Sobolev embeddings and concentration-compactness alternative for fractional Sobolev spaces

Giampiero Palatucci INDAM Research Fellowship 2010-2011 (Università di Roma "Tor Vergata" - Université de Nîmes)

Optimization Days

An international workshop on Calculus of Variations

Università Politecnica delle Marche June 6-8, 2011

Plan of the talk

(with A. Pisante) Sobolev embeddings and concentration-compactness alternative for fractional Sobolev spaces, *submitted paper*, 2010.

1. Introduction

- 2. Concentration-compactness alternative
- 3. Final remarks

Plan of the talk

(with A. Pisante) Sobolev embeddings and concentration-compactness alternative for fractional Sobolev spaces, *submitted paper*, 2010.

1. Introduction

- 2. Concentration-compactness alternative
- 3. Final remarks

Problems involving the fractional powers of the Laplacian

Let s > 0.

 $-(-\Delta)^s u = f$

Problems involving the fractional powers of the Laplacian

Let
$$s > 0$$
. $-(-\Delta)^s u = f$

• <u>Natural spaces</u>

 $H_0^s(\mathbb{R}^N)$, the completion of $C_0^\infty(\mathbb{R}^N)$ w.r.t. the norm

$$||u||_{H_0^s}^2 = ||(-\Delta)^{\frac{s}{2}}u||_{L^2}^2 = \int_{\mathbb{R}^N} |\xi|^{2s} |\hat{u}(\xi)|^2 d\xi.$$

Problems involving the fractional powers of the Laplacian

Let
$$s > 0$$
. $-(-\Delta)^s u = f$

• <u>Natural spaces</u>

 $H_0^s(\mathbb{R}^N)$, the completion of $C_0^\infty(\mathbb{R}^N)$ w.r.t. the norm

$$\|u\|_{H_0^s}^2 = \|(-\Delta)^{\frac{s}{2}}u\|_{L^2}^2 = \int_{\mathbb{R}^N} |\xi|^{2s} |\hat{u}(\xi)|^2 d\xi$$

The fractional powers of the Laplacian are experiencing impressive applications in different subjects: thin obstacle problems (Silvestre 2007, Milakis-Silvestre 2008) financial market problems (Cont-Tankov 2004) phase transitions (Alberti et al. 1998, Cabré-SolaMorales 2005, Sire-Valdinoci 2009, Farina et al. 2011) water waves (Stoker 1957, Whitham 1974, Craig-Nicholls 2004, De La ILave-Valdinoci 2009) dislocations in crystals (Toland 1997, Gonzalez-Monneau 2011) soft thin films (Kurzke 2006) semipermeable membranes and flame propagation (Caffarelli-Mellet-Sire 2011)

quasi-geostrophic flows (Majda-Takab 1996, Cordoba 1998, Caffarelli-Vasseur 2010)

- minimal surfaces (Caffarelli-Roquejoffre-Savin 2010, Caffarelli-Valdinoci 2011)
- anomalous diffusion (Metzler-Klafter 2000)

ultra-relativistic limits of quantum mechanics (Fefferman-De La lLave 1986)

multiple scattering (Duistermaat-Guillemin 1975, Colton-Cress 1998, Grote-Kirsch 2004)

etc...

If 0 < s < N/2 and $2^* = 2N/(N-2s)$, the Sobolev critical exponent,

the following Sobolev inequality is valid for some positive constant $S^* = S^*(N, s)$

$$(\bigstar) \quad \|u\|_{L^{2^*}(\mathbb{R}^N)}^{2^*} \le S^* \|(-\Delta)^{\frac{s}{2}} u\|_{L^2(\mathbb{R}^N)}^{2^*} \quad \forall u \in H_0^s(\mathbb{R}^N).$$

If 0 < s < N/2 and $2^* = 2N/(N-2s)$, the Sobolev critical exponent,

the following Sobolev inequality is valid for some positive constant $S^* = S^*(N, s)$

$$(\bigstar) \quad \|u\|_{L^{2^*}(\mathbb{R}^N)}^{2^*} \le S^* \|(-\Delta)^{\frac{s}{2}} u\|_{L^2(\mathbb{R}^N)}^{2^*} \quad \forall u \in H_0^s(\mathbb{R}^N).$$

Cotsiolis-Tavoularis (2004):

(★) is attained iff
$$u(x) = \frac{c}{(\lambda^2 + |x - x_0|^2)^{\frac{N-2s}{2}}} \quad \forall x \in \mathbb{R}^N$$

where $c \in \mathbb{R} \setminus \{0\}, \lambda > 0$ and $x_0 \in \mathbb{R}^N$ are fixed constants.

If 0 < s < N/2 and $2^* = 2N/(N-2s)$, the Sobolev critical exponent,

the following Sobolev inequality is valid for some positive constant $S^* = S^*(N, s)$

$$(\bigstar) \quad \|u\|_{L^{2^*}(\mathbb{R}^N)}^{2^*} \le S^* \|(-\Delta)^{\frac{s}{2}} u\|_{L^2(\mathbb{R}^N)}^{2^*} \quad \forall u \in H_0^s(\mathbb{R}^N).$$

Cotsiolis-Tavoularis (2004): (\bigstar) is attained iff $u(x) = \frac{c}{(\lambda^2 + |x - x_0|^2)^{\frac{N-2s}{2}}} \quad \forall x \in \mathbb{R}^N$, where $c \in \mathbb{R} \setminus \{0\}, \ \lambda > 0$ and $x_0 \in \mathbb{R}^N$ are fixed constants.

See also Chen-Li-Ou (2006), Frank-Seringer (2008).

If 0 < s < N/2 and $2^* = 2N/(N-2s)$, the Sobolev critical exponent,

the following Sobolev inequality is valid for some positive constant $S^* = S^*(N, s)$

$$(\bigstar) \quad \|u\|_{L^{2^*}(\mathbb{R}^N)}^{2^*} \le S^* \|(-\Delta)^{\frac{s}{2}} u\|_{L^2(\mathbb{R}^N)}^{2^*} \quad \forall u \in H_0^s(\mathbb{R}^N).$$

Cotsiolis-Tavoularis (2004): (★) is attained iff $u(x) = \frac{c}{(\lambda^2 + |x - x_0|^2)^{\frac{N-2s}{2}}} \quad \forall x \in \mathbb{R}^N,$ where $c \in \mathbb{R} \setminus \{0\}, \lambda > 0$ and $x_0 \in \mathbb{R}^N$ are fixed constants.

See also Chen-Li-Ou (2006), Frank-Seringer (2008).

A naive approach to (\bigstar) is to study the variational problem

$$S^* := \sup \left\{ F(u) : u \in H^s_0(\mathbb{R}^N), \int_{\mathbb{R}^N} |(-\Delta)^{\frac{s}{2}} u|^2 dx \le 1 \right\} \text{ with } F(u) := \int_{\mathbb{R}^N} |u|^{2^*} dx.$$

If 0 < s < N/2 and $2^* = 2N/(N-2s)$, the Sobolev critical exponent,

the following Sobolev inequality is valid for some positive constant $S^* = S^*(N, s)$

$$\|u\|_{L^{2^{*}}(\mathbb{R}^{N})}^{2^{*}} \leq S^{*}\|(-\Delta)^{\frac{s}{2}}u\|_{L^{2}(\mathbb{R}^{N})}^{2^{*}} \quad \forall u \in H_{0}^{s}(\mathbb{R}^{N}).$$

Cotsiolis-Tavoularis (2004): (★) is attained iff $u(x) = \frac{c}{(\lambda^2 + |x - x_0|^2)^{\frac{N-2s}{2}}} \quad \forall x \in \mathbb{R}^N,$ where $c \in \mathbb{R} \setminus \{0\}, \lambda > 0$ and $x_0 \in \mathbb{R}^N$ are fixed constants.

See also Chen-Li-Ou (2006), Frank-Seringer (2008).

A naive approach to (\bigstar) is to study the variational problem

$$S^* := \sup \left\{ F(u) : u \in H^s_0(\mathbb{R}^N), \int_{\mathbb{R}^N} |(-\Delta)^{\frac{s}{2}} u|^2 dx \le 1 \right\} \text{ with } F(u) := \int_{\mathbb{R}^N} |u|^{2^*} dx.$$

 $\Omega \subset \mathbb{R}^N$ bounded open set

$$S_{\Omega}^* := \sup\left\{F_{\Omega}(u) : u \in H_0^s(\Omega), \int_{\mathbb{R}^N} |(-\Delta)^{\frac{s}{2}}u|^2 dx \le 1\right\} \text{ with } F_{\Omega}(u) := \int_{\Omega} |u|^{2^*} dx.$$

If 0 < s < N/2 and $2^* = 2N/(N-2s)$, the Sobolev critical exponent,

the following Sobolev inequality is valid for some positive constant $S^* = S^*(N, s)$

$$\|u\|_{L^{2^{*}}(\mathbb{R}^{N})}^{2^{*}} \leq S^{*}\|(-\Delta)^{\frac{s}{2}}u\|_{L^{2}(\mathbb{R}^{N})}^{2^{*}} \quad \forall u \in H_{0}^{s}(\mathbb{R}^{N}).$$

Cotsiolis-Tavoularis (2004): (★) is attained iff $u(x) = \frac{c}{(\lambda^2 + |x - x_0|^2)^{\frac{N-2s}{2}}} \quad \forall x \in \mathbb{R}^N,$ where $c \in \mathbb{R} \setminus \{0\}, \lambda > 0$ and $x_0 \in \mathbb{R}^N$ are fixed constants.

See also Chen-Li-Ou (2006), Frank-Seringer (2008).

A naive approach to (\bigstar) is to study the variational problem

$$S^* := \sup \left\{ F(u) : u \in H^s_0(\mathbb{R}^N), \int_{\mathbb{R}^N} |(-\Delta)^{\frac{s}{2}} u|^2 dx \le 1 \right\} \text{ with } F(u) := \int_{\mathbb{R}^N} |u|^{2^*} dx.$$

 $\Omega \subset \mathbb{R}^N$ bounded open set

$$S_{\Omega}^* := \sup\left\{F_{\Omega}(u) : u \in H_0^s(\Omega), \int_{\mathbb{R}^N} |(-\Delta)^{\frac{s}{2}} u|^2 dx \le 1\right\} \text{ with } F_{\Omega}(u) := \int_{\Omega} |u|^{2^*} dx.$$

1. Introduction

- 2. Concentration-compactness alternative
- 3. Final remarks

Concentration-compactness alternative

1. Introduction

2. Concentration-compactness alternative

3. Final remarks

Concentration-compactness alternative for fractional Sobolev spaces

 $\Omega \subseteq \mathbb{R}^N$. If 0 < s < N/2 and $2^* = 2N/(N-2s)$,

Theorem 1 [G.P., A. Pisante, 2010]

Let (u_n) be a sequence in $H_0^s(\Omega)$ weakly converging to u such that $|(-\Delta)^{\frac{s}{2}}u_n|^2 dx \xrightarrow{*} \mu$ and $|u_n|^{2^*} dx \xrightarrow{*} \nu$ in $\mathcal{M}(\mathbb{R}^N)$.

Then, either $u_n \to u$ in $L^{2^*}_{loc}(\mathbb{R}^N)$ or there exists a finite set of distinct points x_1, \ldots, x_k in $\overline{\Omega}$ and positive numbers ν_1, \ldots, ν_k such that we have

$$\nu = |u|^{2^*} dx + \sum_{j=1}^k \nu_j \delta_{x_j}, \quad (S^*)^{1 - \frac{2^*}{2}} \le \nu_j.$$

If in addition Ω is bounded, there exist a positive measure $\tilde{\mu} \in \mathcal{M}(\mathbb{R}^N)$ with $spt \, \tilde{\mu} \subset \overline{\Omega}$ and positive numbers μ_1, \ldots, μ_k such that

$$\mu = |(-\Delta)^{\frac{s}{2}} u|^2 dx + \tilde{\mu} + \sum_{j=1}^k \mu_j \delta_{x_j}, \quad \nu_j \le S^* \, \mu_j^{\frac{2^*}{2}}$$

Concentration-compactness alternative for fractional Sobolev spaces

 $\Omega \subseteq \mathbb{R}^N$. If 0 < s < N/2 and $2^* = 2N/(N-2s)$,

Theorem 1 [G.P., A. Pisante, 2010]

Let (u_n) be a sequence in $H_0^s(\Omega)$ weakly converging to u such that $|(-\Delta)^{\frac{s}{2}}u_n|^2 dx \xrightarrow{*} \mu$ and $|u_n|^{2^*} dx \xrightarrow{*} \nu$ in $\mathcal{M}(\mathbb{R}^N)$.

Then, either $u_n \to u$ in $L^{2^*}_{loc}(\mathbb{R}^N)$ or there exists a finite set of distinct points x_1, \ldots, x_k in $\overline{\Omega}$ and positive numbers ν_1, \ldots, ν_k such that we have

$$\nu = |u|^{2^*} dx + \sum_{j=1}^k \nu_j \delta_{x_j}, \quad (S^*)^{1 - \frac{2^*}{2}} \le \nu_j.$$

If in addition Ω is bounded, there exist a positive measure $\tilde{\mu} \in \mathcal{M}(\mathbb{R}^N)$ with $spt \, \tilde{\mu} \subset \overline{\Omega}$ and positive numbers μ_1, \ldots, μ_k such that

$$\mu = |(-\Delta)^{\frac{s}{2}} u|^2 dx + \tilde{\mu} + \sum_{j=1}^k \mu_j \delta_{x_j}, \quad \nu_j \le S^* \, \mu_j^{\frac{2^*}{2}}.$$

s = 1, 2m Standard C-C-A P.L. Lions (1985)

 $\Omega \subset \mathbb{R}^N$ bounded open set.

Corollary 1

Let $(u_n) \in H_0^s(\Omega)$ be a maximizing sequence for the critical Sobolev inequality

$$\|u\|_{L^{2^*}(\Omega)}^{2^*} \le S^* \|(-\Delta)^{\frac{s}{2}} u\|_{L^2(\Omega)}^{2^*}.$$

Then (u_n) concentrates at one point $x_0 \in \overline{\Omega}$.

 $\Omega \subset \mathbb{R}^N$ bounded open set.

Corollary 1

Let $(u_n) \in H_0^s(\Omega)$ be a maximizing sequence for the critical Sobolev inequality

$$\|u\|_{L^{2^*}(\Omega)}^{2^*} \le S^* \|(-\Delta)^{\frac{s}{2}} u\|_{L^2(\Omega)}^{2^*}.$$

Then (u_n) concentrates at one point $x_0 \in \overline{\Omega}$.

Proof.

We want to prove that $|(-\Delta)^{\frac{s}{2}}u_n|^2 dx \xrightarrow{*} \delta_{x_0}$ in $\mathcal{M}(\mathbb{R}^N)$.

 $\Omega \subset \mathbb{R}^N$ bounded open set.

Corollary 1

Let $(u_n) \in H_0^s(\Omega)$ be a maximizing sequence for the critical Sobolev inequality

$$\|u\|_{L^{2^*}(\Omega)}^{2^*} \le S^* \|(-\Delta)^{\frac{s}{2}} u\|_{L^2(\Omega)}^{2^*}.$$

Then (u_n) concentrates at one point $x_0 \in \overline{\Omega}$.

Proof.

We want to prove that $|(-\Delta)^{\frac{s}{2}}u_n|^2 dx \xrightarrow{*} \delta_{x_0}$ in $\mathcal{M}(\mathbb{R}^N)$.

We have
$$\int_{\Omega} |u_n|^{2^*} dx \to S^*$$

and so $|u_n|^{2^*} dx \xrightarrow{*} \nu \in \mathcal{M}(\mathbb{R}^N)$ with $\nu(\Omega) = S^*$

$$\mu = |(-\Delta)^{\frac{s}{2}} u|^2 + \tilde{\mu} + \sum_{i=0}^{\infty} \mu_i \delta_{x_i}$$

We have $S^* = \nu(\Omega)$

$$\mu = |(-\Delta)^{\frac{s}{2}} u|^2 + \tilde{\mu} + \sum_{i=0}^{\infty} \mu_i \delta_{x_i}$$

We have $S^* = \nu(\Omega)$

Theorem 1 (C-C-A)

Giampiero Palatucci

Optimization Days - Università Politecnica delle Marche

$$\mu = |(-\Delta)^{\frac{s}{2}} u|^2 + \tilde{\mu} + \sum_{i=0}^{\infty} \mu_i \delta_{x_i}$$

We have $S^* = \nu(\Omega)$

$= \int_{\Omega} u ^{2^*} dx + \sum_{i \in I} dx$	$ u_i$

Theorem 1 (C-C-A)

$$\mu = |(-\Delta)^{\frac{s}{2}} u|^2 + \tilde{\mu} + \sum_{i=0}^{\infty} \mu_i \delta_{x_i}$$

We have
$$S^* = \nu(\Omega)$$

 $= \int_{\Omega} |u|^{2^*} dx + \sum_{i \in I} \nu_i$
Sobolev inequality + C-C-A

$$\mu = |(-\Delta)^{\frac{s}{2}}u|^2 + \tilde{\mu} + \sum_{i=0}^{\infty} \mu_i \delta_{x_i}$$

We have $S^* = \nu(\Omega)$ $= \int_{\Omega} |u|^{2^*} dx + \sum_{i \in I} \nu_i$ $= \int_{\Omega} |u|^{2^*} dx + \sum_{i \in I} \nu_i$ Sobolev inequality + C-C-A $\leq S^* \left(\int_{\Omega} |(-\Delta)^{\frac{s}{2}} u|^2 dx \right)^{\frac{2^*}{2}} + S^* \sum_{i \in I} \mu_i^{\frac{2^*}{2}}$

$$\mu = |(-\Delta)^{\frac{s}{2}} u|^2 + \tilde{\mu} + \sum_{i=0}^{\infty} \mu_i \delta_{x_i}$$

We have $S^* = \nu(\Omega)$ $= \int_{\Omega} |u|^{2^*} dx + \sum_{i \in I} \nu_i$ Sobolev inequality + C-C-A $\leq S^* \left(\int_{\Omega} |(-\Delta)^{\frac{s}{2}} u|^2 dx \right)^{\frac{2^*}{2}} + S^* \sum_{i \in I} \mu_i^{\frac{2^*}{2}}$ convexity of the function $t \mapsto t^{\frac{2^*}{2}}$

$$\mu = |(-\Delta)^{\frac{s}{2}} u|^2 + \tilde{\mu} + \sum_{i=0}^{\infty} \mu_i \delta_{x_i}$$

We have $S^* = \nu(\Omega)$ $= \int_{\Omega} |u|^{2^*} dx + \sum_{i \in I} \nu_i$ Sobolev inequality + C-C-A $\leq S^* \left(\int_{\Omega} |(-\Delta)^{\frac{s}{2}} u|^2 dx \right)^{\frac{2^*}{2}} + S^* \sum_{i \in I} \mu_i^{\frac{2^*}{2}}$ convexity of the function $t \mapsto t^{\frac{2^*}{2}}$ $\leq S^* \left(\int_{\Omega} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \right)^{\frac{2^*}{2}}$

$$\mu = |(-\Delta)^{\frac{s}{2}}u|^2 + \tilde{\mu} + \sum_{i=0}^{\infty} \mu_i \delta_{x_i}$$

 $S^* = \nu(\Omega)$ = $\int_{\Omega} |u|^{2^*} dx + \sum_{i \in I} \nu_i$ We have Theorem 1 (C-C-A)Sobolev inequality + C-C-A $\leq S^* \left(\int_{\Omega} |(-\Delta)^{\frac{s}{2}} u|^2 dx \right)^{\frac{2^*}{2}} + S^* \sum_{i=1}^{\infty} \mu_i^{\frac{2^*}{2}}$ convexity of the function $t \mapsto t^{\frac{2^*}{2}}$ $\leq S^* \left(\int_{\Omega} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \right)^{\frac{2^*}{2}}$ $\int_{\Omega} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \le \mu(\mathbb{R}^N) \le 1$

$$\mu = |(-\Delta)^{\frac{s}{2}}u|^2 + \tilde{\mu} + \sum_{i=0}^{\infty} \mu_i \delta_{x_i}$$

 $S^* = \nu(\Omega)$ = $\int_{\Omega} |u|^{2^*} dx + \sum_{i \in I} \nu_i$ We have Theorem 1 (C-C-A)Sobolev inequality + C-C-A $\leq S^* \left(\int_{\Omega} |(-\Delta)^{\frac{s}{2}} u|^2 dx \right)^{\frac{2^*}{2}} + S^* \sum \mu_i^{\frac{2^*}{2}}$ convexity of the function $t \mapsto t^{\frac{2^*}{2}}$ $\leq S^* \left(\int_{\Omega} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \right)^{\frac{2^*}{2}}$ $\int_{\Omega} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \le \mu(\mathbb{R}^N) \le 1$ $< S^*$

$$\mu = |(-\Delta)^{\frac{s}{2}}u|^2 + \tilde{\mu} + \sum_{i=0}^{\infty} \mu_i \delta_{x_i}$$

 $S^* = \nu(\Omega)$ = $\int_{\Omega} |u|^{2^*} dx + \sum_{i \in I} \nu_i$ We have Theorem 1 (C-C-A)Sobolev inequality + C-C-A $\leq S^* \left(\int_{\Omega} |(-\Delta)^{\frac{s}{2}} u|^2 dx \right)^{\frac{2^*}{2}} + S^* \sum \mu_i^{\frac{2^*}{2}}$ convexity of the function $t \mapsto t^{\frac{2^*}{2}}$ $\leq S^* \left(\int_{\Omega} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \right)^{\frac{2^*}{2}}$ $\int_{\Omega} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \le \mu(\mathbb{R}^N) \le 1$ $< S^*$

$$\mu = |(-\Delta)^{\frac{s}{2}}u|^2 + \sum_{i=0}^{\infty} \mu_i \delta_{x_i}$$

We have
$$S^* = \nu(\Omega)$$

$$= \int_{\Omega} |u|^{2^*} dx + \sum_{i \in I} \nu_i$$
Sobolev inequality + C-C-A

$$\leq S^* \left(\int_{\Omega} |(-\Delta)^{\frac{s}{2}} u|^2 dx \right)^{\frac{2^*}{2}} + S^* \sum_{i \in I} \mu_i^{\frac{2^*}{2}}$$
convexity of the function $t \mapsto t^{\frac{2^*}{2}}$

$$\leq S^* \left(\int_{\Omega} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \right)^{\frac{2^*}{2}}$$

$$\int_{\Omega} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{2^*}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{2^*}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{2^*}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \leq \mu(\mathbb{R}^N) \leq 1$$

$$\mu = |(-\Delta)^{\frac{s}{2}}u|^2 + \sum_{i=0}^{\infty} \mu_i \delta_{x_i}$$

 $S^* = \nu(\Omega)$ = $\int_{\Omega} |u|^{2^*} dx + \sum_{i \in I} \nu_i$ We have Theorem 1 (C-C-A)Sobolev inequality + C-C-A $\leq S^* \left(\int_{\Omega} |(-\Delta)^{\frac{s}{2}} u|^2 dx \right)^{\frac{2^*}{2}} + S^* \sum \mu_i^{\frac{2^*}{2}}$ convexity of the function $t \mapsto t^{\frac{2^*}{2}}$ $\leq S^* \left(\int_{\Omega} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \right)^{\frac{2^*}{2}}$ $\int_{\Omega} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \le \mu(\mathbb{R}^N) \le 1$ < S*

Sobolev inequality is not attained on bounded domains $\implies u$ is zero.

$$\mu = + \sum_{i=0}^{\infty} \mu_i \delta_{x_i}$$

 $S^* = \nu(\Omega)$ = $\int_{\Omega} |u|^{2^*} dx + \sum_{i \in I} \nu_i$ We have Theorem 1 (C-C-A)Sobolev inequality + C-C-A $\leq S^* \left(\int_{\Omega} |(-\Delta)^{\frac{s}{2}} u|^2 dx \right)^{\frac{2^*}{2}} + S^* \sum_{i=1}^{\infty} \mu_i^{\frac{2^*}{2}}$ convexity of the function $t \mapsto t^{\frac{2^*}{2}}$ $\leq S^* \left(\int_{\Omega} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \right)^{\frac{2^*}{2}}$ $\int_{\Omega} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \le \mu(\mathbb{R}^N) \le 1$ < S*

Sobolev inequality is not attained on bounded domains $\implies u$ is zero.

$$\mu = + \sum_{i=0}^{\infty} \mu_i \delta_{x_i}$$

 $S^* = \nu(\Omega)$ = $\int_{\Omega} |u|^{2^*} dx + \sum_{i \in I} \nu_i$ We have Theorem 1 (C-C-A)Sobolev inequality + C-C-A $\leq S^* \left(\int_{\Omega} |(-\Delta)^{\frac{s}{2}} u|^2 dx \right)^{\frac{2^*}{2}} + S^* \sum_{i=1} \mu_i^{\frac{2^*}{2}}$ convexity of the function $t \mapsto t^{\frac{2^*}{2}}$ $\leq S^* \left(\int_{\Omega} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \right)^{\frac{2^*}{2}}$ $\int_{\Omega} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \le \mu(\mathbb{R}^N) \le 1$ $\leq S^*$

Sobolev inequality is not attained on bounded domains $\implies u$ is zero. The function $t \mapsto t^{\frac{2^*}{2}}$ is strictly convex \implies Only one of the μ_i 's can be nonzero.

$$\mu = \underbrace{\delta_{x_i}}$$
We have $S^* = \nu(\Omega)$

$$= \int_{\Omega} |u|^{2^*} dx + \sum_{i \in I} \nu_i$$

$$\leq S^* \left(\int_{\Omega} |(-\Delta)^{\frac{s}{2}} u|^2 dx \right)^{\frac{2^*}{2}} + S^* \sum_{i \in I} \mu_i^{\frac{2^*}{2}}$$

$$= \int_{\Omega} |u|^{2^*} dx + \sum_{i \in I} \nu_i$$

$$\leq S^* \left(\int_{\Omega} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \right)^{\frac{2^*}{2}}$$

$$= \int_{\Omega} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{2^*}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{2^*}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{2^*}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{2^*}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{2^*}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{2^*}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{2^*}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{2^*}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac$$

Sobolev inequality is not attained on bounded domains $\implies u$ is zero. The function $t \mapsto t^{\frac{2^*}{2}}$ is strictly convex \implies Only one of the μ_i 's can be nonzero.

$$\mu = \underbrace{\delta_{x_i}}$$
We have $S^* = \nu(\Omega)$

$$= \int_{\Omega} |u|^{2^*} dx + \sum_{i \in I} \nu_i$$

$$\leq S^* \left(\int_{\Omega} |(-\Delta)^{\frac{s}{2}} u|^2 dx \right)^{\frac{2^*}{2}} + S^* \sum_{i \in I} \mu_i^{\frac{2^*}{2}}$$

$$= \int_{\Omega} |u|^{2^*} dx + \sum_{i \in I} \nu_i$$

$$\leq S^* \left(\int_{\Omega} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \right)^{\frac{2^*}{2}}$$

$$= \int_{\Omega} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{2^*}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{2^*}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{2^*}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{2^*}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{2^*}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{2^*}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{2^*}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{2^*}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac{s}{2}} u|^2 dx + \sum_{i \in I} \mu_i \int_{\Omega}^{\frac{s}{2}} |(-\Delta)^{\frac$$

Sobolev inequality is not attained on bounded domains $\implies u$ is zero. The function $t \mapsto t^{\frac{2^*}{2}}$ is strictly convex \implies Only one of the μ_i 's can be nonzero.

Hence, concentration occurs at one point $x_0 \in \overline{\Omega}$. \Box

Lemma [G.P., A. Pisante, 2010]

Let $\Omega \subset \mathbb{R}^N$ a bounded open set and let $\varphi \in C_0^{\infty}(\mathbb{R}^N)$. Then

$$\varphi((-\Delta)^{s/2}u_n) - (-\Delta)^{s/2}(\varphi u_n) \to 0 \quad \text{in} \quad L^2(\mathbb{R}^N)$$

whenever $u_n \to 0$ in $H_0^s(\Omega)$ as $n \to \infty$,

i.e., the commutator $[\varphi, (-\Delta)^{s/2}]: H_0^s(\Omega) \to L^2(\mathbb{R}^N)$ is a compact operator.

Lemma [G.P., A. Pisante, 2010]

Let $\Omega \subset \mathbb{R}^N$ a bounded open set and let $\varphi \in C_0^{\infty}(\mathbb{R}^N)$. Then

$$\varphi((-\Delta)^{s/2}u_n) - (-\Delta)^{s/2}(\varphi u_n) \to 0 \quad \text{in} \quad L^2(\mathbb{R}^N)$$

whenever $u_n \to 0$ in $H_0^s(\Omega)$ as $n \to \infty$,

i.e., the commutator $[\varphi, (-\Delta)^{s/2}]: H_0^s(\Omega) \to L^2(\mathbb{R}^N)$ is a compact operator.

Lemma [G.P., A. Pisante, 2010]

Let $\Omega \subset \mathbb{R}^N$ a bounded open set and let $\varphi \in C_0^{\infty}(\mathbb{R}^N)$. Then

$$\varphi((-\Delta)^{s/2}u_n) - (-\Delta)^{s/2}(\varphi u_n) \to 0 \quad \text{in} \quad L^2(\mathbb{R}^N)$$

whenever $u_n \to 0$ in $H_0^s(\Omega)$ as $n \to \infty$,

i.e., the commutator $[\varphi, (-\Delta)^{s/2}]: H_0^s(\Omega) \to L^2(\mathbb{R}^N)$ is a compact operator.

Proof.

Lemma [G.P., A. Pisante, 2010]

Let $\Omega \subset \mathbb{R}^N$ a bounded open set and let $\varphi \in C_0^{\infty}(\mathbb{R}^N)$. Then

$$\varphi((-\Delta)^{s/2}u_n) - (-\Delta)^{s/2}(\varphi u_n) \to 0 \quad \text{in} \quad L^2(\mathbb{R}^N)$$

whenever $u_n \rightharpoonup 0$ in $H_0^s(\Omega)$ as $n \rightarrow \infty$,

i.e., the commutator $[\varphi, (-\Delta)^{s/2}] : H_0^s(\Omega) \to L^2(\mathbb{R}^N)$ is a compact operator.

Proof.

Let
$$L = (-\Delta)^{s/2}$$
. For each $\varepsilon > 0$ we set $L_{\varepsilon} = (\varepsilon Id - \Delta)^{s/2}$.

Lemma [G.P., A. Pisante, 2010]

Let $\Omega \subset \mathbb{R}^N$ a bounded open set and let $\varphi \in C_0^\infty(\mathbb{R}^N)$. Then

$$\varphi((-\Delta)^{s/2}u_n) - (-\Delta)^{s/2}(\varphi u_n) \to 0 \quad \text{in} \quad L^2(\mathbb{R}^N)$$

whenever $u_n \rightharpoonup 0$ in $H_0^s(\Omega)$ as $n \rightarrow \infty$,

i.e., the commutator $[\varphi, (-\Delta)^{s/2}]: H_0^s(\Omega) \to L^2(\mathbb{R}^N)$ is a compact operator.

Proof.

Let
$$L = (-\Delta)^{s/2}$$
. For each $\varepsilon > 0$ we set $L_{\varepsilon} = (\varepsilon Id - \Delta)^{s/2}$.

By conjugation with Fourier transform, we have

$$Lu = \mathcal{F}^{-1} \circ M_{|\xi|^s} \circ \mathcal{F}(u), \qquad L_{\varepsilon}u = \mathcal{F}^{-1} \circ M_{(|\xi|^2 + \varepsilon)^{s/2}} \circ \mathcal{F}(u).$$

Lemma [G.P., A. Pisante, 2010]

Let $\Omega \subset \mathbb{R}^N$ a bounded open set and let $\varphi \in C_0^{\infty}(\mathbb{R}^N)$. Then

$$\varphi((-\Delta)^{s/2}u_n) - (-\Delta)^{s/2}(\varphi u_n) \to 0 \quad \text{in} \quad L^2(\mathbb{R}^N)$$

whenever $u_n \rightharpoonup 0$ in $H_0^s(\Omega)$ as $n \rightarrow \infty$,

i.e., the commutator $[\varphi, (-\Delta)^{s/2}]: H_0^s(\Omega) \to L^2(\mathbb{R}^N)$ is a compact operator.

Proof.

Let
$$L = (-\Delta)^{s/2}$$
. For each $\varepsilon > 0$ we set $L_{\varepsilon} = (\varepsilon Id - \Delta)^{s/2}$.

By conjugation with Fourier transform, we have

$$Lu = \mathcal{F}^{-1} \circ M_{|\xi|^s} \circ \mathcal{F}(u), \qquad L_{\varepsilon}u = \mathcal{F}^{-1} \circ M_{(|\xi|^2 + \varepsilon)^{s/2}} \circ \mathcal{F}(u).$$

Estimating the norm in $\mathcal{L}(H^s, L^2)$

$$\|L_{\varepsilon} - L\| \leq \sup_{\xi} \frac{|(\varepsilon + |\xi|^2)^{s/2} - |\xi|^s|}{(1 + |\xi|^2)^{\frac{s}{2}}} \xrightarrow{\varepsilon \to 0} 0.$$

Giampiero Palatucci

Optimization Days - Università Politecnica delle Marche

It remains to prove that

 $[L_{\varepsilon}, \varphi]: H_0^s(\Omega) \to L^2(\mathbb{R}^N)$ is a compact operator for each $\varepsilon > 0$.

It remains to prove that

 $[L_{\varepsilon}, \varphi] : H_0^s(\Omega) \to L^2(\mathbb{R}^N)$ is a compact operator for each $\varepsilon > 0$.

 L_{ε} is a classical pseudodifferential operator of order s, i.e. $L_{\varepsilon} \in OPS_{1,0}^{s}$.

It remains to prove that

 $[L_{\varepsilon}, \varphi] : H_0^s(\Omega) \to L^2(\mathbb{R}^N)$ is a compact operator for each $\varepsilon > 0$.

 L_{ε} is a classical pseudodifferential operator of order s, i.e. $L_{\varepsilon} \in OPS_{1,0}^{s}$.

Hence $L_{\varepsilon} \in OPBS_{1,1}^s$ and, since $0 < s < \frac{N}{2}$, according to Taylor (2002), we have the following commutator estimate

 $\|[L_{\varepsilon},\varphi]u\|_{L^{2}(\mathbb{R}^{N})} \leq C\|\varphi\|_{H^{\sigma}(\mathbb{R}^{N})}\|u\|_{H^{s-1}(\mathbb{R}^{N})}$

provided $\sigma > \frac{N}{2} + 1$.

It remains to prove that

 $[L_{\varepsilon}, \varphi]: H_0^s(\Omega) \to L^2(\mathbb{R}^N)$ is a compact operator for each $\varepsilon > 0$.

 L_{ε} is a classical pseudodifferential operator of order s, i.e. $L_{\varepsilon} \in OPS_{1,0}^{s}$.

Hence $L_{\varepsilon} \in OPBS_{1,1}^s$ and, since $0 < s < \frac{N}{2}$, according to Taylor (2002), we have the following commutator estimate

$$\|[L_{\varepsilon},\varphi]u\|_{L^{2}(\mathbb{R}^{N})} \leq C\|\varphi\|_{H^{\sigma}(\mathbb{R}^{N})}\|u\|_{H^{s-1}(\mathbb{R}^{N})}$$
provided $\sigma > \frac{N}{2} + 1.$

Since $\varphi \in C_0^{\infty}(\mathbb{R}^N)$ and the embedding $H_0^s(\Omega) \hookrightarrow H^{s-1}(\mathbb{R}^N)$ is compact for all $s \in (0, \frac{N}{2})$, we conclude that $[L_{\varepsilon}, \varphi] : H_0^s(\Omega) \to L^2(\mathbb{R}^N)$ is compact. \Box

Subcritical approximation

 $\Omega \subset \mathbb{R}^N$ bounded open set.

For any $0 < \varepsilon < 2^* - 2$ consider the following variational problems

$$\begin{split} S^*_{\varepsilon} &:= \sup \left\{ F_{\varepsilon}(u): \ u \in H^s_0(\Omega), \ \int_{\mathbb{R}^N} |(-\Delta)^{\frac{s}{2}} u|^2 dx \leq 1 \right\} \\ & \text{with} \ F_{\varepsilon}(u) \!\!:= \! \int_{\Omega} |u|^{2^* - \varepsilon} dx. \end{split}$$

Subcritical approximation

 $\Omega \subset \mathbb{R}^N$ bounded open set.

For any $0 < \varepsilon < 2^* - 2$ consider the following variational problems

$$\begin{split} S^*_{\varepsilon} &:= \sup \left\{ F_{\varepsilon}(u): \ u \in H^s_0(\Omega), \ \int_{\mathbb{R}^N} |(-\Delta)^{\frac{s}{2}} u|^2 dx \leq 1 \right\} \\ & \text{with} \ F_{\varepsilon}(u) \!\!:= \! \int_{\Omega} |u|^{2^* - \varepsilon} dx. \end{split}$$

If $\varepsilon > 0$, then the embedding $H_0^s(\Omega) \hookrightarrow L^{2^*-\varepsilon}(\Omega)$ is compact; the problem admits a maximizer $u_{\varepsilon} \in H_0^s(\Omega)$.

Subcritical approximation

 $\Omega \subset \mathbb{R}^N$ bounded open set.

For any $0 < \varepsilon < 2^* - 2$ consider the following variational problems

$$\begin{split} S^*_{\varepsilon} &:= \sup \left\{ F_{\varepsilon}(u): \ u \in H^s_0(\Omega), \ \int_{\mathbb{R}^N} |(-\Delta)^{\frac{s}{2}} u|^2 dx \leq 1 \right\} \\ & \text{with} \ F_{\varepsilon}(u) \!\!:= \! \int_{\Omega} |u|^{2^* - \varepsilon} dx. \end{split}$$

If $\varepsilon > 0$, then the embedding $H_0^s(\Omega) \hookrightarrow L^{2^*-\varepsilon}(\Omega)$ is compact; the problem admits a maximizer $u_{\varepsilon} \in H_0^s(\Omega)$.

> What happens when $\varepsilon \to 0$ (both to the energy functional and to the corresponding maximizers u_{ε})?

$$\Omega \subset \mathbb{R}^N, \ 2^* = 2N/(N-2s), \ 0 < \varepsilon < 2^* - 2 \qquad \begin{cases} (-\Delta)^s u_{\varepsilon} = \lambda_{\varepsilon} |u_{\varepsilon}|^{2^* - 2 - \varepsilon} u_{\varepsilon} & \text{in } \Omega \\ u_{\varepsilon} = 0 & \text{on } \partial \Omega \end{cases}$$

$$\Omega \subset \mathbb{R}^N, \ 2^* = 2N/(N-2s), \ 0 < \varepsilon < 2^* - 2 \qquad \begin{cases} (-\Delta)^s u_\varepsilon = \lambda_\varepsilon |u_\varepsilon|^{2^* - 2 - \varepsilon} u_\varepsilon & \text{in } \Omega \\ u_\varepsilon = 0 & \text{on } \partial\Omega \end{cases}$$

• Atkinson-Peletier (1986) Ω unit ball.

 $\underline{S=1}$

Nonlinear elliptic equations involving critical Sobolev exponent $\Omega \subset \mathbb{R}^N, \ 2^* = 2N/(N-2s), \ 0 < \varepsilon < 2^* - 2 \qquad \begin{cases} (-\Delta)^s u_{\varepsilon} = \lambda_{\varepsilon} |u_{\varepsilon}|^{2^* - 2 - \varepsilon} u_{\varepsilon} & \text{in } \Omega \\ u_{\varepsilon} = 0 & \text{on } \partial \Omega \end{cases}$

S = 1

• Atkinson-Peletier (1986) Ω unit ball.

• Brezis-Peletier (1989) Ω spherical domain.

Nonlinear elliptic equations involving critical Sobolev exponent $\Omega \subset \mathbb{R}^N, \ 2^* = 2N/(N-2s), \ 0 < \varepsilon < 2^* - 2 \qquad \begin{cases} (-\Delta)^s u_{\varepsilon} = \lambda_{\varepsilon} |u_{\varepsilon}|^{2^* - 2 - \varepsilon} u_{\varepsilon} & \text{in } \Omega \\ u_{\varepsilon} = 0 & \text{on } \partial \Omega \end{cases}$

S = 1

- Atkinson-Peletier (1986) Ω unit ball.
- Brezis-Peletier (1989) Ω spherical domain.
- Rey (1989) and Han (1991) Ω smooth bounded domain.

$$\Omega \subset \mathbb{R}^N, \ 2^* = 2N/(N-2s), \ 0 < \varepsilon < 2^* - 2 \qquad \begin{cases} (-\Delta)^s u_\varepsilon = \lambda_\varepsilon |u_\varepsilon|^{2^* - 2 - \varepsilon} u_\varepsilon & \text{in } \Omega \\ u_\varepsilon = 0 & \text{on } \partial\Omega \end{cases}$$

S=1

- Atkinson-Peletier (1986) Ω unit ball.
- Brezis-Peletier (1989) Ω spherical domain.
- Rey (1989) and Han (1991) Ω smooth bounded domain.

They showed that

The sequences u_{ε} which are maximizers for the Sobolev imbeddings concentrate at exactly one point $x_0 \in \Omega$.; i.e. $|\nabla u_{\varepsilon}|^2 \stackrel{*}{\rightharpoonup} \delta_{x_0}$,

$$\Omega \subset \mathbb{R}^N, \ 2^* = 2N/(N-2s), \ 0 < \varepsilon < 2^* - 2 \qquad \begin{cases} (-\Delta)^s u_\varepsilon = \lambda_\varepsilon |u_\varepsilon|^{2^* - 2 - \varepsilon} u_\varepsilon & \text{in } \Omega \\ u_\varepsilon = 0 & \text{on } \partial\Omega \end{cases}$$

S=1

- Atkinson-Peletier (1986) Ω unit ball.
- Brezis-Peletier (1989) Ω spherical domain.
- Rey (1989) and Han (1991) Ω smooth bounded domain.

They showed that

The sequences u_{ε} which are maximizers for the Sobolev imbeddings concentrate at exactly one point $x_0 \in \Omega$.; i.e. $|\nabla u_{\varepsilon}|^2 \stackrel{*}{\rightharpoonup} \delta_{x_0}$, localizing the blowing up:

 x_0 is a critical point of the *Robin function* \mathcal{R}_{Ω} .

$$\Omega \subset \mathbb{R}^N, \ 2^* = 2N/(N-2s), \ 0 < \varepsilon < 2^* - 2 \qquad \begin{cases} (-\Delta)^s u_\varepsilon = \lambda_\varepsilon |u_\varepsilon|^{2^* - 2 - \varepsilon} u_\varepsilon & \text{in } \Omega \\ u_\varepsilon = 0 & \text{on } \partial\Omega \end{cases}$$

S=1

Th.

Std. Ell. Reg.

- Atkinson-Peletier (1986) Ω unit ball.
- Brezis-Peletier (1989) Ω spherical domain.
- Rey (1989) and Han (1991) Ω smooth bounded domain.

They showed that

The sequences u_{ε} which are maximizers for the Sobolev imbeddings concentrate at exactly one point $x_0 \in \Omega$.; i.e. $|\nabla u_{\varepsilon}|^2 \stackrel{*}{\rightharpoonup} \delta_{x_0}$, localizing the blowing up:

 x_0 is a critical point of the *Robin function* \mathcal{R}_{Ω} .

$$\Omega \subset \mathbb{R}^N, \ 2^* = 2N/(N-2s), \ 0 < \varepsilon < 2^* - 2 \qquad \begin{cases} (-\Delta)^s u_\varepsilon = \lambda_\varepsilon |u_\varepsilon|^{2^* - 2 - \varepsilon} u_\varepsilon & \text{in } \Omega \\ u_\varepsilon = 0 & \text{on } \partial\Omega \end{cases}$$

S=1

Th.

Std. Ell. Reg.

- Atkinson-Peletier (1986) Ω unit ball.
- Brezis-Peletier (1989) Ω spherical domain.
 - Rey (1989) and Han (1991) Ω smooth bounded domain.

They showed that

The sequences u_{ε} which are maximizers for the Sobolev imbeddings concentrate at exactly one point $x_0 \in \Omega$.; i.e. $|\nabla u_{\varepsilon}|^2 \stackrel{*}{\rightharpoonup} \delta_{x_0}$, localizing the blowing up :

 x_0 is a critical point of the *Robin function* \mathcal{R}_{Ω} .

• G.P. (2010, 2011) Ω general (possibly not smooth) bounded domain: same concentration result for *p*-laplacian operators, i.e., $|\nabla u_{\varepsilon}|^p \stackrel{*}{\rightharpoonup} \delta_{x_0} \quad p \in (1, N)$.

$$\Omega \subset \mathbb{R}^N, \ 2^* = 2N/(N-2s), \ 0 < \varepsilon < 2^* - 2 \qquad \begin{cases} (-\Delta)^s u_\varepsilon = \lambda_\varepsilon |u_\varepsilon|^{2^* - 2 - \varepsilon} u_\varepsilon & \text{in } \Omega \\ u_\varepsilon = 0 & \text{on } \partial\Omega \end{cases}$$

S=1

Th.

Std. Ell. Reg.

- Atkinson-Peletier (1986) Ω unit ball.
- Brezis-Peletier (1989) Ω spherical domain.
- Rey (1989) and Han (1991) Ω smooth bounded domain.

They showed that

The sequences u_{ε} which are maximizers for the Sobolev imbeddings concentrate at exactly one point $x_0 \in \Omega$.; i.e. $|\nabla u_{\varepsilon}|^2 \stackrel{*}{\rightharpoonup} \delta_{x_0}$, localizing the blowing up:

 x_0 is a critical point of the *Robin function* \mathcal{R}_{Ω} .

• G.P. (2010, 2011) Ω general (possibly not smooth) bounded domain: same concentration result for *p*-laplacian operators, i.e., $|\nabla u_{\varepsilon}|^p \stackrel{*}{\rightharpoonup} \delta_{x_0} \quad p \in (1, N)$.

$$\left\{\int_{\Omega} |u|^{2^*-\varepsilon} dx : u \in H^s_0(\Omega), \int_{\mathbb{R}^N} |(-\Delta)^{\frac{s}{2}} u|^2 dx \le 1\right\}$$

$$\left\{\int_{\Omega} |u|^{2^*-\varepsilon} dx : u \in H_0^s(\Omega), \int_{\mathbb{R}^N} |(-\Delta)^{\frac{s}{2}} u|^2 dx \le 1\right\}$$

$$\begin{aligned} \forall (u,\mu) \in X &= \left\{ (u,\mu) \in H_0^s(\Omega) \times \mathcal{M}(\mathbb{R}^N) : \mu \geq |(-\Delta)^{\frac{s}{2}} u|^2, \mu(\mathbb{R}^N) \leq 1 \right\} \\ & F_{\varepsilon}(u,\mu) := \int_{\Omega} |u|^{2^* - \varepsilon} dx \end{aligned}$$

$$\left\{ \int_{\Omega} |u|^{2^* - \varepsilon} dx \colon u \in H_0^s(\Omega), \int_{\mathbb{R}^N} |(-\Delta)^{\frac{s}{2}} u|^2 dx \le 1 \right\}$$

$\forall (u,\mu) \in X = \left\{ (u,\mu) \in H_0^s(\Omega) \times \mathcal{M}(\mathbb{R}^N) : \mu \ge |(-\Delta)^{\frac{s}{2}} u|^2, \mu(\mathbb{R}^N) \le 1 \right\}$ $F_{\varepsilon}(u,\mu) := \int_{\Omega} |u|^{2^* - \varepsilon} dx$

$$\left\{ \int_{\Omega} |u|^{2^* - \varepsilon} dx \colon u \in H_0^s(\Omega), \int_{\mathbb{R}^N} |(-\Delta)^{\frac{s}{2}} u|^2 dx \le 1 \right\}$$

Theorem 2 [G.P., A. Pisante, 2010]

 $\begin{aligned} \forall (u,\mu) \in X &= \left\{ (u,\mu) \in H_0^s(\Omega) \times \mathcal{M}(\mathbb{R}^N) : \mu \ge |(-\Delta)^{\frac{s}{2}} u|^2, \mu(\mathbb{R}^N) \le 1 \right\} \\ &\quad F_{\varepsilon}(u,\mu) := \int_{\Omega} |u|^{2^* - \varepsilon} dx \\ &\quad \bigvee \Gamma^+(w - L^{2^*}(\Omega) \times \mathcal{M}(\mathbb{R}^N)) \\ &\quad F(u,\mu) = \int_{\Omega} |u|^{2^*} dx + S^* \sum_{i=0}^{\infty} \mu_i^{\frac{2^*}{2}}. \end{aligned}$

Theorem 3 [G.P., A. Pisante, 2010]

As $\varepsilon \to 0$,

 $(i) \ S^*_{\pmb{\varepsilon}} \to S^*_{\boldsymbol{\cdot}}$

(*ii*) Let $u_{\varepsilon} \in H_0^s(\Omega)$ be a maximizer for S_{ε}^* . Then (up to subsequences) $u_{\varepsilon} \rightharpoonup 0$ in $H_0^s(\Omega)$ and it concentrates at some point $x_0 \in \overline{\Omega}$ both in L^{2^*} and in H^s , i.e.

$$|u_{\varepsilon}|^{2^{*}}dx \xrightarrow{*} S^{*}\delta_{x_{0}}$$
 and $|(-\Delta)^{\frac{s}{2}}u_{\varepsilon}|^{2}dx \xrightarrow{*} \delta_{x_{0}}$ in $\mathcal{M}(\mathbb{R}^{N})$.

(*iii*) $\exists x_{\varepsilon} \to x_0 \text{ and } \lambda_{\varepsilon} \searrow 0 \text{ s. t. the function } \tilde{u}_{\varepsilon} \text{ defined by } \tilde{u}_{\varepsilon}(x) = \lambda_{\varepsilon}^{N-2s/2} u_{\varepsilon}(x_{\varepsilon} + \lambda_{\varepsilon} x)$ converges to u, maximizer for S^* , in H_0^s (and in L^{2^*}).

1. Introduction

- 2. Concentration-compactness alternative
- 3. Final remarks

1. Introduction

2. Concentration-compactness alternative

3. Final remarks

• An extended **c**oncentration-**c**ompactness **a**lternative.

• An extended concentration-compactness alternative.

See for instance, the fractional Yamabe problem (Chang-Gonzalez (2010), Gonzalez-Qing (2010), ...).

• An extended concentration-compactness alternative.

See for instance, the fractional Yamabe problem (Chang-Gonzalez (2010), Gonzalez-Qing (2010), ...). (Also, a pseudo-differential approach to deal with the nonlocality of fractional operators)

• An extended concentration-compactness alternative.

See for instance, the fractional Yamabe problem (Chang-Gonzalez (2010), Gonzalez-Qing (2010), ...). (Also, a pseudo-differential approach to deal with the nonlocality of fractional operators)

• What can we say about the localization of the concentration point for the subcritical problem?

Which will be the "preferred" function?

- An extended concentration-compactness alternative.
- See for instance, the fractional Yamabe problem (Chang-Gonzalez (2010), Gonzalez-Qing (2010), ...). (Also, a pseudo-differential approach to deal with the nonlocality of fractional operators)
- What can we say about the localization of the concentration point for the subcritical problem?

Which will be the "preferred" function?

• Generalised *Brezis-Nirenberg* problem:

 $(-\Delta)^s u - \lambda u = |u|^{2^*-2} u \quad \text{in } H_0^s(\Omega)', \quad \lambda > 0.$

- An extended concentration-compactness alternative.
- See for instance, the fractional Yamabe problem (Chang-Gonzalez (2010), Gonzalez-Qing (2010), ...). (Also, a pseudo-differential approach to deal with the nonlocality of fractional operators)
- What can we say about the localization of the concentration point for the subcritical problem?

Which will be the "preferred" function?

• Generalised *Brezis-Nirenberg* problem:

$$(-\Delta)^s u - \lambda u = |u|^{2^*-2} u \quad \text{in } H_0^s(\Omega)', \quad \lambda > 0.$$

Existence of solutions for $s \in (0, 1)$ and $\lambda > 0$?

- An extended concentration-compactness alternative.
- See for instance, the fractional Yamabe problem (Chang-Gonzalez (2010), Gonzalez-Qing (2010), ...). (Also, a pseudo-differential approach to deal with the nonlocality of fractional operators)
- What can we say about the localization of the concentration point for the subcritical problem?
- Which will be the "preferred" function?
- Generalised *Brezis-Nirenberg* problem:

$$(-\Delta)^s u - \lambda u = |u|^{2^*-2} u \quad \text{in } H_0^s(\Omega)', \quad \lambda > 0.$$

Existence of solutions for $s \in (0, 1)$ and $\lambda > 0$?

(s = 1 Brezis-Nirenberg(1983)), (s = 2 Edmunds-et al.(1990)), (s = 2m Pucci-Serrin(1990)), (s = 1/2 Tan(2010))

- An extended concentration-compactness alternative.
- See for instance, the fractional Yamabe problem (Chang-Gonzalez (2010), Gonzalez-Qing (2010), ...). (Also, a pseudo-differential approach to deal with the nonlocality of fractional operators)
- What can we say about the localization of the concentration point for the subcritical problem?
- Which will be the "preferred" function?
- Generalised *Brezis-Nirenberg* problem:

$$(-\Delta)^s u - \lambda u = |u|^{2^*-2} u \quad \text{in } H_0^s(\Omega)', \quad \lambda > 0.$$

Existence of solutions for $s \in (0, 1)$ and $\lambda > 0$?

(s = 1 Brezis-Nirenberg(1983)), (s = 2 Edmunds-et al.(1990)), (s = 2m Pucci-Serrin(1990)), (s = 1/2 Tan(2010))

• Some developments in progress The critic case $\varepsilon = 0$: $(-\Delta)^{s}u = u^{2^{*}_{s}-1}$, $s \in (0, 1)$. Existence, multiplicity, qualitative properties, level sets, etc...

- An extended concentration-compactness alternative.
- See for instance, the fractional Yamabe problem (Chang-Gonzalez (2010), Gonzalez-Qing (2010), ...). (Also, a pseudo-differential approach to deal with the nonlocality of fractional operators)
- What can we say about the localization of the concentration point for the subcritical problem?
- Which will be the "preferred" function?
- Generalised *Brezis-Nirenberg* problem:

$$(-\Delta)^s u - \lambda u = |u|^{2^*-2} u \quad \text{in } H_0^s(\Omega)', \quad \lambda > 0.$$

Existence of solutions for $s \in (0, 1)$ and $\lambda > 0$?

(s = 1 Brezis-Nirenberg(1983)), (s = 2 Edmunds-et al.(1990)), (s = 2m Pucci-Serrin(1990)), (s = 1/2 Tan(2010))

• Some developments in progress The critic case $\varepsilon = 0$: $(-\Delta)^s u = u^{2^*_s - 1}, \quad s \in (0, 1).$ Existence, multiplicity, qualitative properties, level sets, etc... Nonlinear problems involving the fractional powers of the Laplacian, work in progress. Giampiero Palatucci

Optimization Days - Università Politecnica delle Marche

Sobolev embeddings and concentration-compactness alternative for fractional Sobolev spaces

Giampiero Palatucci

Optimization Days An international workshop on Calculus of Variations

Università Politecnica delle Marche June 6-8, 2011 Sobolev embeddings and concentration-compactness alternative for fractional Sobolev spaces

Giampiero Palatucci

grazle

Optimization Days An international workshop on Calculus of Variations

Università Politecnica delle Marche June 6-8, 2011