equivalence relation on �(L) with two equiva-
lence classes. This equivalence relation provides a concept of orientation of a linear Fred-
holm operator of index zero.
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Definition 2.1. Let L be a linear Fredholm operator of index zero between two real vector
spaces. An orientation of L is the choice of one of the two equivalence classes of �(L), and
L is oriented when an orientation is chosen.

Given an oriented operator L, the elements of its orientation are called the positive
correctors of L.

Definition 2.2. An oriented isomorphism L is said to be naturally oriented if the trivial
operator is a positive corrector, and this orientation is called the natural orientation of L.

We now consider the notion of orientation in the framework of Banach spaces. From
now on, and throughout the paper, E and F denote two real Banach spaces, L(E,F) is the
Banach space of bounded linear operators from E into F, and Φ0(E,F) is the open subset
of L(E,F) of the Fredholm operators of index zero. Given L∈Φ0(E,F), the symbol �(L)
now denotes, with an abuse of notation, the set of bounded correctors of L, which is still
nonempty.

Of course, the definition of orientation of L ∈Φ0(E,F) can be given as the choice of
one of the two equivalence classes of bounded correctors of L, according to the equiva-
lence relation previously defined.

In the context of Banach spaces, an orientation of a linear Fredholm operator of in-
dex zero induces, by a sort of stability, an orientation to any sufficiently close operator.
Precisely, consider L∈Φ0(E,F) and a corrector A of L. Since the set of the isomorphisms
from E into F is open in L(E,F), A is a corrector of every T in a suitable neighborhood W
of L. If, in addition, L is oriented and A is a positive corrector of L, then any T in W can
be oriented by taking A as a positive corrector. This fact leads us to the following notion
of orientation for a continuous map with values in Φ0(E,F).

Definition 2.3. Let X be a topological space and let h : X →Φ0(E,F) be continuous. An
orientation of h is a continuous choice of an orientation α(x) of h(x) for each x ∈ X ,
where “continuous” means that for any x ∈ X , there exists A ∈ α(x) which is a positive
corrector of h(x′) for any x′ in a neighborhood of x. A map is orientable when it admits
an orientation and oriented when an orientation is chosen.

Remark 2.4. It is possible to prove (see [2, Proposition 3.4]) that two equivalent correctors
A and B of a given L∈Φ0(E,F) remain T-equivalent for any T in a neighborhood of L.
This implies that the notion of “continuous choice of an orientation” in Definition 2.3 is
equivalent to the following one:

(i) for any x ∈ X and any A ∈ α(x), there exists a neighborhood W of x such that
A∈ α(x′) for all x′ ∈W .

As a straightforward consequence of Definition 2.3, if h : X → Φ0(E,F) is orientable
and g : Y → X is any continuous map, then the composition hg is orientable as well.
In particular, if h is oriented, then hg inherits in a natural way an orientation from the
orientation of h. Thus, if

H : X × [0,1]−→Φ0(E,F) (2.4)
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is an oriented homotopy and t ∈ [0,1] is given, the partial map Ht =Hit, where it(x) =
(x, t), inherits an orientation from H .

The following proposition shows an important property of the notions of orientation
and orientability for maps into Φ0(E,F). Such a property may be regarded as a sort of
continuous transport of the orientation along a homotopy (see [2, Theorem 3.14]).

Proposition 2.5. Let X be a topological space and consider a homotopy

H : X × [0,1]−→Φ0(E,F). (2.5)

Assume that for some t ∈ [0,1] the partial map Ht =H(·, t) is oriented. Then there exists
and is unique an orientation of H such that the orientation of Ht is inherited from that of H .

Definition 2.3 and Remark 2.4 allow us to define a notion of orientability for Fredholm
maps of index zero between Banach spaces. Recall that, given an open subset Ω of E,
a map g : Ω→ F is Fredholm if it is C1 and its Fréchet derivative, g′(x), is a Fredholm
operator for all x ∈Ω. The index of g at x is the index of g′(x) and g is said to be of index
n if it is of index n at any point of its domain.

Definition 2.6. An orientation of a Fredholm map of index zero g : Ω→ F is an orientation
of the derivative g′ : Ω→Φ0(E,F), and g is orientable, or oriented, if so is g′ according to
Definition 2.3.

The notion of orientability of Fredholm maps of index zero is mainly discussed in
[1, 2], where the reader can find examples of orientable and nonorientable maps and
a comparison with an earlier notion given by Fitzpatrick et al. in [9]. Here we recall a
property (Theorem 2.8 below) that is the analogue for Fredholm maps of the continuous
transport of an orientation along a homotopy stated in Proposition 2.5. We need first the
following definition.

Definition 2.7. Let Ω be an open subset of E and G : Ω× [0,1]→ F a C1 homotopy. As-
sume that any partial map Gt is Fredholm of index zero. An orientation of G is an orien-
tation of the partial derivative

∂1G : Ω× [0,1]−→Φ0(E,F), (x, t) �−→ (
Gt
)′

(x), (2.6)

and G is orientable, or oriented, if so is ∂1G according to Definition 2.3.

From the above definition it follows immediately that if G is oriented, any partial map
Gt inherits an orientation from G.

Theorem 2.8 is a straightforward consequence of Proposition 2.5.

Theorem 2.8. Let G : Ω× [0,1]→ F be a C1 homotopy and assume that any Gt is a Fred-
holm map of index zero. If a given Gt is orientable, then G is orientable. If, in addition, Gt is
oriented, then there exists and is unique an orientation of G such that the orientation of Gt

is inherited from that of G.

We conclude this section by showing how the orientation of a Fredholm map g is
related to the orientations of domain and codomain of suitable restrictions of g. This
argument will be crucial in the definition of the degree for quasi-Fredholm maps.



Pierluigi Benevieri et al. 189

Let g : Ω→ F be an oriented map and Z a finite-dimensional subspace of F transverse
to g. By classical transversality results, M = g−1(Z) is a differentiable manifold of the same
dimension as Z. In addition, M is orientable (see [1, Remark 2.5 and Lemma 3.1]). Here
we show how the orientation of g and a chosen orientation of Z induce an orientation on
any tangent space TxM.

Let Z be oriented. Choose any x ∈M and let A be any positive corrector of g′(x) with
image contained in Z (the existence of such a corrector is ensured by the transversality of
Z to g). Then, orient the tangent space TxM in such a way that the isomorphism(

g′(x) +A
)|TxM : TxM −→ Z (2.7)

is orientation preserving. As proved in [3], the orientation of TxM does not depend on
the choice of the positive corrector A, but just on the orientation of Z and g′(x). With
this orientation, we call M the oriented Fredholm g-preimage of Z.

3. Orientability and degree for quasi-Fredholm maps

In this section, we summarize the main ideas in the construction of a topological degree
for quasi-Fredholm maps (see [3] for details). We start by recalling the construction of
an orientation for this class of maps.

As before, E and F are real Banach spaces, and Ω is an open subset of E. A map k :
Ω→ F is called locally compact if for any x0 ∈ Ω, the restriction of k to a convenient
neighborhood of x0 is a compact map (i.e., a map whose image is contained in a compact
subset of F).

Definition 3.1. A map f : Ω→ F is said to be quasi-Fredholm provided that f = g − k,
where g is Fredholm of index zero and k is locally compact. The map g is called a smooth-
ing map of f .

The following definition provides an extension to quasi-Fredholm maps of the concept
of orientability.

Definition 3.2. A quasi-Fredholm map f : Ω → F is orientable if it has an orientable
smoothing map.

If f is an orientable quasi-Fredholm map, any smoothing map of f is orientable. In-
deed, given two smoothing maps g0 and g1 of f , consider the homotopy

G(x, t)= (1− t)g0(x) + tg1(x), (x, t)∈Ω× [0,1]. (3.1)

Notice that any Gt is Fredholm of index zero, since it differs from g0 by a C1 locally
compact map. By Theorem 2.8, if g0 is orientable, then g1 is orientable as well.

Let f : Ω→ F be an orientable quasi-Fredholm map. To define a notion of orientation
of f , consider the set �( f ) of the oriented smoothing maps of f . We introduce in �( f )
the following equivalence relation. Given g0, g1 in �( f ), consider, as in formula (3.1),
the straight-line homotopy G joining g0 and g1. We say that g0 is equivalent to g1 if their
orientations are inherited from the same orientation of G, whose existence is ensured by
Theorem 2.8. It is immediate to verify that this is an equivalence relation.
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Definition 3.3. Let f : Ω→ F be an orientable quasi-Fredholm map. An orientation of f
is the choice of an equivalence class in �( f ).

In the sequel, if f is an oriented quasi-Fredholm map, the elements of the chosen class
of �( f ) will be called positively oriented smoothing maps of f .

As for the case of Fredholm maps of index zero, the orientation of quasi-Fredholm
maps verifies a homotopy invariance property, stated in Theorem 3.6 below. We need
first some definitions.

Definition 3.4. A map H : Ω× [0,1]→ F of the type

H(x, t)=G(x, t)−K(x, t) (3.2)

is called a homotopy of quasi-Fredholm maps provided that G is C1, any Gt is Fredholm
of index zero, and K is locally compact. In this case G is said to be a smoothing homotopy
of H .

We need a concept of orientability for homotopies of quasi-Fredholm maps. The def-
inition is analogous to that given for quasi-Fredholm maps. Let H : Ω× [0,1]→ F be a
homotopy of quasi-Fredholm maps. Let �(H) be the set of oriented smoothing homo-
topies of H . Assume that �(H) is nonempty and define on this set an equivalence relation
as follows. Given G0 and G1 in �(H), consider the map

� : Ω× [0,1]× [0,1]−→ F (3.3)

defined as

�(x, t,s)= (1− s)G0(x, t) + sG1(x, t). (3.4)

We say that G0 is equivalent to G1 if their orientations are inherited from an orientation
of the map

(x, t,s) �−→ ∂1�(x, t,s). (3.5)

The reader can easily verify that this is actually an equivalence relation on �(H).

Definition 3.5. A homotopy of quasi-Fredholm maps H : Ω× [0,1]→ F is said to be ori-
entable if �(H) is nonempty. An orientation of H is the choice of an equivalence class of
�(H).

The following homotopy invariance property of the orientation of quasi-Fredholm
maps is the analogue of Theorem 2.8 and a straightforward consequence of Proposition
2.5.

Theorem 3.6. Let H : Ω× [0,1] → F be a homotopy of quasi-Fredholm maps. If a par-
tial map Ht is oriented, then there exists and is unique an orientation of H such that the
orientation of Ht is inherited from that of H .

We now summarize the construction of the degree.
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Definition 3.7. Let f : Ω→ F be an oriented quasi-Fredholm map and U an open subset
of Ω. The triple ( f ,U ,0) is said to be qF-admissible provided that f −1(0)∩U is compact.

The degree is defined as a map from the set of all qF-admissible triples into Z. The
construction is divided in two steps. In the first one we consider triples ( f ,U ,0) such that
f has a smoothing map g with ( f − g)(U) contained in a finite-dimensional subspace of
F. In the second step this assumption is removed, the degree being defined for general
qF-admissible triples.

Step 1. Let ( f ,U ,0) be a qF-admissible triple and let g be a positively oriented smoothing
map of f such that ( f − g)(U) is contained in a finite-dimensional subspace of F. As
f −1(0)∩U is compact, there exist a finite-dimensional subspace Z of F and an open
subset W of U containing f −1(0)∩U and such that g is transverse to Z in W . We may
assume that Z contains ( f − g)(U). Choose any orientation of Z and, as in Section 2,
let the manifold M = g−1(Z)∩W be the oriented Fredholm g|W -preimage of Z. One can
easily verify that ( f |M)−1(0)= f −1(0)∩U . Thus ( f |M)−1(0) is compact, and the Brouwer
degree of the triple ( f |M ,M,0) is well defined.

Definition 3.8. Let ( f ,U ,0) be a qF-admissible triple and let g be a positively oriented
smoothing map of f such that ( f − g)(U) is contained in a finite-dimensional subspace
of F. Let Z be a finite-dimensional subspace of F and W ⊆ U an open neighborhood of
f −1(0)∩U such that

(1) Z contains ( f − g)(U),
(2) g is transverse to Z in W .

Assume Z oriented and let M be the oriented Fredholm g|W -preimage of Z. Then, the
degree of ( f ,U ,0) is defined as

degqF( f ,U ,0)= deg
(
f |M ,M,0

)
, (3.6)

where the right-hand side of the above formula is the Brouwer degree of the triple
( f |M ,M,0).

In [3], it is proved that the above definition is well posed, in the sense that the right-
hand side of (3.6) is independent of the choice of the smoothing map g, the open set W ,
and the oriented subspace Z.

Step 2. We now extend the definition of degree to general qF-admissible triples.

Definition 3.9 (general definition of degree). Let ( f ,U ,0) be a qF-admissible triple. Con-
sider

(1) a positively oriented smoothing map g of f ;
(2) an open neighborhood V of f −1(0)∩U such that V ⊆ U , g is proper on V , and

( f − g)|V is compact;
(3) a continuous map ξ : V → F having bounded finite-dimensional image and such

that ∥∥g(x)− f (x)− ξ(x)
∥∥ < ρ ∀x ∈ ∂V , (3.7)

where ρ is the distance in F between 0 and f (∂V).
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Then, the degree of ( f ,U ,0) is given by

degqF( f ,U ,0)= degqF(g − ξ,V ,0). (3.8)

Observe that the right-hand side of (3.8) is well defined since the triple (g − ξ,V ,0)
is qF-admissible. Indeed, g − ξ is proper on V and thus (g − ξ)−1(0) is a compact subset
of V which is actually contained in V by assumption (3). Moreover, as shown in [3],
Definition 3.9 is well posed since degqF(g − ξ,V ,0) does not depend on g, ξ, and V .

Theorem 3.10 below collects the most important properties of the degree for quasi-
Fredholm maps (see [3] for the proof).

Theorem 3.10. The following properties of the degree hold.
(1) Normalization. If the identity I of E is naturally oriented, then

degqF(I ,E,0)= 1. (3.9)

(2) Additivity. Given a qF-admissible triple ( f ,U ,0) and two disjoint open subsets U1,
U2 of U such that f −1(0)∩U ⊆U1∪U2, it holds that

degqF( f ,U ,0)= degqF

(
f ,U1,0

)
+ degqF

(
f ,U2,0

)
. (3.10)

(3) Excision. If ( f ,U ,0) is qF-admissible and U1 is an open subset of U containing
f −1(0)∩U , then

degqF( f ,U ,0)= degqF

(
f ,U1,0

)
. (3.11)

(4) Existence. If ( f ,U ,0) is qF-admissible and

degqF( f ,U ,0) 	= 0, (3.12)

then the equation f (x)= 0 has a solution in U .
(5) Homotopy invariance. Let H : U × [0,1] → F be an oriented homotopy of quasi-

Fredholm maps. If H−1(0) is compact, then degqF(Ht,U ,0) does not depend on t ∈ [0,1].

4. Measures of noncompactness

In this section, we recall the definition and properties of the Kuratowski measure of non-
compactness [11], together with some related concepts. For general reference, see, for
example, Deimling [6].

From now on the spaces E and F are assumed to be infinite-dimensional. As before Ω
is an open subset of E.

The Kuratowski measure of noncompactness α(A) of a bounded subset A of E is defined
as the infimum of the real numbers d > 0 such that A admits a finite covering by sets of
diameter less than d. If A is unbounded, we set α(A)= +∞. We summarize the following
properties of the measure of noncompactness. Given A⊆ E, by coA we denote the closed
convex hull of A.
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Proposition 4.1. Let A,B ⊆ E. Then
(1) α(A)= 0 if and only if A is compact;
(2) α(λA)= |λ|α(A) for any λ∈R;
(3) α(A+B)≤ α(A) +α(B);
(4) if A⊆ B, then α(A)≤ α(B);
(5) α(A∪B)=max{α(A),α(B)};
(6) α(coA)= α(A).

Properties (1), (2), (3), (4), and (5) are straightforward consequences of the definition,
while the last one is due to Darbo [5].

Given a continuous map f : Ω→ F, let α( f ) and ω( f ) be as in the introduction. It
is important to observe that α( f )= 0 if and only if f is completely continuous (i.e., the
restriction of f to any bounded subset of Ω is a compact map) and ω( f ) > 0 only if f
is proper on bounded closed sets. For a complete list of properties of α( f ) and ω( f ), we
refer to [10]. We need the following one concerning linear operators.

Proposition 4.2. Let L : E→ F be a bounded linear operator. Then ω(L) > 0 if and only if
ImL is closed and dimKerL < +∞.

As a consequence of Proposition 4.2, one gets that a bounded linear operator L : E→ F
is Fredholm if and only if ω(L) > 0 and ω(L∗) > 0, where L∗ is the adjoint of L.

Let f be as above and fix p ∈Ω. We recall the definitions of αp( f ) and ωp( f ) given
in [4]. Let B(p,r) denote the open ball in E centered at p with radius r. Suppose that
B(p,r)⊆Ω and consider

α
(
f |B(p,r)

)= sup

{
α
(
f (A)

)
α(A)

: A⊆ B(p,r), α(A) > 0

}
. (4.1)

This is nondecreasing as a function of r. Hence, we can define

αp( f )= lim
r→0

α
(
f |B(p,r)

)
. (4.2)

Clearly αp( f )≤ α( f ) for any p ∈Ω. In an analogous way, we define

ωp( f )= lim
r→0

ω
(
f |B(p,r)

)
, (4.3)

and we have ωp( f )≥ ω( f ) for any p. It is easy to show that the main properties of α and
ω hold, with minor changes, as well for αp and ωp (see [4]).

Proposition 4.3. Let f : Ω→ F be continuous and p ∈Ω. Then
(1) if f is locally compact, αp( f )= 0;
(2) if ωp( f ) > 0, f is locally proper at p.

Clearly, for a bounded linear operator L : E→ F, the numbers αp(L) and ωp(L) do not
depend on the point p and coincide, respectively, with α(L) and ω(L). Furthermore, for
the C1 case, we get the following result.

Proposition 4.4 [4]. Let f : Ω→ F be of class C1. Then, for any p ∈ Ω, it holds that
αp( f )= α( f ′(p)) and ωp( f )= ω( f ′(p)).
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Observe that if f : Ω→ F is a Fredholm map, as a straightforward consequence of
Propositions 4.2 and 4.4, we obtain ωp( f ) > 0 for any p ∈Ω.

As an application of Proposition 4.4 one could deduce the following result.

Proposition 4.5 [4]. Let g : Ω→ F and ϕ : Ω→R be of class C1, with ϕ(x)≥ 0. Consider
the product map f : Ω→ F defined by f (x)= ϕ(x)g(x). Then, for any p ∈Ω, it holds that
αp( f )= ϕ(p)αp(g) and ωp( f )= ϕ(p)ωp(g).

By means of Proposition 4.5, one can easily find examples of maps f such that α( f )=
∞ and αp( f ) <∞ for any p, and examples of maps f with ω( f ) = 0 and ωp( f ) > 0 for
any p (see [4]). Moreover, in [4] there is an example of a map f such that α( f ) > 0 and
αp( f )= 0 for any p.

In the sequel we will deal with maps G defined on the product space E×R. In order
to define α(p,t)(G), we consider the norm∥∥(p, t)

∥∥=max
{‖p‖,|t|}. (4.4)

The natural projection of E×R onto the first factor will be denoted by π1.

Remark 4.6. With the above norm, π1 is nonexpansive. Therefore α(π1(X)) ≤ α(X) for
any subset X of E ×R. More precisely, since R is finite dimensional, if X ⊆ E ×R is
bounded, we have α(π1(X))= α(X).

5. Definition of degree

This section is devoted to the construction of a concept of degree for a class of triples that
we will call α-admissible. We start with two definitions.

Definition 5.1. Let g : Ω→ F be an oriented map, k : Ω→ F a continuous map, and U an
open subset of Ω. The triple (g,U ,k) is said to be α-admissible if

(i) αp(k) < ωp(g) for any p ∈U ;
(ii) the solution set S= {x ∈U : g(x)= k(x)} is compact.

Definition 5.2. Let (g,U ,k) be an α-admissible triple and � = {V1, . . . ,VN} a finite cov-
ering of open balls of its solution set S. � is an α-covering of S (relative to (g,U ,k)) if for
any i∈ {1, . . . ,N}, the following properties hold:

(i) the ball Ṽi of double radius and same center as Vi is contained in U ;
(ii) α(k|Ṽi

) < ω(g|Ṽi
).

Let (g,U ,k) be an α-admissible triple and �= {V1, . . . ,VN} an α-covering of the solu-
tion set S. We define the following sequence {Cn} of convex closed subsets of E:

C1 = co

( N⋃
i=1

{
x ∈Vi : g(x)∈ k

(
Ṽi
)})

, (5.1)

and, inductively,

Cn = co

( N⋃
i=1

{
x ∈Vi : g(x)∈ k

(
Ṽi∩Cn−1

)})
, n≥ 2. (5.2)
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Observe that, by induction, Cn+1 ⊆ Cn and S⊆ Cn for any n≥ 1. Then the set

C∞ =
⋂
n≥1

Cn (5.3)

turns out to be closed, convex, and containing S. Consequently, if S is nonempty, so is
C∞. To emphasize the fact that the set C∞ is uniquely determined by the covering �,
sometimes it will be denoted by C�∞. We prove two other crucial properties of C∞:

(1) {x ∈Vi : g(x)∈ k(Ṽi∩C∞)} ⊆ C∞, for any i= 1, . . . ,N ;
(2) C∞ is compact.

To verify the first one, fix i ∈ {1, . . . ,N} and let x ∈ Vi be such that g(x) ∈ k(Ṽi ∩
C∞). In particular, it follows g(x) ∈ k(Ṽi) and, consequently, x ∈ C1. Moreover, for any
n≥ 1 we have g(x)∈ k(Ṽi∩Cn) and this implies x ∈ Cn+1. Hence, x ∈ C∞, and the first
property holds.

To check the compactness of C∞, we prove that α(Cn)→ 0 as n→∞. Let n≥ 2 be fixed.
By the properties of the measure of noncompactness (see Section 4) we have

α
(
Cn
)= α

( N⋃
i=1

{
x ∈Vi : g(x)∈ k

(
Ṽi∩Cn−1

)})
= max

1≤i≤N
α
({
x ∈Vi : g(x)∈ k

(
Ṽi∩Cn−1

)})
.

(5.4)

Fix i∈ {1, . . . ,N}, and denote

An,i =
{
x ∈Vi : g(x)∈ k

(
Ṽi∩Cn−1

)}
. (5.5)

Since An,i ⊆ Ṽi, by definition we have α(An,i)ω(g|Ṽi
) ≤ α(g(An,i)). Moreover, g(An,i) ⊆

k(Ṽi∩Cn−1). Therefore, as ω(g|Ṽi
) > 0, we have

α
(
An,i

)≤ 1
ω
(
g|Ṽi

)α(g(An,i
))≤ 1

ω
(
g|Ṽi

)α(k(Ṽi∩Cn−1
))
. (5.6)

On the other hand, by definition, α(k(Ṽi∩Cn−1))≤ α(k|Ṽi
)α(Ṽi∩Cn−1), thus

α
(
An,i

)≤ α
(
k|Ṽi

)
ω
(
g|Ṽi

)α(Ṽi∩Cn−1
)= µiα

(
Ṽi∩Cn−1

)≤ µiα
(
Cn−1

)
, (5.7)

where by assumption µi = α(k|Ṽi
)/ω(g|Ṽi

) < 1. Finally,

α
(
Cn
)= max

1≤i≤N
α
(
An,i

)≤ max
1≤i≤N

µiα
(
Cn−1

)= µα
(
Cn−1

)
, (5.8)

where µ=maxi µi < 1. Hence, α(Cn)→ 0, and this implies that the set C∞ is compact, as
claimed.

Definition 5.3. Let (g,U ,k) be an α-admissible triple, �= {V1, . . . ,VN} an α-covering of
the solution set S, and C a compact convex set. (�,C) is an α-pair (relative to (g,U ,k)) if



196 A degree theory for a class of perturbed Fredholm maps

the following properties hold:
(1) U ∩C 	= ∅;
(2) C�∞ ⊆ C;
(3) {x ∈Vi : g(x)∈ k(Ṽi∩C)} ⊆ C for any i= 1, . . . ,N .

Remark 5.4. Given any α-admissible triple (g,U ,k), it is always possible to find an α-pair
(�,C). Indeed, fix an α-covering � of the solution set S. If the corresponding compact
set C�∞ is nonempty, then, clearly, the pair (�,C�∞) verifies properties (1), (2), and (3). If
C�∞ =∅ (this can happen only if S=∅), we may assume without loss of generality that

U \
N⋃
i=1

Ṽi 	= ∅. (5.9)

One can check that, given any p ∈ U \⋃N
i=1 Ṽi, the pair (�,{p}) satisfies properties (1),

(2), and (3).

Let now (�,C) be an α-pair. Consider a retraction r : E→ C, whose existence is en-
sured by Dugundji’s extension theorem [7]. Denote V =⋃N

i=1Vi, and let W be a (possibly
empty) open subset of V containing S such that, for any i,x ∈W ∩Vi implies r(x)∈ Ṽi.
For example, if ρ denotes the minimum of the radii of the balls Vi, one may take as W the
set

{
x ∈V :

∥∥x− r(x)
∥∥ < ρ

}
. (5.10)

Observe that property (3) above implies that the two equations g(x) = k(x) and g(x) =
k(r(x)) have the same solution set in W (notice that the composition kr is defined in
r−1(U)). The map kr is locally compact (even if not necessarily compact), hence the triple
(g − kr,W ,0) is admissible for the degree for quasi-Fredholm maps. We define the degree
of (g,U ,k) as follows:

deg(g,U ,k)= degqF(g − kr,W ,0), (5.11)

where the right-hand side is the degree defined in Section 3.
The following definition summarizes the above construction.

Definition 5.5. Let (g,U ,k) be an α-admissible triple and (�,C) an α-pair. Consider a
retraction r : E → C. Let � = {V1, . . . ,VN}, denote V = ⋃N

i=1Vi, and let W be an open
subset of V containing S such that, for any i,x ∈W ∩Vi implies r(x)∈ Ṽi. It holds that

deg(g,U ,k)= degqF(g − kr,W ,0). (5.12)

In order to show that this definition is well posed, we have to prove that it is indepen-
dent of the choice of the α-pair (�,C), of the retraction r, and of the open set W . This is
the purpose of the following proposition.
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Proposition 5.6. Let (�,C) and (�′,C′) be two α-pairs relative to an α-admissible triple
(g,U ,k), where

�= {V1, . . . ,VN
}

, �′ = {V ′
1, . . . ,V ′

M

}
. (5.13)

Consider two retractions r : E→ C and r′ : E→ C′. Denote V =⋃N
i=1Vi, and let W be an

open subset of V containing S such that, for any i,x ∈W ∩Vi implies r(x) ∈ Ṽi. Analo-
gously, denote V ′ =⋃M

j=1V
′
j , and let W ′ be an open subset of V ′ containing S such that, for

any j,x′ ∈W ′ ∩V ′
j implies r′(x′)∈ Ṽ ′

j . Then

degqF(g − kr,W ,0)= degqF(g − kr′,W ′,0). (5.14)

Proof. Consider a third covering �′′ = {V ′′
1 , . . . ,V ′′

T } of the solution set S of open balls
such that for any l ∈ {1, . . . ,T}, there exist i and j such that V ′′

l ⊆ Vi∩V ′
j . In particular,

�′′ is still an α-covering of S. Consider the compact convex set C�′′
∞ . We distinguish two

different cases.
(i) C�′′

∞ = ∅. In this case S =∅ and, consequently, by the existence property of the
degree for quasi-Fredholm maps, we have

degqF(g − kr,W ,0)= 0, degqF(g − kr′,W ′,0)= 0. (5.15)

(ii) C�′′
∞ 	= ∅. In this case, (�′′,C�′′

∞ ) is an α-pair. To simplify the notations, denote
C′′∞ = C�′′

∞ . Consider a retraction r′′ : E→ C′′∞. Denote V ′′ =⋃T
l=1V

′′
l , and let W ′′ be an

open subset of V ′′ containing S such that, for any l, x ∈W ′′ ∩V ′′
l implies r′′(x) ∈ Ṽ ′′

l .
Clearly, to prove the assertion, it is sufficient to show that

degqF(g − kr,W ,0)= degqF(g − kr′′,W ′′,0). (5.16)

Now, denote C∞ = C�∞ and let {Cn} and {C′′n } be the sequences of sets defining C∞ and
C′′∞, respectively. Since C′′n ⊆ Cn for any n≥ 1, it follows C′′∞ ⊆ C∞. In particular, C′′∞ ⊆ C.
Moreover, without loss of generality, we can assume that the open set W ′′ is contained in
W . Thus, by the excision property of the degree for quasi-Fredholm maps we have

degqF(g − kr,W ,0)= degqF(g − kr,W ′′,0). (5.17)

Consider the following homotopy:

H : W ′′ × [0,1]−→ F,

H(x, t)= g(x)− k
(
tr(x) + (1− t)r′′(x)

)
.

(5.18)

Let x ∈W ′′, let V ′′
l contain x for some l, and let Vi contain V ′′

l for some i. Since x ∈
W ′′ ⊆W , we have r(x) ∈ Ṽi and r′′(x) ∈ Ṽ ′′

l . Hence, as Ṽ ′′
l ⊆ Ṽi, it follows r′′(x) ∈ Ṽi

and, consequently, H is well defined.
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Let now (x, t)∈W ′′ × [0,1] be a pair such that H(x, t)= 0. If x ∈ V ′′
l for some l, and

V ′′
l ⊆ Vi for some i, then both r(x) and r′′(x) belong to Ṽi ∩C, since r′′(x) ∈ C′′∞ and

C′′∞ ⊆ C. Thus, tr(x) + (1− t)r′′(x) ∈ Ṽi ∩C and, in particular, g(x) ∈ k(Ṽi ∩C). This
implies x ∈ C and, consequently, r(x)= x.

We want to show that, actually, x ∈ C′′∞. Since r(x)= x, we have

tx+ (1− t)r′′(x)∈ Ṽ ′′
l ∩C (5.19)

and, in particular, g(x) ∈ k(Ṽ ′′
l ). Consequently, x ∈ C′′1 . As C′′∞ ⊆ C′′1 , we have r′′(x) ∈

C′′1 , and tx+ (1− t)r′′(x)∈ Ṽ ′′
l ∩C′′1 since this is convex. Thus, g(x)∈ k(Ṽ ′′

l ∩C′′1 ), and
this implies x ∈ C′′2 . Inductively, we get x ∈ C′′n for any n≥ 1. Hence, x ∈ C′′∞ and, conse-
quently, r′′(x)= x.

Finally, g(x)= k(x), that is, x ∈ S. Therefore, the solution set

{
(x, t)∈W ′′ × [0,1] : H(x, t)= 0

}
(5.20)

coincides with S× [0,1]. Hence, we can apply the homotopy invariance of the degree for
quasi-Fredholm maps to get

degqF(g − kr,W ′′,0)= degqF(g − kr′′,W ′′,0), (5.21)

and the assertion follows taking into account formula (5.17). �

6. Properties of the degree

Theorem 6.1. The following properties of the degree hold.
(1) Normalization. Let the identity I of E be naturally oriented. Then

deg(I ,E,0)= 1. (6.1)

(2) Additivity. Given an α-admissible triple (g,U ,k) and two disjoint open subsets U1,U2

of U , assume that S= {x ∈U : g(x)= k(x)} is contained in U1∪U2. Then

deg(g,U ,k)= deg
(
g,U1,k

)
+ deg

(
g,U2,k

)
. (6.2)

(3) Homotopy invariance. Let H : U × [0,1]→ F be a homotopy of the form H(x, t) =
G(x, t)−K(x, t), where G is of class C1, any Gt =G(·, t) is Fredholm of index zero, K is con-
tinuous, and α(p,t)(K) < ω(p,t)(G) for any pair (p, t)∈U × [0,1]. Assume that G is oriented
and that H−1(0) is compact. Then deg(Gt,U ,Kt) is well defined and does not depend on
t ∈ [0,1].

Proof. (1) Normalization. It follows easily from the normalization property of the degree
for quasi-Fredholm maps.

(2) Additivity. Let S1 = S∩U1 and S2 = S∩U2, so that S = S1 ∪ S2. The fact that the
triples (g,U1,k) and (g,U2,k) are α-admissible is clear from the definition.
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Let �1 = {V 1
1 , . . . ,V 1

N} and �2 = {V 2
2 , . . . ,V 2

M} be two α-coverings of S1 (relative to
(g,U1,k)) and of S2 (relative to (g,U2,k)), respectively. For simplicity, denote C1∞ = C�1

∞
and C2∞ = C�2

∞ . Then, consider the family

�= {V 1
1 , . . . ,V 1

N ,V 2
1 , . . . ,V 2

M

}
. (6.3)

Note that � is an α-covering of S. Consider the compact convex set C∞ = C�∞. By defini-
tion, C∞ contains both C1∞ and C2∞; moreover, it has the following properties:

{
x ∈V 1

i : g(x)∈ k
(
Ṽ 1
i ∩C∞

)}⊆ C∞, i= 1, . . . ,N ;{
x ∈V 2

j : g(x)∈ k
(
Ṽ 2

j ∩C∞
)}⊆ C∞, j = 1, . . . ,M.

(6.4)

We distinguish two different cases.
(i) IfC∞=∅, then S=∅, hence S1 =∅ and S2=∅. Consequently, applying Definition

5.5, by the existence property of the degree for quasi-Fredholm maps it follows

deg(g,U ,k)= 0, deg
(
g,U1,k

)= 0, deg
(
g,U2,k

)= 0. (6.5)

(ii) If C∞ 	=∅, consider a retraction r : E→ C∞. Denote V 1 =⋃N
i=1V

1
i , V 2 =⋃M

j=1V
2
j ,

and V = V 1 ∪V 2. Let W be an open subset of V containing S such that, for any i,x ∈
W ∩V 1

i implies r(x)∈ Ṽ 1
i and, for any j,x′ ∈W ∩V 2

j implies r(x′)∈ Ṽ 2
j . By definition

we have

deg(g,U ,k)= degqF(g − kr,W ,0). (6.6)

Since W is an open neighborhood of S in V , and V is the disjoint union of V 1 and V 2,
we can assume W =W1∪W2, where W1 ⊆V 1 and W2 ⊆V 2. The open sets W1 and W2

are disjoint. In addition, W1 contains S1, and W2 contains S2. Therefore, by the additivity
property of the degree for quasi-Fredholm maps, we have

degqF(g − kr,W ,0)= degqF

(
g − kr,W1,0

)
+ degqF

(
g − kr,W2,0

)
. (6.7)

Now, observe that (�λ,C∞) is an α-pair relative to (g,Uλ,k), for λ= 1,2. Consequently,

deg
(
g,Uλ,k

)= degqF

(
g − kr,Wλ,0

)
, λ= 1,2, (6.8)

and the assertion follows.
(3) Homotopy invariance. For t ∈ [0,1], let Σt denote the compact set {x ∈U : Gt(x)=

Kt(x)}. Given any t, the fact that the triple (Gt,U ,Kt) is α-admissible follows easily from
the compactness of Σt and observing that αp(Kt) ≤ α(p,t)(K) and ωp(Gt) ≥ ω(p,t)(G) for
all p ∈U . Consequently, it is sufficient to show that the integer-valued function

t �−→ deg
(
Gt,U ,Kt

)
(6.9)
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is locally constant. To this purpose, fix τ ∈ [0,1] and, given δ > 0, let Iδ denote the interval
[τ − δ,τ + δ]∩ [0,1]. It is possible to find δ > 0 and a finite family of open balls � =
{V1, . . . ,VN} with the following properties:

(i) V =⋃N
i=1Vi contains Σt for any t ∈ Iδ ;

(ii) the ball Ṽi of double radius and same center as Vi is contained in U ;
(iii) α(K|Ṽi×Iδ ) < ω(G|Ṽi×Iδ ), for any i= 1, . . . ,N .

In particular it follows that, for any t ∈ Iδ , � is an α-covering of Σt. As in the construction
of the sequence {Cn} in Section 5, for any fixed t ∈ Iδ we define the following sequence
of sets:

Ct
1 = co

( N⋃
i=1

{
x ∈Vi : Gt(x)∈ Kt

(
Ṽi
)})

, (6.10)

and, inductively,

Ct
n = co

( N⋃
i=1

{
x ∈Vi : Gt(x)∈ Kt

(
Ṽi∩Ct

n−1

)})
, n≥ 2. (6.11)

Then we set Ct∞ =
⋂

n≥1C
t
n. We observe that Ct∞ is compact and convex, moreover it has

the following property:{
x ∈Vi : Gt(x)∈ Kt

(
Ṽi∩Ct

∞
)}⊆ Ct

∞, i= 1, . . . ,N. (6.12)

Now, we define the following sequence {Ĉn} of convex closed subsets of E independent
of t:

Ĉ1 = co

(
π1

( N⋃
i=1

{
(x, t)∈Vi× Iδ : G(x, t)∈ K

(
Ṽi× Iδ

)}))
, (6.13)

and, inductively,

Ĉn = co

(
π1

( N⋃
i=1

{
(x, t)∈Vi× Iδ : G(x, t)∈ K

((
Ṽi∩ Ĉn−1

)× Iδ
)}))

, n≥ 2. (6.14)

Observe that, by induction, Ĉn+1 ⊆ Ĉn for any n≥ 1. Then the set

Ĉ∞ =
⋂
n≥1

Ĉn (6.15)

is closed and convex. We claim that the following properties of Ĉ∞ hold:
(1) Ĉ∞ is compact;
(2) Ĉ∞ contains Ct∞ for any t ∈ Iδ ;
(3) {x ∈Vi : Gt(x)∈ Kt(Ṽi∩ Ĉ∞)} ⊆ Ĉ∞ for any i= 1, . . . ,N and t ∈ Iδ .

We prove that Ĉ∞ is compact. For simplicity, for any n≥ 2 and i∈ {1, . . . ,N}we denote

Ân,i =
{

(x, t)∈Vi× Iδ : G(x, t)∈ K
((
Ṽi∩ Ĉn−1

)× Iδ
)}

, (6.16)
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and we set Ân =
⋃N

i=1 Ân,i. Let n≥ 2 be fixed. Since Ân ⊆ Ĉn× Iδ , by Remark 4.6 we have
α(Ân)≤ α(Ĉn× Iδ)= α(Ĉn). On the other hand,

α
(
Ĉn
)= α

(
co
(
π1
(
Ân
)))= α

(
π1
(
Ân
))≤ α

(
Ân
)
; (6.17)

the last inequality is due to the fact that π1 is nonexpansive. Consequently, we have

α
(
Ĉn
)= α

(
Ân
)= α

( N⋃
i=1

Ân,i

)
= max

1≤i≤N
α
(
Ân,i

)
. (6.18)

Now, fix i∈ {1, . . . ,N}. Since Ân,i ⊆ Ṽi× Iδ , by definition we have

α
(
Ân,i

)
ω
(
G|Ṽi×Iδ

)
≤ α

(
G
(
Ân,i

))
. (6.19)

Moreover, G(Ân,i)⊆ K((Ṽi∩ Ĉn−1)× Iδ). Therefore,

α
(
Ân,i

)≤ 1
ω
(
G|Ṽi×Iδ

) α(G(Ân,i
))≤ 1

ω
(
G|Ṽi×Iδ

) α(K((Ṽi∩ Ĉn−1
)× Iδ

))
. (6.20)

On the other hand, by definition we have

α
(
K
((
Ṽi∩ Ĉn−1

)× Iδ
))≤ α

(
K|Ṽi×Iδ

)
α
((
Ṽi∩ Ĉn−1

)× Iδ
)
, (6.21)

and, by Remark 4.6, α((Ṽi∩ Ĉn−1)× Iδ)= α(Ṽi∩ Ĉn−1). Hence

α
(
Ân,i

)≤ α
(
K|Ṽi×Iδ

)
ω
(
G|Ṽi×Iδ

)α(Ṽi∩ Ĉn−1
)= νiα

(
Ṽi∩ Ĉn−1

)≤ νiα
(
Ĉn−1

)
, (6.22)

where by assumption νi = α(K|Ṽi×Iδ )/ω(G|Ṽi×Iδ ) < 1. Finally,

α
(
Ĉn
)= max

1≤i≤N
α
(
Ân,i

)≤ max
1≤i≤N

νiα
(
Ĉn−1

)≤ να
(
Ĉn−1

)
, (6.23)

where ν = maxi νi < 1. Thus, α(Ĉn) → 0 as n→∞, and this implies that the set Ĉ∞ is
compact, as claimed.

For any fixed t ∈ Iδ , the inclusion Ct∞ ⊆ Ĉ∞ follows immediately from the fact that
Ct
n ⊆ Ĉn for any n≥ 1.

To verify the third property, fix i ∈ {1, . . . ,N} and t ∈ Iδ , and let x ∈ Vi be such that
Gt(x) ∈ Kt(Ṽi ∩ Ĉ∞). In particular, we have Gt(x) ∈ Kt(Ṽi), and this implies x ∈ Ĉ1.
Moreover, for any n≥ 2 we have Gt(x)∈ Kt(Ṽi∩ Ĉn−1). It follows (x, t)∈ Ân,i, and, con-
sequently, x ∈ π1(Ân,i). Therefore, x ∈ Ĉn for any n≥ 2. Hence, x ∈ Ĉ∞, and property (3)
holds.

Since τ ∈ [0,1] is arbitrary, the assertion follows if we show that deg(Gt,U ,Kt) is in-
dependent of t ∈ Iδ . We distinguish two different cases.

(i) Ĉ∞ =∅. In this case Ct∞ =∅ for any t ∈ Iδ , hence Σt =∅ for any t. Consequently,
applying Definition 5.5, by the existence property of the degree for quasi-Fredholm maps
we have deg(Gt,U ,Kt)= 0 for any t ∈ Iδ .
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(ii) Ĉ∞ 	=∅. In this case, as properties (1), (2), and (3) of Ĉ∞ hold, for any fixed t ∈ Iδ
the pair (�, Ĉ∞) is an α-pair relative to the triple (Gt,U ,Kt). Consider a retraction r : E→
Ĉ∞. Let W be an open subset of V containing V ∩ Ĉ∞ such that, for any i,x ∈W ∩Vi

implies r(x)∈ Ṽi. In particular, for any fixed t ∈ Iδ the open set W contains Σt. Thus, by
definition we have

deg
(
Gt,U ,Kt

)= degqF

(
Gt −Ktr,W ,0

)
, t ∈ Iδ. (6.24)

Consider the following homotopy:

Ĥ : W × Iδ −→ F,

Ĥ(x, t)=G(x, t)−K
(
r(x), t

)
.

(6.25)

This is a homotopy of quasi-Fredholm maps, since it is continuous and the map (x, t) �→
K(r(x), t) is locally compact. Moreover, Ĥ−1(0) is compact, as it is closed in the compact
set H−1(0). Then, the homotopy invariance property of the degree for quasi-Fredholm
maps implies that degqF(Gt −Ktr,W ,0) does not depend on t. Hence, deg(Gt,U ,Kt) is
independent of t ∈ Iδ , and the proof is completed. �

7. Comparison with other degree theories

The purpose of this section is to show that our concept of degree extends the degree for
quasi-Fredholm maps summarized in Section 3, and that it agrees with the Nussbaum
degree [13] for the class of locally α-contractive vector fields.

7.1. Degree for quasi-Fredholm maps. Let f : Ω→ F be an oriented quasi-Fredholm
map and U an open subset of Ω. We recall that the triple ( f ,U ,0) is qF-admissible pro-
vided that f −1(0)∩U is compact.

Let ( f ,U ,0) be a qF-admissible triple and let f = g − k, where g is a positively ori-
ented smoothing map of f and k is locally compact. As pointed out in Section 4, we have
ωp(g) > 0 and αp(k) = 0 for any p ∈ U . Hence, the triple (g,U ,k) is α-admissible. We
claim that

deg(g,U ,k)= degqF( f ,U ,0). (7.1)

Indeed, let � = {V1, . . . ,VN} be an α-covering of S = {x ∈ U : g(x) = k(x)} relative to
the triple (g,U ,k), and consider the compact convex set C∞ = C�∞. We distinguish two
different cases.

(i) If C∞ =∅, then S =∅. Consequently, by the existence property of the degree for
quasi-Fredholm maps and by Definition 5.5, we have

degqF( f ,U ,0)= 0, deg(g,U ,k)= 0. (7.2)
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(ii) If C∞ 	= ∅, consider a retraction r : E→ C∞. Denote V =⋃N
i=1Vi, and let W be a

(possibly empty) open subset of V containing S such that, for any i,x ∈W ∩Vi implies
r(x)∈ Ṽi. By definition we have

deg(g,U ,k)= degqF(g − kr,W ,0). (7.3)

On the other hand, as S⊆W , by the excision property of the degree for quasi-Fredholm
maps we have

degqF( f ,U ,0)= degqF( f ,W ,0). (7.4)

Consider the following homotopy:

H : W × [0,1]−→ F,

H(x, t)= g(x)− k
(
tr(x) + (1− t)x

)
.

(7.5)

Let x ∈W , and let Vi contain x for some i. Since r(x)∈ Ṽi and x ∈ Ṽi, it follows tr(x) +
(1− t)x ∈ Ṽi for any t ∈ [0,1], and this shows that H is well defined.

As in the proof of Proposition 5.6 one gets

H−1(0)∩ (W × [0,1]
)= S× [0,1]. (7.6)

Hence, we can apply the homotopy invariance of the degree for quasi-Fredholm maps,
obtaining

degqF(g − kr,W ,0)= degqF(g − k,W ,0), (7.7)

and the claim follows.

7.2. Degree for locally α-contractive vector fields. Let f : Ω→ F be a continuous map
from an open subset of E into F. We recall the following definitions. The map f is said to
be α-Lipschitz if α( f (A))≤ µα(A) for some µ≥ 0 and any A⊆Ω. If the α-Lipschitz con-
stant µ is less than 1, then f is called α-contractive. The map f is said to be α-condensing
if α( f (A)) < α(A) for any A⊆Ω such that 0 < α(A) < +∞. If for any p ∈Ω there exists a
neighborhood Vp of p such that f |Vp is α-contractive (resp., α-condensing), the map f
is said to be locally α-contractive (resp., locally α-condensing).

In [12, 13], Nussbaum developed a degree theory for triples of the form (I − k,U ,0),
where k is locally α-condensing. In particular, let U be an open subset of Ω and k : Ω→ E
a locally α-condensing map. Assume that the set S = {x ∈ U : (I − k)(x) = 0} is com-
pact. Then, the triple (I − k,U ,0) is admissible for the Nussbaum degree (N-admissible,
for short). We will denote by degN (I − k,U ,0) the Nussbaum degree of an N-admissible
triple.

We want to show that, in a sense to be specified, our degree and the Nussbaum degree
coincide on the class of N-admissible triples of the form (I − k,U ,0), where k is locally
α-contractive.
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Let (I − k,U ,0) be an N-admissible triple and assume that the map k is locally α-
contractive. Clearly, provided that I is oriented, the triple (I ,U ,k) is α-admissible. We
claim that, if we assign the natural orientation to I , it follows that

deg(I ,U ,k)= degN (I − k,U ,0). (7.8)

Indeed, let �= {V1, . . . ,VN} be an α-covering of S relative to the triple (I ,U ,k), and con-
sider the (possibly empty) compact convex set C∞ = C�∞.

Denote Ṽ =⋃N
i=1 Ṽi. As S is contained in Ṽ , by the excision property of the Nussbaum

degree we have

degN (I − k,U ,0)= degN (I − k,Ṽ ,0). (7.9)

Consider the following sequence {C̃n} of convex closed subsets of E:

C̃1 = co
(
k(Ṽ)

)
, (7.10)

and, inductively,

C̃n = co
(
k
(
Ṽ ∩ C̃n−1

))
, n≥ 2. (7.11)

Then the set

C̃∞ =
⋂
n≥1

C̃n (7.12)

turns out to be closed, convex, and containing S. Moreover, the fact that k is locally α-
contractive implies that C̃∞ is compact. We observe that the following properties of C̃∞
hold:

(1) C̃∞ contains C∞;
(2) {x ∈Vi : x ∈ k(Ṽi∩ C̃∞)} ⊆ C̃∞ for any i= 1, . . . ,N .

The inclusion C∞ ⊆ C̃∞ follows immediately from the fact that Cn ⊆ C̃n for any n ≥ 1,
where {Cn} is the sequence of sets which defines C∞, as in Section 5. On the other hand,
property (2) follows from the trivial inclusion

{
x ∈Vi : x ∈ k

(
Ṽi∩ C̃n

)}⊆ k
(
Ṽ ∩ C̃n

)
, (7.13)

which holds for any n≥ 1 and i∈ {1, . . . ,N}.
To prove the assertion, we distinguish two different cases.
(i) C̃∞ =∅. In this case, C∞ =∅ by (1), and S =∅. Consequently, by the existence

property of the Nussbaum degree and by Definition 5.5, we have

degN (I − k,U ,0)= 0, deg(I ,U ,k)= 0. (7.14)
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(ii) C̃∞ 	= ∅. In this case, as properties (1) and (2) of C̃∞ hold, (�, C̃∞) is an α-pair
relative to the triple (I ,U ,k). Consider a retraction r : E→ C̃∞. Denote V =⋃N

i=1Vi, and
let W be a (possibly empty) open subset of V containing S such that, for any i,x ∈W ∩Vi

implies r(x)∈ Ṽi. By definition we have

deg(I ,U ,k)= degqF(I − kr,W ,0). (7.15)

On the other hand (see [12, 13]), we have

degN (I − k,Ṽ ,0)= degLS

(
I − kr,r−1(Ṽ)∩ Ṽ ,0

)
. (7.16)

Finally, let W ′ =W ∩ r−1(Ṽ)∩ Ṽ . As S is contained in W ′, by the excision property of
the Leray-Schauder degree we have

degLS

(
I − kr,r−1(Ṽ)∩ Ṽ ,0

)= degLS(I − kr,W ′,0), (7.17)

and by the excision property of the degree for quasi-Fredholm maps we have

degqF(I − kr,W ,0)= degqF(I − kr,W ′,0). (7.18)

The claim now follows from the fact that the degree for quasi-Fredholm maps is an ex-
tension of the Leray-Schauder degree (see [3]).
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