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A BORSUK-TYPE THEOREM
FOR SOME CLASSES OF PERTURBED FREDHOLM MAPS

Pierluigi Benevieri — Alessandro Calamai

Abstract. We prove an odd mapping theorem of Borsuk type for locally

compact perturbations of Fredholm maps of index zero between Banach
spaces. We extend this result to a more general class of perturbations of

Fredholm maps, defined in terms of measure of noncompactness.

1. Introduction

In two recent papers (see [1], [2]) the authors and M. Furi defined a concept
of topological degree for a special class of noncompact perturbations of nonlinear
Fredholm maps of index zero, called α-Fredholm maps, between infinite dimen-
sional real Banach spaces. The definition of these maps is based on the following
two numbers (see e.g. [11], [12]) associated with a map f : Ω → F from an open
subset Ω of a Banach space E to a Banach space F :

α(f) = sup
{
α(f(A))
α(A)

: A ⊆ Ω bounded, α(A) > 0
}
,

ω(f) = inf
{
α(f(A))
α(A)

: A ⊆ Ω bounded, α(A) > 0
}
,

where α is the Kuratowski measure of noncompactness (see e.g. [14]).
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Roughly speaking, an α-Fredholm map is of the type f = g − k, where g
is a nonlinear Fredholm map of index zero, k is continuous, and the inequality
α(k) < ω(g) is locally satisfied. The class of α-Fredholm maps includes locally
compact perturbations of Fredholm maps (called quasi-Fredholm maps) since,
when g is Fredholm and k is locally compact, one has α(k) = 0 and ω(g) > 0,
locally. Moreover, this class contains locally α-contractive perturbations of the
identity, where, following Darbo [8], a map k is α-contractive if α(k) < 1.

The degree for α-Fredholm maps is a generalization of a notion of degree for
quasi-Fredholm maps defined for the first time in [18] by means of the Elworthy–
Tromba theory, and recently redefined in [5] by a different approach based on
a natural concept of orientation for nonlinear Fredholm maps introduced in [3]
and [4]. The degree for α-Fredholm maps, degαF(g, U, k) in symbols, is an integer
associated to any admissible triple (g, U, k), where f = g − k is an α-Fredholm
map, U is an open subset of the domain of f and other conditions are satisfied
(we recall the details in Section 4). As shown in [1], [2], the degree verifies
classical properties, as normalization, additivity and homotopy invariance.

We point out that the degree of a quasi-Fredholm map f is independent of
the representation f = g−k (see Section 3 for more details). On the other hand,
as the use of the notation degαF(g, U, k) suggests, the degree for α-Fredholm
maps could depend on the representation f = g − k of an α-Fredholm map. As
a matter of fact, we do not know if two admissible triples (g, U, k) and (g̃, U, k̃),
such that g− k = g̃− k̃, have the same degree. For this reason we will use in the
sequel the expression degree for α-Fredholm triples.

The purpose of this paper is to prove that an odd mapping theorem of Bor-
suk type holds true both for quasi-Fredholm maps, and for α-Fredholm triples.
A crucial tool to obtain these results is a version of the Borsuk odd mapping
theorem for the Brouwer degree of maps between C1 real manifolds, which is
recalled in the next section. This result is probably known to the experts. How-
ever, since we did not find a precise reference in the literature, we explicitely
give a proof.

In Section 3 we summarize the notions of orientability and degree for the
class of quasi-Fredholm maps, and we prove a Borsuk-type theorem for the de-
gree of these maps. In Section 4 we give an extended version of a Borsuk-type
theorem for the degree of α-Fredholm triples. In the main result of this sec-
tion, Theorem 4.8, we prove that if (g, U, k) is an admissible α-Fredholm triple
such that U is symmetric with respect to 0 ∈ U , and g and k are odd, then
the degree of (g, U, k) is odd. Finally, in Section 5 we present a further exten-
sion of a Borsuk-type theorem for a more general class of maps, called weakly
α-Fredholm, introduced in [2] and including the α-Fredholm maps.
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2. Preliminaries: Brouwer degree and Borsuk Theorem
in finite dimension

In this section we recall some properties of the Brouwer degree for continuous
maps between C1 real manifolds. In particular, in Theorem 2.4 below we state
a version of Borsuk odd mapping theorem for this degree. This result, well known
for maps between Euclidean spaces, still holds in the context of manifolds and
its proof has been probably published. However, as we are not able to give
a reference for that result, we present a proof, following the idea used in the
“flat” case (see e.g. [15]).

The version of the Brouwer degree we refer to is a slight extension of that
exposed by Nirenberg in [16]. In our approach, the Brouwer degree is an integer
assigned to any admissible triple (f, U, y), that is, any triple verifying the fol-
lowing conditions: f :M → N is a continuous map, M and N are two oriented
C1 real manifolds of the same finite dimension, U is open in M , y ∈ N and
f−1(y) ∩ U is compact. The Brouwer degree of a triple (f, U, y) will be denoted
by degB(f, U, y).

The classical properties of the Brouwer degree still hold in this extended
version, and they can be easily obtained by a straightforward generalization of
the analogous ones given in [16]. To help the reader we recall below the properties
that will be explicitly used later on.

• (Additivity) Given an admissible triple (f, U, y) and two disjoint open
subsets U1, U2 of U , such that f−1(y) ∩ U ⊆ U1 ∪ U2, then

degB(f, U, y) = degB(f, U1, y) + degB(f, U2, y).

• (Excision) If (f, U, y) is admissible and V is an open subset of U con-
taining f−1(y) ∩ U , then

degB(f, V, y) = degB(f, U, y).

• (Boundary dependence) Let (f, U, y) and (g, U, y) be two admissible
triples, where U is bounded, f and g are defined on a manifold M

containing U and coincide on ∂U . Assume that f and g are Rn-valued,
with n = dimM . Then,

degB(f, U, y) = degB(g, U, y).

Remark 2.1. It is interesting to observe that the above boundary depen-
dence property is generally false if the target space of f and g is not an Eu-
clidean space, as the following simple example shows. Denote by S1 the unit
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circle in R2, by H+ the open (relatively to the topology of S1) upper half-circle,
and let g:S1 → S1 be defined by g(α, β) = (α,−β). It is immediate to observe
that g coincides on ∂H+ with the identity I:S1 → S1. On the other hand, given
any element q ∈ H+, one has degB(I,H+, q) = 1, while degB(g,H+, q) = 0.

Another well known property, which will play a crucial role, is summarized
in the next proposition.

Proposition 2.2. Let M be a C1 manifold of dimension n, embedded in
a real Banach space E. Let D be an open subset of M such that D ∩ (−D) = ∅.
Let f :D∪ (−D) → Rn be continuous and odd. Assume, in addition, that f−1(0)
is compact. Then,

degB(f,D, 0) = (−1)n degB(f,−D, 0).

Before presenting Theorem 2.4, we need the following lemma (see e.g. [15]
for the flat case).

Lemma 2.3. Let X be a compact C1 manifold of dimension m. Given a com-
pact subset K of X, consider a continuous map φ : K → Rn, with n > m, such
that φ(x) 6= 0 for any x ∈ K. Then, φ admits a continuous extension η:X → Rn

such that η(x) 6= 0 for any x ∈ X.

Proof. By Tietze’s Theorem φ admits a continuous extension φ1:X → Rn.
Let c = inf{‖φ(x)‖, x ∈ K}, which is clearly positive. Let ε ∈ (0, c/2) be
given. Recalling that X is compact, consider a C1 map φ2:X → Rn such that
‖φ2 − φ1‖∞ = sup{‖φ2(x)− φ1(x)‖ : x ∈ X} < ε/2.

Since m < n, the Lebesgue measure of φ2(X) in Rn is zero, so there exists
p ∈ Rn, with ‖p‖ < ε/2, such that ψ := φ2 − p is nowhere zero. Observe that
‖ψ − φ1‖∞ < ε. Define σ: R → R, by

σ(t) =


2t
c

if t <
c

2
,

1 if t ≥ c

2
.

Then, define β:X → Rn as β(x) = ψ(x)/σ(‖ψ(x)‖). It is easily seen that β
coincides with ψ on K and ‖β(x)‖ ≥ c/2 for every x ∈ X. Again by Tietze’s
Theorem there exists a continuous map α:X → Rn with α(x) = β(x)− φ(x) for
all x ∈ K and with ‖α‖∞ ≤ ε (since ‖β(x)− φ(x)‖ ≤ ε for all x ∈ K).

Finally, define η = β − α. The map η coincides with φ on K. Moreover,
‖η(x)‖ ≥ c/2− ε > 0, for all x ∈ X, that is, η is nowhere zero, and the proof is
complete. �

Theorem 2.4 (Finite dimensional Borsuk odd mapping theorem). Let M be
an oriented C1 manifold of dimension n, embedded in a real Banach space E. Let
D be an open subset of M , symmetric with respect to the origin of E. Suppose
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that 0 belongs to D. Let f :D → Rn be continuous and odd. Assume, in addition,
that f−1(0) is compact. Then degB(f,D, 0) is odd.

Proof. It is easily seen that the compact set f−1(0) can be covered by
a finite family {U,A1, . . . , Ak, B1, . . . , Bk} of open subsets of M , satisfying the
following properties:

(1) The closure in M of every set of the covering is contained in D.
(2) U is a symmetric bounded open neighbourhood of the origin of E. In

addition, there exists an odd diffeomorphism g between U and an open
subset of Rn.

(3) For any i = 1, . . . , k, Ai and Bi are diffeomorphic to a closed ball in Rn

and do not contain 0.
(4) For each i = 1, . . . , k, Bi = −Ai and Ai ∩Bi = ∅.
(5) Called O the union of the sets of the covering, then ∂U ∩ ∂O = ∅.
(6) For each i = 1, . . . , k, O \ (Ai ∪Bi) 6= O.

The existence of a covering verifying property (5) follows from of the com-
pactness of ∂U . In addition, the same property and the fact that ∂O 6= ∅ ensure
that there exists at least one set Ai such that ∂Ai ∩ ∂O 6= ∅. Without loss of
generality, let A1 verify this condition.

Define φ1: (∂A1 ∩ ∂O) ∪ (∂A1 ∩ U) → Rn by

φ1(x) =

{
f(x) if x ∈ ∂A1 ∩ ∂O,
g(x) if x ∈ ∂A1 ∩ U.

By the above property (3), ∂A1 is a compact boundaryless manifold of di-
mension n− 1. Thus, by Lemma 2.3, φ1 admits a continuous and nowhere zero
extension φ̂1: ∂A1 → Rn. In addition, by Tietze’s Theorem and the property
(4), we can extend φ̂1 to a continuous and odd φ̃1:A1 ∪ B1 → Rn. Then, call
V1 = A1 ∪ U ∪B1 and define ψ1:V 1 → Rn by

ψ1(x) =

{
φ̃1(x) if x ∈ A1 ∪B1,

g(x) if x ∈ U \ (A1 ∪B1).

Observe that ψ1 coincides with f on ∂V1 ∩ ∂O. The triple (ψ1, V1, 0) is
admissible for the Brouwer degree and

degB(ψ1, V1, 0) = degB(φ̃1, A1, 0) + degB(g, U \ (A1 ∪B1), 0) + degB(φ̃1, B1, 0).

By Proposition 2.2, degB(φ̃1, A1, 0) = ±degB(φ̃1, B1, 0). In addition, one has
that degB(g, U \ (A1∪B1), 0) = ±1 since g is a diffeomorphism and 0 /∈ A1∪B1.
Therefore, degB(ψ1, V1, 0) is odd.

Consider, as a second step, the set A2. By the above property (6), A2 is not
contained in V1. Suppose first that (∂A2 ∩∂O)∪ (A2 ∩V 1) 6= ∅. In particular, if
A2 ∩V 1 6= ∅, from the property (6) it follows that ∂V1 ∩A2 is nonempty. Hence,
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(∂A2 ∩ ∂O)∪ (∂V1 ∩A2) is nonempty. Let φ2: (∂A2 ∩ ∂O)∪ (∂V1 ∩A2) → Rn be
given by

φ2(x) =

{
f(x) if x ∈ ∂A2 ∩ ∂O,
ψ1(x) if x ∈ ∂V1 ∩A2.

The definition of φ2 is well posed since ψ1(x) = f(x) for any x ∈ ∂A2∩∂O∩∂V1.
It is immediate to see that φ2 is nowhere zero on the compact set C := ∂A2 ∩
(∂O ∪ ∂V1). Therefore, by Lemma 2.3, we can extend φ2|C to a continuous and
nowhere zero φ̂2 : ∂A2 → Rn. Thus, let φ2: ∂A2 ∪ (∂V1 ∩A2) → Rn be given by

φ2 =

{
φ̂2(x) if x ∈ ∂A2,

ψ1(x) if x ∈ ∂V1 ∩A2.

Clearly, φ2 is well defined and continuous. Then, we extend it to an odd
continuous map φ̃2:A2 ∪ B2 → Rn. Furthermore, call V2 = A2 ∪ V1 ∪ B2 and
define ψ2:V 2 → Rn by

ψ2(x) =

{
φ̃2(x) if x ∈ (A2 ∪B2) \ V 1,

ψ1(x) if x ∈ V 1.

The definition of φ2 obviously ensures the continuity of ψ2.
Consider now the case when (A2 ∩ V 1) ∪ (∂A2 ∩ ∂O) = ∅. In this case, let

φ2:A2 → Rn be a diffeomorphism between A2 and a closed ball of Rn centered
at zero (recall the property (3) of the covering). Then, call φ̃2 : A2 ∪ B2 → Rn

the odd extension of φ2 and define ψ2:V 2 → Rn by

ψ2(x) =

{
φ̃2(x) if x ∈ A2 ∪B2,

ψ1(x) if x ∈ V 1.

In both cases one obtains that ψ2 is continuous, odd and nowhere zero on ∂V2.
Therefore, by the additivity property of the Brouwer degree and Proposition 2.2,
the triple (ψ2, V2, 0) is admissible for the Brouwer degree and

degB(ψ2, V2, 0) = degB(φ̃2, A2 \ V 1, 0) + degB(ψ1, V1, 0) + degB(φ̃2, B2 \ V 1, 0)

is odd.
Iterating the process, we define an odd continuous map ψk:O → Rn verifying

the following conditions:

(i) ψk coincides with f on ∂O;
(ii) degB(ψk,O, 0) is well defined and odd.

By the boundary dependence property of the Brouwer degree we obtain that

degB(f,O, 0) = degB(ψk,O, 0) is odd

and this implies that degB(f,D, 0) is odd applying the excision property. �
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3. Borsuk Theorem for quasi-Fredholm maps

In this section we present an extension of the odd mapping theorem to locally
compact perturbations of Fredholm maps of index zero between Banach spaces,
called quasi-Fredholm maps. In the first part of the section we summarize the no-
tions of orientability and degree for the quasi-Fredholm maps, introduced in [5],
and we sketch the construction of the degree. Then, we prove the Borsuk-type
theorem.

From now on E and F will denote two real Banach spaces. The space of
bounded linear operators from E to F will be denoted by L(E,F ) and Φ0(E,F )
will be the open subset of Fredholm operators of index zero.

Consider an operator L ∈ Φ0(E,F ). A bounded linear operator A:E → F

with finite dimensional image is called a corrector of L if L+A is an isomorphism.
On the (nonempty) set C(L) of correctors of L we define an equivalence relation
as follows. Let A,B ∈ C(L) be given and consider the following automorphism
of E:

T = (L+B)−1(L+A) = I − (L+B)−1(B −A).

Clearly, the image of I −T has finite dimension. Hence, given any nontrivial
finite dimensional subspace E0 of E containing Im(I−T ), the restriction of T to
E0 is an automorphism. Therefore, its determinant is nonzero and independent
of the choice of E0. This value can be defined as the determinant of T , detT in
symbols (see e.g. [13]). We say that A is equivalent to B if detT > 0.

As shown in [3], this is actually an equivalence relation on C(L) with two
equivalence classes.

Definition 3.1. Let L ∈ Φ0(E,F ) be given. An orientation of L is the
choice of one of the two classes of C(L), and L is oriented when an orientation
is chosen. If L is oriented, the elements of its orientation are called the positive
correctors of L.

Since the set of the isomorphisms of E into F is open in L(E,F ), a corrector
of L ∈ Φ0(E,F ) is a corrector of every operator in Φ0(E,F ) close enough of L.
This allows us to give the following definition.

Definition 3.2. Let X be a topological space and h:X → Φ0(E,F ) a con-
tinuous map. An orientation of h is a choice of an orientation β(x) of h(x) for
each x ∈ X, such that for any x ∈ X there exists A ∈ β(x) which is a positive
corrector of h(x′) for any x′ in a neighbourhood of x. A map is orientable if it
admits an orientation and oriented when an orientation is chosen.

Remark 3.3. With an abuse of terminology we can say that, if a map h is
oriented, the orientation β(x) of h(x) depends continuously on x.
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By Definition 3.2 we can give a notion of orientability for Fredholm maps of
index zero between Banach spaces. Recall that, given an open subset Ω of E,
a C1 map g: Ω → F is Fredholm of index n if its Fréchet derivative, g′(x), is
a Fredholm operator of index n for all x ∈ Ω.

Definition 3.4. An orientation of a Fredholm map of index zero g: Ω → F

is an orientation of the continuous map g′:x 7→ g′(x), and g is orientable, or
oriented, if so is g′ according to Definition 3.2.

The notion of orientability of Fredholm maps of index zero is accurately
discussed in [3] and [4]. Here we only recall the properties which will be used
in this paper. Theorem 3.6 below deals with a sort of continuous transport of
an orientation along a homotopy of Fredholm maps. We need first the following
definition.

Definition 3.5. Let H: Ω × [0, 1] → F be a C1 Fredholm map of index 1.
We call H a Fredholm homotopy. For any λ ∈ [0, 1], denote by Hλ the partial
map x 7→ H(x, λ), defined on Ω. An orientation of H is an orientation of the
derivative with respect to the first variable

∂1H: Ω× [0, 1] → Φ0(E,F ), ∂1H(x, λ) = (Hλ)′(x);

H is orientable, or oriented, if so is ∂1H according to Definition 3.2.

Theorem 3.6. Let H: Ω × [0, 1] → F be a Fredholm homotopy. Suppose
that Hλ is orientable for a given λ ∈ [0, 1]. Then H is orientable. In addition,
assume that, for some λ ∈ [0, 1], the partial map Hλ is oriented and call β
its orientation. Then there exists a unique orientation of H, say Γ, such that
Γ(x, λ) = β(x) for any x ∈ Ω.

Remark 3.7. Given an oriented map g: Ω → F , let us show how its orienta-
tion is related to the orientations of domain and codomain of suitable restrictions
of g. Call Z a finite dimensional subspace of F , transverse to g. By classical
transversality results, M := g−1(Z) is a C1 manifold of the same dimension as
Z. Let Z be oriented. Consider x ∈M and a positive corrector A of g′(x) with
image contained in Z. Then, orient the tangent space TxM in such a way that
the isomorphism

(g′(x) +A)|TxM :TxM → Z

is orientation preserving. As proved in [3] (see in particular Remark 2.5 and
Lemma 3.1 of that paper), the orientation of TxM does not depend on the
choice of the corrector A, but only on the orientations of Z and g′(x). Moreover,
the orientation of TxM depends continuously on x, that is, defines an orientation
on M . We will call M the oriented g-preimage of Z.
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We are now ready to recall the concepts of orientability and degree for quasi-
Fredholm maps.

Definition 3.8. Let Ω be an open subset of E, g: Ω → F a Fredholm map
of index zero and k: Ω → F a locally compact map. The map f : Ω → F , defined
by f = g − k, is called a quasi-Fredholm map and g is a smoothing map of f .

Definition 3.9. A quasi-Fredholm map f : Ω → F is orientable if it has an
orientable smoothing map. If f is orientable, an orientation of f is the choice of
an orientation of any of its smoothing maps.

The above definition is well posed because, as shown in [5], if f is an orientable
quasi-Fredholm map, the following facts hold:

(i) any smoothing map of f is orientable;
(ii) an orientation of a smoothing map f determines uniquely an orientation

of any other smoothing map.

In the sequel, if f is oriented and g is an oriented smoothing map that deter-
mines the orientation of f , we will refer to g as a positively oriented smoothing
map of f .

Definition 3.10. Let f : Ω → F be an oriented quasi-Fredholm map and U
an open subset of Ω. The triple (f, U, 0) is said to be qF-admissible provided
that f−1(0) ∩ U is compact.

The degree is an integer valued map defined in the set of the qF-admissible
triples. Let us sketch its construction, proceeding in two steps.

In the first one we consider triples (f, U, 0) such that f has a smoothing map
g with (f − g)(U) contained in a finite dimensional subspace of F . Then we
remove this assumption, defining the degree for all the qF-admissible triples.

Let (f, U, 0) be a qF-admissible triple and let g be a positively oriented
smoothing map of f such that (f − g)(U) is contained in a finite dimensional
subspace of F . As f−1(0)∩U is compact, there exist a finite dimensional subspace
Z of F and an open neighbourhood W of f−1(0) ∩ U in U , such that g is
transverse to Z in W . Assume that Z is oriented and contains (f − g)(U). Let
M = g−1(Z) ∩W be the oriented g|W -preimage of Z (recall Remark 3.7).

One can easily verify that (f |M )−1(0) = f−1(0) ∩ U . Thus (f |M )−1(0) is
compact and the Brouwer degree of the triple (f |M ,M, 0) is well defined. Then,
the degree of (f, U, 0) is given by

(3.1) degqF(f, U, 0) = degB(f |M ,M, 0).

As proved in [5], this definition is well posed since the right hand side of (3.1)
is independent of the choice of the smoothing map g, the open set W and the
subspace Z.
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To define the degree of a general qF-admissible triple (f, U, 0), let us con-
sider:

(1) a positively oriented smoothing map g of f ;
(2) an open neighbourhood V of f−1(0) ∩ U such that V ⊆ U , g is proper

on V and (f − g)|V is compact;
(3) a continuous map ξ : V → F having bounded finite dimensional image

and such that

‖g(x)− f(x)− ξ(x)‖ < ρ, for all x ∈ ∂V,

where ρ is the distance in F between 0 and f(∂V ).

Then, the degree of (f, U, 0) is

(3.2) degqF(f, U, 0) = degqF(g − ξ, V, 0).

In [5] it is shown that formula (3.2) is well posed since the right hand side
does not depend on g, ξ and V .

Finally, the degree for quasi-Fredholm maps verifies classical properties in
degree theory, as additivity and homotopy invariance. The reader can find details
in [5].

We are now in the position to prove a Borsuk-type theorem for the class of
quasi-Fredholm maps.

Theorem 3.11. Let (f, U, 0) be a qF-admissible triple. Suppose that 0 ∈ U
and that U is symmetric with respect to 0. In addition, assume that f is odd
on U . Then degqF(f, U, 0) is odd.

Proof. By the definition of degree for quasi-Fredholm maps, one has

degqF(f, U, 0) = degqF(g − ξ, V, 0),

where g, ξ and V verify conditions (1)–(3) above. Let us observe that V can be
chosen symmetric with respect to the origin because so is f−1(0). In addition,
without loss of generality, we can assume g and ξ to be odd, since they can be
replaced, if necessary, by (g(x)− g(−x))/2 and (ξ(x)− ξ(−x))/2, respectively.

Let now Z be a finite dimensional subspace of F and W an open neigh-
bourhood of (g − ξ)−1(0) ∩ V , symmetric with respect to the origin and such
that g is transverse to Z in W . We may assume that Z contains ξ(U). Let
M = g−1(Z) ∩W . We orient Z and consequently M in such a way that this
latter is the oriented g|W -preimage of Z. Thus,

degqF(g − ξ, V, 0) = degB(f |M ,M, 0)

(recall formula (3.1)). Moreover, as it is not difficult to prove, M turns out to be
symmetric with respect to the origin. Hence, Theorem 2.4 can be applied and
this concludes the proof. �
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4. Borsuk theorem for α-Fredholm triples

We present here another infinite dimensional version of the odd mapping
theorem of Borsuk type. Precisely, we extend the result of the above section to
the more general class of α-Fredholm maps. After recalling the definition of α-
Fredholm maps, we summarize the construction of the degree for the α-Fredholm
triples. Finally we present the Borsuk-type theorem for this degree.

Let us begin by recalling the definition of the Kuratowski measure of non-
compactness together with some related concepts. For general references see e.g.
[9] or [14]. From now on the Banach spaces E and F are assumed to be infinite
dimensional.

The Kuratowski measure of noncompactness α(A) of a bounded subset A of
E is defined as the infimum of real numbers d > 0 such that A admits a finite
covering by sets of diameter less than d. If A is unbounded, we set α(A) = ∞.

Given an open subset Ω of E and a continuous map f : Ω → F , we recall the
definition of the following two extended real numbers (see e.g. [12]) associated
with f :

α(f) = sup
{
α(f(A))
α(A)

: A ⊆ Ω bounded, α(A) > 0
}
,

ω(f) = inf
{
α(f(A))
α(A)

: A ⊆ Ω bounded, α(A) > 0
}
.

We point out that α(f) = 0 if and only if f is completely continuous and
ω(f) > 0 only if f is proper on bounded closed sets. For a comprehensive list of
properties of α(f) and ω(f) we refer to [12].

Proposition 4.1. Let L:E → F be a bounded linear operator. Then,
ω(L) > 0 if and only if ImL is closed and dim KerL <∞.

As a consequence of Proposition 4.1 one gets that a bounded linear operator L
is Fredholm if and only if ω(L) > 0 and ω(L∗) > 0, where L∗ is the adjoint of L.

Let p ∈ Ω be fixed. We recall the definitions of αp(f) and ωp(f) given in [6]
(see also [7]). Roughly speaking, these numbers are the local analogues of α(f)
and ω(f). Let B(p, s) denote the open ball in E centered at p with radius s > 0.
Define

αp(f) = lim
s→0

α(f |B(p,s)) and ωp(f) = lim
s→0

ω(f |B(p,s)).

Clearly, αp(f) ≤ α(f) and ωp(f) ≥ ω(f). With only minor changes, it is easy to
show that the main properties of α and ω hold for αp and ωp (see [6] for details).

In the case of a bounded linear operator L:E → F , the numbers αp(L)
and ωp(L) do not depend on the point p and coincide with α(L) and ω(L),
respectively.
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Proposition 4.2 ([6]). Let f : Ω → F be of class C1. Then, for any p ∈ Ω
we have αp(f) = α(f ′(p)) and ωp(f) = ω(f ′(p)).

If f : Ω → F is a Fredholm map, as a straightforward consequence of Propo-
sitions 4.1 and 4.2, we obtain ωp(f) > 0 for any p ∈ Ω.

Based on the two numbers αp and ωp, we can now recall the definition of
α-Fredholm map.

Definition 4.3. an α-Fredholm map f : Ω → F is of the form f = g − k,
where g is a Fredholm map of index zero, k is continuous and αp(k) < ωp(g) for
every p ∈ Ω.

As already pointed out, a quasi-Fredholm map f = g− k is also α-Fredholm
since ωp(g) > 0 and αp(k) = 0 for any p in the domain of f .

Now we sketch the construction of the degree for α-Fredholm triples, report-
ing, in particular, some details which will be useful in the proof of Theorem 4.8
below. We recall first the definition of admissible α-Fredholm triple.

Definition 4.4. Let g: Ω → F be an oriented Fredholm map of index zero,
k: Ω → F a continuous map, and U an open subset of Ω such that αp(k) < ωp(g)
for any p ∈ U . The triple (g, U, k) is said to be an admissible α-Fredholm triple
if the solution set S = {x ∈ U : g(x) = k(x)} is compact.

Definition 4.5. Let (g, U, k) be an admissible α-Fredholm triple and con-
sider a finite covering V = {V1, . . . , VN} of open balls of its solution set S. We
say that V is an α-covering of S, relative to (g, U, k), if, for any i ∈ {1, . . . , N},
the following conditions hold:

(a) the ball Ṽi of double radius and same center as Vi is contained in U ;
(b) α(k|

eVi
) < ω(g|

eVi
).

Let (g, U, k) be an admissible α-Fredholm triple and V = {V1, . . . , VN} an α-
covering of the solution set S. We define the following sequence {Cn} of convex
closed subsets of E:

(4.1) C1 = co
( N⋃

i=1

{x ∈ Vi : g(x) ∈ k(Ṽi)}
)

and, inductively,

Cn = co
( N⋃

i=1

{x ∈ Vi : g(x) ∈ k(Ṽi ∩ Cn−1)}
)
, n ≥ 2.

One can prove, by induction, that Cn+1 ⊆ Cn and S ⊆ Cn for any n ≥ 1. Then,
the set

C∞ =
⋂
n≥1

Cn
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turns out to be closed, convex, and containing S. Consequently, if S is nonempty,
so is C∞. In addition C∞ verifies the following two properties (see [1] for the
proof):

(1) {x ∈ Vi : g(x) ∈ k(Ṽi ∩ C∞)} ⊆ C∞, for any i = 1, . . . , N ;
(2) C∞ is compact.

Definition 4.6. Let (g, U, k) be an admissible α-Fredholm triple, V =
{V1, . . . , VN} an α-covering of the solution set S, and C a compact convex set.
We say that (V, C) is an α-pair (relative to (g, U, k)) if the following properties
hold:

(a) U ∩ C 6= ∅;
(b) C∞ ⊆ C;
(c) {x ∈ Vi : g(x) ∈ k(Ṽi ∩ C)} ⊆ C for any i = 1, . . . , N .

Let (g, U, k) be an admissible α-Fredholm triple and let (V, C) be an α-
pair. Consider a retraction r:E → C, whose existence is ensured by Dugundji’s
Extension Theorem (see e.g. [10]). Denote V =

⋃N
i=1 Vi, where {V1, . . . , VN} =

V, and let W be a (possibly empty) open subset of V containing S such that,
for any i, r(x) ∈ Ṽi if x ∈ W ∩ Vi. Observe that the triple (g − kr,W, 0) is
qF -admissible (recall Definition 3.10). Hence, we define the degree of the triple
(g, U, k) as

(4.2) degαF(g, U, k) = degqF(g − kr,W, 0),

where the right hand side is the degree for quasi-Fredolm maps, recalled in
Section 3.

In [1] it is proved that this definition is well posed since the right hand side of
equality (4.2) is independent of the choice of the α-pair (V, C), of the retraction
r and of the open set W .

The degree for α-Fredholm triples verifies classical properties in degree the-
ory, such as additivity and homotopy invariance. The reader can find detailed
proofs in [1].

We conclude this section proving a Borsuk-type theorem for the degree for
α-Fredholm triples. We start with the following result whose proof can be found
e.g. in [17].

Lemma 4.7. Let C be a closed, convex set in a Banach space E. Assume that
C is symmetric with respect to the origin of E. Then there is an odd retraction
r:E → C.

Let us now state the Borsuk-type theorem.
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Theorem 4.8. Let (g, U, k) be an admissible α-Fredholm triple. Suppose
that 0 ∈ U and that U is symmetric with respect to 0. In addition, assume that
g and k are odd mappings. Then, degαF(g, U, k) is odd.

Proof. Observe first that the set S = {x ∈ U : g(x) = k(x)} is symmetric
with respect to 0 ∈ S since g and k are odd mappings. Let V = {V1, . . . , VN}
be an α-covering of S. Without loss of generality, assume that if Vi ∈ V, then
−Vi ∈ V.

Consider now the set C1, defined as in (4.1). It is easy to see that it is
symmetric with respect to 0, because g and k are odd and the inclusion of Vi

in V implies that −Vi ∈ V. By induction, one has that any Cn is symmetric with
respect to 0 as well. Consequently, C∞ turns out to be symmetric with respect
to 0, being the intersection of symmetric sets.

Let r:E → C∞ be an odd retraction, whose existence is ensured by Lem-
ma 4.7. Denote V =

⋃N
i=1 Vi, where {V1, . . . , VN} = V. Observe that V is

symmetric with respect to the origin of E, which belongs to V . Let W be an
open subset of V containing S such that, for any i, r(x) ∈ Ṽi if x ∈ W ∩ Vi.
Moreover, we can assume that W is symmetric with respect to the origin of E,
which belongs to W . Then, by definition of the degree,

degαF(g, U, k) = degqF(g − kr,W, 0).

Therefore, the assertion follows from the Borsuk-type theorem for quasi-Fred-
holm maps (Theorem 3.11). �

5. An extension of Borsuk theorem to weakly α-Fredholm triples

We conclude the paper presenting an extension of the odd mapping theorem
to a more general class of maps, called weakly α-Fredholm. In [2] these maps
have been introduced and a concept of degree for them has been defined. Let us
sketch the construction of that degree.

A weakly α-Fredholm map f : Ω → F is of the form f = g − k, where g is
Fredholm of index zero, k is continuous and the following condition is verified:
for any p ∈ Ω there exists s > 0 such that for any A ⊆ B(p, s) with α(A) > 0
we have α(k(A)) < ωp(g)α(A). Notice that α-Fredholm maps are also weakly
α-Fredholm.

Definition 5.1. Let g: Ω → F be a Fredholm map of index zero, k: Ω → F

a continuous map and U an open subset of Ω. The triple (g, U, k) is said to
be weakly α-Fredholm if for any p ∈ U there exists s > 0 such that for any
A ⊆ B(p, s) with α(A) > 0 we have

α(k(A)) < ωp(g)α(A).
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Let (g, U, k) be a weakly α-Fredholm triple. As a consequence of Defini-
tion 5.1, given p ∈ U , there exists s > 0 such that α(k(A)) < α(g(A)), for any
A ⊆ B(p, s) with α(A) > 0. Thus, any compact subset of U admits a neighbour-
hood as in the following definition.

Definition 5.2. Let (g, U, k) be a weakly α-Fredholm triple, and Q a com-
pact subset of U . An open neighbourhood V ofQ is said to be an α-neighbourhood
of Q (relative to (g, U, k)) if the following conditions hold:

(a) V ⊆ U and k(V ) is bounded;
(b) α(k(A)) < α(g(A)), for any A ⊆ V with α(A) > 0.

We recall now the concept of admissible weakly α-Fredholm triple.

Definition 5.3. A weakly α-Fredholm triple (g, U, k) is said to be admissi-
ble if

(a) g is oriented;
(b) the solution set S = {x ∈ U : g(x) = k(x)} is compact.

In [2] it is proved that, given an admissible weakly α-Fredholm triple (g, U, k)
and an α-neighbourhood V of S, the triple (g, V, (1 − ε)k) is an admissible α-
Fredholm triple, for ε > 0 sufficiently small. Moreover, for ε small, the degree
degαF(g, V, (1− ε)k) is constant. Thus, the following definition makes sense.

Definition 5.4. Let (g, U, k) be an admissible weakly α-Fredholm triple,
and V an α-neighbourhood of the solution set S. Let ε0 > 0 be such that
degαF(g, V, (1− ε)k) is constant, for 0 < ε < ε0. Then, define

degwF(g, U, k) = degαF(g, V, (1− ε)k), 0 < ε < ε0.

As shown in [2], the above definition is well posed and the degree for weakly
α-Fredholm maps verifies the classical properties in degree theory.

Let us now state a Borsuk-type theorem for weakly α-Fredholm maps.

Theorem 5.5. Let (g, U, k) be an admissible weakly α-Fredholm triple. Sup-
pose that 0 ∈ U and that U is symmetric with respect to 0. In addition, assume
that g and k are odd. Then, degwF(g, U, k) is odd.

Proof. It is a consequence of Definition 5.4 and of Theorem 4.8. �
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