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Problems involving the fractional powers of the Laplacian
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The fractional powers of the Laplacian are experiencing impressive applications in different subjects :
thin obstacle problems (Silvestre 2007, Milakis-Silvestre 2008)
financial market problems (Cont-Tankov 2004)
phase transitions (Alberti et al. 1998, Cabré-SolaMorales 2005, Sire-Valdinoci 2009, Farina et al. 2011)
water waves (Stoker 1957, Whitham 1974, Craig-Nicholls 2004, De La lLave-Valdinoci 2009) 
dislocations in crystals (Toland 1997, Gonzalez-Monneau 2011)
soft thin films (Kurzke 2006)
semipermeable membranes and flame propagation (Caffarelli-Mellet-Sire 2011)
quasi-geostrophic flows (Majda-Takab 1996, Cordoba 1998, Caffarelli-Vasseur 2010)
minimal surfaces (Caffarelli-Roquejoffre-Savin 2010, Caffarelli-Valdinoci 2011)
anomalous diffusion (Metzler-Klafter 2000)
ultra-relativistic limits of quantum mechanics (Fefferman-De La lLave 1986)
multiple scattering (Duistermaat-Guillemin 1975, Colton-Cress 1998, Grote-Kirsch 2004)
etc...
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Fractional Sobolev embeddings
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CONCENTRATION-COMPACTNESS IN FRACTIONAL SOBOLEV SPACES 3

where c ∈ R \ {0}, λ > 0 and x0 ∈ RN are fixed constants.

The Sobolev inequality (1.4) as well as the previous theorem extend very well
known results valid in the case s = 1. The proof in [6] is based on a sharp form of
the Hardy-Littlewood-Sobolev inequality. Using the moving planes method, the
same result has been obtained by Chen, Li and Ou in [4]. At least when 0 < s < 1,
a third approach through symmetrization techniques can be found in [12].
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Clearly the validity of (1.4) is equivalent to show that the constant S∗ defined
in (1.6) is finite. Moreover, Theorem 1.1 gives an explicit formula for it as well as
for the maximizers of the variational problem (1.6) up to normalization. Note that
even the existence of a maximizer is not trivial since the embedding (1.2) is not
compact, because of translation and dilation invariance. Indeed, if u ∈ H
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A simple scaling argument on compactly supported smooth functions shows
that S
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Ω, but in view of Theorem 1.1 the variational problem (1.8) has

no maximizer. Thus, in order to study the behavior of a maximizing sequence
for (1.6) and (1.8) it is very convenient to establish a concentration-compactness
alternative for bounded sequences in the fractional space H

s
0
, using methods and

ideas introduced in the pioneering works [16] and [17] and developed extensively
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for (1.6) and (1.8) it is very convenient to establish a concentration-compactness
alternative for bounded sequences in the fractional space H

s
0
, using methods and

ideas introduced in the pioneering works [16] and [17] and developed extensively
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where c ∈ R \ {0}, λ > 0 and x0 ∈ RN are fixed constants.

The Sobolev inequality (1.4) as well as the previous theorem extend very well
known results valid in the case s = 1. The proof in [6] is based on a sharp form of
the Hardy-Littlewood-Sobolev inequality. Using the moving planes method, the
same result has been obtained by Chen, Li and Ou in [4]. At least when 0 < s < 1,
a third approach through symmetrization techniques can be found in [12].

A naive approach to the validity of (1.4) is to study the variational problem
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Clearly the validity of (1.4) is equivalent to show that the constant S∗ defined
in (1.6) is finite. Moreover, Theorem 1.1 gives an explicit formula for it as well as
for the maximizers of the variational problem (1.6) up to normalization. Note that
even the existence of a maximizer is not trivial since the embedding (1.2) is not
compact, because of translation and dilation invariance. Indeed, if u ∈ H

s
0
(RN ) is

an admissible function in (1.6), the same holds for ux0,λ(x) = λN−2s/2
u(x0 + λx)

for any x0 ∈ RN and any λ > 0. In addition ux0,λ satisfies F (ux0,λ) = F (u) and
tends to zero weakly in H

s
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, as |x0| → ∞ (translation invariance) or as λ → 0+

and λ → ∞ (dilation invariance).

Another related problem we consider is the following. Given a bounded domain
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ideas introduced in the pioneering works [16] and [17] and developed extensively
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Non linear elliptic equations involving critical Sobolev exponent

Ω ⊂ RN , N ≥ 3

{

−∆uε = uε
2∗
−1−ε, dans Ω

uε = 0 sur ∂Ω
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where c ∈ R \ {0}, λ > 0 and x0 ∈ RN are fixed constants.

The Sobolev inequality (1.4) as well as the previous theorem extend very well
known results valid in the case s = 1. The proof in [6] is based on a sharp form of
the Hardy-Littlewood-Sobolev inequality. Using the moving planes method, the
same result has been obtained by Chen, Li and Ou in [4]. At least when 0 < s < 1,
a third approach through symmetrization techniques can be found in [12].

A naive approach to the validity of (1.4) is to study the variational problem
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Clearly the validity of (1.4) is equivalent to show that the constant S∗ defined
in (1.6) is finite. Moreover, Theorem 1.1 gives an explicit formula for it as well as
for the maximizers of the variational problem (1.6) up to normalization. Note that
even the existence of a maximizer is not trivial since the embedding (1.2) is not
compact, because of translation and dilation invariance. Indeed, if u ∈ H

s
0
(RN ) is

an admissible function in (1.6), the same holds for ux0,λ(x) = λN−2s/2
u(x0 + λx)

for any x0 ∈ RN and any λ > 0. In addition ux0,λ satisfies F (ux0,λ) = F (u) and
tends to zero weakly in H

s
0
, as |x0| → ∞ (translation invariance) or as λ → 0+

and λ → ∞ (dilation invariance).

Another related problem we consider is the following. Given a bounded domain
Ω ⊂ RN , one can define the Sobolev space H
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(Ω) as the closure of C
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A simple scaling argument on compactly supported smooth functions shows
that S

∗ = S
∗
Ω, but in view of Theorem 1.1 the variational problem (1.8) has

no maximizer. Thus, in order to study the behavior of a maximizing sequence
for (1.6) and (1.8) it is very convenient to establish a concentration-compactness
alternative for bounded sequences in the fractional space H

s
0
, using methods and

ideas introduced in the pioneering works [16] and [17] and developed extensively
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where c ∈ R \ {0}, λ > 0 and x0 ∈ RN are fixed constants.

The Sobolev inequality (1.4) as well as the previous theorem extend very well
known results valid in the case s = 1. The proof in [6] is based on a sharp form of
the Hardy-Littlewood-Sobolev inequality. Using the moving planes method, the
same result has been obtained by Chen, Li and Ou in [4]. At least when 0 < s < 1,
a third approach through symmetrization techniques can be found in [12].
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Kazdan-Warner (1975) (Ω annulus)

Ding (1989) (Ω contractile avec une géométrie spécifique) ∃ sol’n
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where c ∈ R \ {0}, λ > 0 and x0 ∈ RN are fixed constants.

The Sobolev inequality (1.4) as well as the previous theorem extend very well
known results valid in the case s = 1. The proof in [6] is based on a sharp form of
the Hardy-Littlewood-Sobolev inequality. Using the moving planes method, the
same result has been obtained by Chen, Li and Ou in [4]. At least when 0 < s < 1,
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A naive approach to the validity of (1.4) is to study the variational problem

S
∗ :=sup

�
F (u) : u ∈ H

s
0(RN ),

�

RN
|(−∆)

s
2u|2dx ≤ 1

�
(1.6)

where F (u):=

�

RN
|u|2∗dx.(1.7)

Clearly the validity of (1.4) is equivalent to show that the constant S∗ defined
in (1.6) is finite. Moreover, Theorem 1.1 gives an explicit formula for it as well as
for the maximizers of the variational problem (1.6) up to normalization. Note that
even the existence of a maximizer is not trivial since the embedding (1.2) is not
compact, because of translation and dilation invariance. Indeed, if u ∈ H

s
0
(RN ) is

an admissible function in (1.6), the same holds for ux0,λ(x) = λN−2s/2
u(x0 + λx)

for any x0 ∈ RN and any λ > 0. In addition ux0,λ satisfies F (ux0,λ) = F (u) and
tends to zero weakly in H

s
0
, as |x0| → ∞ (translation invariance) or as λ → 0+

and λ → ∞ (dilation invariance).

Another related problem we consider is the following. Given a bounded domain
Ω ⊂ RN , one can define the Sobolev space H

s
0
(Ω) as the closure of C

∞
0
(Ω) in

H
s
0
(RN ) with the norm in (1.3) and the corresponding maximization problem (or

Sobolev embedding), namely

S
∗
Ω :=sup

�
FΩ(u) : u ∈ H

s
0(Ω),

�

RN
|(−∆)

s
2u|2dx ≤ 1

�
(1.8)

where FΩ(u):=

�

Ω
|u|2∗dx.(1.9)

A simple scaling argument on compactly supported smooth functions shows
that S

∗ = S
∗
Ω, but in view of Theorem 1.1 the variational problem (1.8) has

no maximizer. Thus, in order to study the behavior of a maximizing sequence
for (1.6) and (1.8) it is very convenient to establish a concentration-compactness
alternative for bounded sequences in the fractional space H

s
0
, using methods and

ideas introduced in the pioneering works [16] and [17] and developed extensively
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Concentration-compactness alternative for fractional Sobolev spaces

Theorem 1 [G. P., A. Pisante, 2010]Ω ⊆ RN open subset
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s
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|(−∆)
s
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∗
� µ and |un|2

∗
dx

∗
� ν in M(RN ).
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2∗

loc(Ω) or there exists a finite set of distinct points x1, . . . , xk

in Ω and positive numbers ν1, . . . , νk such that we have

ν = |u|2
∗
dx+

k�

j=1

νjδxj , ν2j (S
∗)2

∗
≥ (S∗)2 .

If in addition Ω is bounded, there exist a positive measure µ̃ ∈ M(RN ) with spt µ̃ ⊂ Ω

and positive numbers µ1, . . . , µk such that

µ = |(−∆)
s
2u|2dx+ µ̃+

k�

j=1

µjδxj , νj ≤ S
∗
µ

2∗
2
j .
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If 0 < s < N/2 and 2∗ = 2N/(N − 2s), the Sobolev critical exponent, the following

Sobolev inequality is valid for some positive constant S∗ = S
∗(N, s)

�u�2
∗

L2∗(RN ) ≤ S
∗�(−∆)

s
2u�2

∗

L2(RN ) ∀u ∈ H
s(RN ).

u(x) =
c

(λ2 + |x− x0|2)
N−2s

2

∀x ∈ RN
,

where c,λ ∈ R, and x0 ∈ RN are fixed constants.

34

H
s
0(Ω)

(u, µ) = (0, δx0)

(u, µ) =
�
0,
�n

j=1 µjδxj

�

(u, µ) ∈ X̃

(u, µ) ∈ X

Ω ⊆ RN
.
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Ω ⊂ RN
open subset

Let (un) be a sequence in Hs

0(Ω) weakly converging to u such that

|(−∆)
s
2un|2dx

∗
� µ and |un|2

∗
dx

∗
� ν in M(RN

).

Then, either un → u in L2∗

loc(RN
) or there exists a finite set of distinct points x1, . . . , xk in Ω

and positive numbers ν1, . . . , νk such that we have

ν = |u|2
∗
dx+

k�

j=1

νjδxj , (S∗
)
1− 2∗

2 ≤ νj .

If, in addition, Ω is bounded, there exist a positive measure µ̃ ∈ M(RN
) with spt µ̃ ⊂ Ω

and positive numbers µ1, . . . , µk such that

µ = |(−∆)
s
2u|2dx+ µ̃+

k�

j=1

µjδxj , νj ≤ S∗
(µj)

2∗
2 .

Let Ω ⊂ RN
a bounded open set and let ϕ ∈ C∞

0 (RN
). Then

ϕ((−∆)
s/2un)− (−∆)

s/2
(ϕun) → 0 in L2

(RN
)

whenever un � 0 in Hs

0(Ω) as n → ∞,

i.e., the commutator [ϕ, (−∆)
s/2

] : Hs

0(Ω) → L2
(RN

) is a compact operator.

Let L = (−∆)
s/2

. For each ε > 0 we set Lε = (εId−∆)
s/2

.

By conjugation with Fourier transform

we have

Lu = F−1 ◦M|ξ|s ◦ F(u) , Lεu = F−1 ◦M(|ξ|2+ε)s/2 ◦ F(u)

thus, Lε : Hs
(Rn

) → L2
(RN

) is bounded operator.

Estimating the norm in L(Hs, L2
) easily yields

�Lε − L� ≤ sup
ξ

|(ε+ |ξ|2)s/2 − |ξ|s|
(1 + |ξ|2) s

2

ε→0−→ 0 .

Thus, it is clearly enough to prove that

[Lε,ϕ] : H
s

0(Ω) → L2
(RN

)

is a compact operator for each ε > 0.

Let Lε = (εId−∆)
s/2

and lε(ξ) = (|ξ|2 + ε)s/2 the corresponding symbol. Clearly

Lε is a classical pseudodifferential operator of order s, i.e. Lε ∈ OPSs

1,0

Hence Lε ∈ OPBSs

1,1 and, since 0 < s < N

2 , according to Taylor (2003) we have the

following commutator estimate

�[Lε,ϕ]u�L2(RN ) ≤ C�ϕ�Hσ(RN )�u�Hs−1(RN ) ,

30
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s = 1, 2m    Standard C-C-A P. L. Lions (1985)

If 0 < s < N/2 and 2∗ = 2N/(N − 2s), the Sobolev critical exponent, the following

Sobolev inequality is valid for some positive constant S∗ = S
∗(N, s)

�u�2
∗

L2∗(RN ) ≤ S
∗�(−∆)

s
2u�2

∗

L2(RN ) ∀u ∈ H
s(RN ).

u(x) =
c

(λ2 + |x− x0|2)
N−2s

2

∀x ∈ RN
,

where c,λ ∈ R, and x0 ∈ RN are fixed constants.
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)

whenever un � 0 in Hs

0(Ω) as n → ∞,
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) is a compact operator.
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s/2
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(Rn

) → L2
(RN

) is bounded operator.

Estimating the norm in L(Hs, L2
) easily yields

�Lε − L� ≤ sup
ξ

|(ε+ |ξ|2)s/2 − |ξ|s|
(1 + |ξ|2) s

2

ε→0−→ 0 .

Thus, it is clearly enough to prove that

[Lε,ϕ] : H
s

0(Ω) → L2
(RN

)

is a compact operator for each ε > 0.

Let Lε = (εId−∆)
s/2

and lε(ξ) = (|ξ|2 + ε)s/2 the corresponding symbol. Clearly

Lε is a classical pseudodifferential operator of order s, i.e. Lε ∈ OPSs

1,0

Hence Lε ∈ OPBSs

1,1 and, since 0 < s < N

2 , according to Taylor (2003) we have the
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Corollary 1 (concentration of the optimizing sequences)

7

Non linear elliptic equations involving critical Sobolev exponent

Ω ⊂ RN , N ≥ 3

{

−∆uε = uε
2∗
−1−ε, dans Ω

uε = 0 sur ∂Ω

où 2∗ = 2N/(N − 2)

uε > 0 dans Ω

ε > 0 : le problème (1) a une solutionuε
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Proof.

We want to prove that
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A : Ω �→ R+ continua
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A(x)|Du|
p +

1

ε
A

− 1
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H(u) := σpH
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2
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Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
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2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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We have

The topology

Fε(u) =
�

Ω
|u|2

∗−ε
dx

the setting for the limit functional

the constrain on the Dirichlet energy of uε : �∇uε�2L2(Ω) ≤ 1

∃µ ∈M(Ω) such that µ(Ω) ≤ 1 and |∇uε|2
∗
� µ in M(Ω)
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u ∈ H
1
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2-norm
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µ = |∇u|2 + µ̃ +
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the non-atomic part

µi ∈ [0, 1] and xi ∈ Ω : xi �= xj if i �= j
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1
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�
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
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dx if (u, µ) ∈ X : µ = |∇u|2

0 otherwise
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Corollary 1 (concentration of the optimizing sequences) - proof 
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32

We have

Let (uε) ∈ H
s
0(Ω) be a maximizing sequence for the critical Sobolev inequality

�u�2
∗

L2∗(Ω) ≤ S
∗�(−∆)

s
2u�2

∗

L2(Ω), ∀u ∈ H
s
0(Ω).

Then (uε) concentrates at one point x0 ∈ Ω.

The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.

Take a maximizing sequence for the critical Sobolev inequality (un) ∈ H
s
0(Ω).

Then

�

Ω
|un|2

∗
dx → S

∗ and so |un|2
∗
dx

∗
� ν ∈ M(RN ) with ν(Ω) = S

∗.

We have

S
∗ = ν(Ω) =

�

Ω
|u|2

∗
dx+

�

i∈I

νi.

By the Sobolev inequality and by Theorem ??-(ii)-(iii), we get

�

Ω
|u|2

∗
dx+

�

i∈I

νi ≤ S
∗
��

Ω
|(−∆)

s
2u|2dx

�2∗
2

+ S
∗
�

i∈I

µ
2∗
2
i ,

where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
2∗
2 on R+, for every fixed real s, the terms in

the right hand side of the inequality (??) are bounded from above by the critical Sobolev

constant. We have

S
∗
��

Ω
|(−∆)

s
2u|2dx

�2∗
2

+ S
∗
�

i∈I

µ
2∗
2
i ≤ S

∗

��

Ω
|(−∆)

s
2u|2dx+

�

i∈I

µi

�2∗
2

≤ S
∗
µ(Ω) ≤ S

∗
.

Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.

32

Theorem 1 (C-C-A)

The topology

Fε(u) =
�

Ω
|u|2

∗−ε
dx

the setting for the limit functional

the constrain on the Dirichlet energy of uε : �∇uε�2L2(Ω) ≤ 1

∃µ ∈M(Ω) such that µ(Ω) ≤ 1 and |∇uε|2
∗
� µ in M(Ω)

Sobolev embedding

u ∈ H
1
0 (Ω) such that (up to subsequences) uε � u in L

2∗ .

semi-continuity of L
2-norm

µ ≥ |∇u|2, so we can always decompose µ in such way:

µ = |∇u|2 + µ̃ +
∞�

i=0

µiδxi ,

the non-atomic part

µi ∈ [0, 1] and xi ∈ Ω : xi �= xj if i �= j

The setting for the limit functional is the space X defined by

X = X(Ω) :=
�
(u, µ) ∈ H

1
0 (Ω)×M(Ω) : µ ≥ |∇u|2, µ(Ω) ≤ 1

�

endowed with the following topology τ

(uε, µε)
τ→ (u, µ) def⇔

�
uε � u in L

2∗(Ω)
µε

∗
� µ in M(Ω).

Fε(u, µ) :=





Fε(u) =

�

Ω
|u|2

∗−ε
dx if (u, µ) ∈ X : µ = |∇u|2

0 otherwise

6

�

RN

|(−∆)
s
2u|2dx

�(−∆)
s
2uε�2L2(RN ) ≤ 1

∃ µ ∈ M(RN ) such that µ(RN ) ≤ 1 and |(−∆)
s
2uε|2

∗
� µ in M(RN )

H
s
0(Ω)

µ = |(−∆)
s
2u|2

The setting for the limit functional is the space X defined by

X = X(Ω) :=
�
(u, µ) ∈ H

s
0(Ω)×M(RN ) : µ ≥ |(−∆)

s
2u|2, µ(RN ) ≤ 1

�

endowed with the following topology τ

(uε, µε)
τ→ (u, µ)

def⇔
�
uε � u in L

2∗(Ω)

µε
∗
� µ in M(RN ).

28

The topology

Fε(u) =
�

Ω
|u|2

∗−ε
dx

the setting for the limit functional

the constrain on the Dirichlet energy of uε : �∇uε�2L2(Ω) ≤ 1

∃µ ∈M(Ω) such that µ(Ω) ≤ 1 and |∇uε|2
∗
� µ in M(Ω)

Sobolev embedding

u ∈ H
1
0 (Ω) such that (up to subsequences) uε � u in L

2∗ .

semi-continuity of L
2-norm

µ ≥ |∇u|2, so we can always decompose µ in such way:

µ = |∇u|2 + µ̃ +
∞�

i=0

µiδxi ,

the non-atomic part

µi ∈ [0, 1] and xi ∈ Ω : xi �= xj if i �= j

The setting for the limit functional is the space X defined by

X = X(Ω) :=
�
(u, µ) ∈ H

1
0 (Ω)×M(Ω) : µ ≥ |∇u|2, µ(Ω) ≤ 1

�

endowed with the following topology τ

(uε, µε)
τ→ (u, µ) def⇔

�
uε � u in L

2∗(Ω)
µε

∗
� µ in M(Ω).

Fε(u, µ) :=





Fε(u) =

�

Ω
|u|2

∗−ε
dx if (u, µ) ∈ X : µ = |∇u|2

0 otherwise

6

�

RN

|(−∆)
s
2u|2dx

�(−∆)
s
2uε�2L2(RN ) ≤ 1

∃ µ ∈ M(RN ) such that µ(RN ) ≤ 1 and |(−∆)
s
2uε|2

∗
� µ in M(RN )

H
s
0(Ω)

µ = |(−∆)
s
2u|2

The setting for the limit functional is the space X defined by

X = X(Ω) :=
�
(u, µ) ∈ H

s
0(Ω)×M(RN ) : µ ≥ |(−∆)

s
2u|2, µ(RN ) ≤ 1

�

endowed with the following topology τ

(uε, µε)
τ→ (u, µ)

def⇔
�
uε � u in L

2∗(Ω)

µε
∗
� µ in M(RN ).

28

The topology

Fε(u) =
�

Ω
|u|2

∗−ε
dx

the setting for the limit functional

the constrain on the Dirichlet energy of uε : �∇uε�2L2(Ω) ≤ 1

∃µ ∈M(Ω) such that µ(Ω) ≤ 1 and |∇uε|2
∗
� µ in M(Ω)

Sobolev embedding

u ∈ H
1
0 (Ω) such that (up to subsequences) uε � u in L

2∗ .

semi-continuity of L
2-norm

µ ≥ |∇u|2, so we can always decompose µ in such way:

µ = |∇u|2 + µ̃ +
∞�

i=0

µiδxi ,

the non-atomic part

µi ∈ [0, 1] and xi ∈ Ω : xi �= xj if i �= j

The setting for the limit functional is the space X defined by

X = X(Ω) :=
�
(u, µ) ∈ H

1
0 (Ω)×M(Ω) : µ ≥ |∇u|2, µ(Ω) ≤ 1

�

endowed with the following topology τ

(uε, µε)
τ→ (u, µ) def⇔

�
uε � u in L

2∗(Ω)
µε

∗
� µ in M(Ω).

Fε(u, µ) :=





Fε(u) =

�

Ω
|u|2

∗−ε
dx if (u, µ) ∈ X : µ = |∇u|2

0 otherwise

6

Corollary 1 (concentration of the optimizing sequences) - proof 



Giampiero Palatucci Optimization Days - Università Politecnica delle Marche June 6-8, 2011 8

Sobolev inequality + C-C-A
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�u�2
∗
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∗�(−∆)

s
2u�2

∗

L2(Ω), ∀u ∈ H
s
0(Ω).

Then (uε) concentrates at one point x0 ∈ Ω.

The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.

Take a maximizing sequence for the critical Sobolev inequality (un) ∈ H
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0(Ω).

Then
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We have
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where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
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2 on R+, for every fixed real s, the terms in

the right hand side of the inequality (??) are bounded from above by the critical Sobolev

constant. We have

S
∗
��

Ω
|(−∆)

s
2u|2dx

�2∗
2

+ S
∗
�

i∈I

µ
2∗
2
i ≤ S

∗

��

Ω
|(−∆)

s
2u|2dx+

�

i∈I

µi

�2∗
2

≤ S
∗
µ(Ω) ≤ S

∗
.

Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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The concentration result - proof

Proof of (i)

Γ+
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and we have the convergence of maxima

Thus, it suffices to prove that

F (u, µ) ≤ S∗, for every (u, µ) ∈ X

and the equality is achieved if and only if (u, µ) = (0, δx0), with x0 ∈ Ω.
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Sobolev inequality + C-C-A

Let (uε) ∈ H
s
0(Ω) be a maximizing sequence for the critical Sobolev inequality

�u�2
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∗�(−∆)

s
2u�2

∗

L2(Ω), ∀u ∈ H
s
0(Ω).

Then (uε) concentrates at one point x0 ∈ Ω.

The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.
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0(Ω).

Then
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We have
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where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
2∗
2 on R+, for every fixed real s, the terms in

the right hand side of the inequality (??) are bounded from above by the critical Sobolev

constant. We have
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.

Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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Theorem 1 (C-C-A)
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The concentration result - proof
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Sobolev inequality + C-C-A
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The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.
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Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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
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The concentration result - proof

Proof of (i)

Γ+

Fε → F

every maximizing sequence for Fε converges to a maximizer of F

and we have the convergence of maxima
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and the equality is achieved if and only if (u, µ) = (0, δx0), with x0 ∈ Ω.
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Sobolev inequality + C-C-A

Let (uε) ∈ H
s
0(Ω) be a maximizing sequence for the critical Sobolev inequality

�u�2
∗

L2∗(Ω) ≤ S
∗�(−∆)

s
2u�2

∗

L2(Ω), ∀u ∈ H
s
0(Ω).

Then (uε) concentrates at one point x0 ∈ Ω.

The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.

Take a maximizing sequence for the critical Sobolev inequality (un) ∈ H
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0(Ω).

Then
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∗
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∗.

We have
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∗ = ν(Ω) =
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By the Sobolev inequality and by Theorem ??-(ii)-(iii), we get
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where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
2∗
2 on R+, for every fixed real s, the terms in

the right hand side of the inequality (??) are bounded from above by the critical Sobolev

constant. We have
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Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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Theorem 1 (C-C-A)
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Hence, concentration occurs at one point x0 ∈ Ω.

32

Let (uε) ∈ H
s
0(Ω) be a maximizing sequence for the critical Sobolev inequality

�u�2
∗

L2∗(Ω) ≤ S
∗�(−∆)

s
2u�2

∗

L2(Ω), ∀u ∈ H
s
0(Ω).

Then (uε) concentrates at one point x0 ∈ Ω.

The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.

Take a maximizing sequence for the critical Sobolev inequality (un) ∈ H
s
0(Ω).

Then

�

Ω
|un|2

∗
dx → S

∗ and so |un|2
∗
dx

∗
� ν ∈ M(RN ) with ν(Ω) = S

∗.

We have

S
∗ = ν(Ω) =

�

Ω
|u|2

∗
dx+

�

i∈I

νi.

By the Sobolev inequality and by Theorem ??-(ii)-(iii), we get

�

Ω
|u|2

∗
dx+

�

i∈I

νi ≤ S
∗
��

Ω
|(−∆)

s
2u|2dx

�2∗
2

+ S
∗
�

i∈I

µ
2∗
2
i ,

where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
2∗
2 on R+, for every fixed real s, the terms in

the right hand side of the inequality (??) are bounded from above by the critical Sobolev

constant. We have

S
∗
��

Ω
|(−∆)

s
2u|2dx

�2∗
2

+ S
∗
�

i∈I

µ
2∗
2
i ≤ S

∗

��

Ω
|(−∆)

s
2u|2dx+

�

i∈I

µi

�2∗
2

≤ S
∗
µ(Ω) ≤ S

∗
.

Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.

32

F (u, µ) ≤ S∗

��

Ω
|(−∆)

s
2u|2dx+

∞�

i=0

µi

�2∗
2

≤ S∗

where we also utilized the fact

�

Ω
|(−∆)

s
2u|2dx+

∞�

i=0

µi ≤ µ(RN ) ≤ 1.

29

Let (uε) ∈ H
s
0(Ω) be a maximizing sequence for the critical Sobolev inequality

�u�2
∗

L2∗(Ω) ≤ S
∗�(−∆)

s
2u�2

∗

L2(Ω), ∀u ∈ H
s
0(Ω).

Then (uε) concentrates at one point x0 ∈ Ω.

The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.

Take a maximizing sequence for the critical Sobolev inequality (un) ∈ H
s
0(Ω).

Then

�

Ω
|un|2

∗
dx → S

∗ and so |un|2
∗
dx

∗
� ν ∈ M(RN ) with ν(Ω) = S

∗.

We have

S
∗ = ν(Ω) =

�

Ω
|u|2

∗
dx+

�

i∈I

νi.

By the Sobolev inequality and by Theorem ??-(ii)-(iii), we get

�

Ω
|u|2

∗
dx+

�

i∈I

νi ≤ S
∗
��

Ω
|(−∆)

s
2u|2dx

�2∗
2

+ S
∗
�

i∈I

µ
2∗
2
i ,

where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
2∗
2 on R+, for every fixed real s, the terms in

the right hand side of the inequality (??) are bounded from above by the critical Sobolev

constant. We have

S
∗
��

Ω
|(−∆)

s
2u|2dx

�2∗
2

+ S
∗
�

i∈I

µ
2∗
2
i ≤ S

∗

��

Ω
|(−∆)

s
2u|2dx+

�

i∈I

µi

�2∗
2

≤ S
∗
µ(Ω) ≤ S

∗
.

Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.

32

The topology

Fε(u) =
�

Ω
|u|2

∗−ε
dx

the setting for the limit functional

the constrain on the Dirichlet energy of uε : �∇uε�2L2(Ω) ≤ 1

∃µ ∈M(Ω) such that µ(Ω) ≤ 1 and |∇uε|2
∗
� µ in M(Ω)

Sobolev embedding

u ∈ H
1
0 (Ω) such that (up to subsequences) uε � u in L

2∗ .

semi-continuity of L
2-norm

µ ≥ |∇u|2, so we can always decompose µ in such way:

µ = |∇u|2 + µ̃ +
∞�

i=0

µiδxi ,

the non-atomic part

µi ∈ [0, 1] and xi ∈ Ω : xi �= xj if i �= j

The setting for the limit functional is the space X defined by

X = X(Ω) :=
�
(u, µ) ∈ H

1
0 (Ω)×M(Ω) : µ ≥ |∇u|2, µ(Ω) ≤ 1

�

endowed with the following topology τ

(uε, µε)
τ→ (u, µ) def⇔

�
uε � u in L

2∗(Ω)
µε

∗
� µ in M(Ω).

Fε(u, µ) :=





Fε(u) =

�

Ω
|u|2

∗−ε
dx if (u, µ) ∈ X : µ = |∇u|2

0 otherwise

6

�

RN

|(−∆)
s
2u|2dx

�(−∆)
s
2uε�2L2(RN ) ≤ 1

∃ µ ∈ M(RN ) such that µ(RN ) ≤ 1 and |(−∆)
s
2uε|2

∗
� µ in M(RN )

H
s
0(Ω)

µ = |(−∆)
s
2u|2

The setting for the limit functional is the space X defined by

X = X(Ω) :=
�
(u, µ) ∈ H

s
0(Ω)×M(RN ) : µ ≥ |(−∆)

s
2u|2, µ(RN ) ≤ 1

�

endowed with the following topology τ

(uε, µε)
τ→ (u, µ)

def⇔
�
uε � u in L

2∗(Ω)

µε
∗
� µ in M(RN ).

28

The topology

Fε(u) =
�

Ω
|u|2

∗−ε
dx

the setting for the limit functional

the constrain on the Dirichlet energy of uε : �∇uε�2L2(Ω) ≤ 1

∃µ ∈M(Ω) such that µ(Ω) ≤ 1 and |∇uε|2
∗
� µ in M(Ω)

Sobolev embedding

u ∈ H
1
0 (Ω) such that (up to subsequences) uε � u in L

2∗ .

semi-continuity of L
2-norm

µ ≥ |∇u|2, so we can always decompose µ in such way:

µ = |∇u|2 + µ̃ +
∞�

i=0

µiδxi ,

the non-atomic part

µi ∈ [0, 1] and xi ∈ Ω : xi �= xj if i �= j

The setting for the limit functional is the space X defined by

X = X(Ω) :=
�
(u, µ) ∈ H

1
0 (Ω)×M(Ω) : µ ≥ |∇u|2, µ(Ω) ≤ 1

�

endowed with the following topology τ

(uε, µε)
τ→ (u, µ) def⇔

�
uε � u in L

2∗(Ω)
µε

∗
� µ in M(Ω).

Fε(u, µ) :=





Fε(u) =

�

Ω
|u|2

∗−ε
dx if (u, µ) ∈ X : µ = |∇u|2

0 otherwise

6

�

RN

|(−∆)
s
2u|2dx

�(−∆)
s
2uε�2L2(RN ) ≤ 1

∃ µ ∈ M(RN ) such that µ(RN ) ≤ 1 and |(−∆)
s
2uε|2

∗
� µ in M(RN )

H
s
0(Ω)

µ = |(−∆)
s
2u|2

The setting for the limit functional is the space X defined by

X = X(Ω) :=
�
(u, µ) ∈ H

s
0(Ω)×M(RN ) : µ ≥ |(−∆)

s
2u|2, µ(RN ) ≤ 1

�

endowed with the following topology τ

(uε, µε)
τ→ (u, µ)

def⇔
�
uε � u in L

2∗(Ω)

µε
∗
� µ in M(RN ).

28

The topology

Fε(u) =
�

Ω
|u|2

∗−ε
dx

the setting for the limit functional

the constrain on the Dirichlet energy of uε : �∇uε�2L2(Ω) ≤ 1

∃µ ∈M(Ω) such that µ(Ω) ≤ 1 and |∇uε|2
∗
� µ in M(Ω)

Sobolev embedding

u ∈ H
1
0 (Ω) such that (up to subsequences) uε � u in L

2∗ .

semi-continuity of L
2-norm

µ ≥ |∇u|2, so we can always decompose µ in such way:

µ = |∇u|2 + µ̃ +
∞�

i=0

µiδxi ,

the non-atomic part

µi ∈ [0, 1] and xi ∈ Ω : xi �= xj if i �= j

The setting for the limit functional is the space X defined by

X = X(Ω) :=
�
(u, µ) ∈ H

1
0 (Ω)×M(Ω) : µ ≥ |∇u|2, µ(Ω) ≤ 1

�

endowed with the following topology τ

(uε, µε)
τ→ (u, µ) def⇔

�
uε � u in L

2∗(Ω)
µε

∗
� µ in M(Ω).

Fε(u, µ) :=





Fε(u) =

�

Ω
|u|2

∗−ε
dx if (u, µ) ∈ X : µ = |∇u|2

0 otherwise

6

Corollary 1 (concentration of the optimizing sequences) - proof 



Giampiero Palatucci Optimization Days - Università Politecnica delle Marche June 6-8, 2011

The concentration result - proof

Proof of (i)

Γ+

Fε → F

every maximizing sequence for Fε converges to a maximizer of F

and we have the convergence of maxima

Thus, it suffices to prove that

F (u, µ) ≤ S∗, for every (u, µ) ∈ X

and the equality is achieved if and only if (u, µ) = (0, δx0), with x0 ∈ Ω.
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Sobolev inequality + C-C-A
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s
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s
2u�2

∗

L2(Ω), ∀u ∈ H
s
0(Ω).

Then (uε) concentrates at one point x0 ∈ Ω.

The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.

Take a maximizing sequence for the critical Sobolev inequality (un) ∈ H
s
0(Ω).

Then
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where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
2∗
2 on R+, for every fixed real s, the terms in

the right hand side of the inequality (??) are bounded from above by the critical Sobolev

constant. We have
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.

Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.

32

We have

Let (uε) ∈ H
s
0(Ω) be a maximizing sequence for the critical Sobolev inequality

�u�2
∗

L2∗(Ω) ≤ S
∗�(−∆)

s
2u�2

∗

L2(Ω), ∀u ∈ H
s
0(Ω).

Then (uε) concentrates at one point x0 ∈ Ω.

The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.

Take a maximizing sequence for the critical Sobolev inequality (un) ∈ H
s
0(Ω).

Then

�

Ω
|un|2

∗
dx → S

∗ and so |un|2
∗
dx

∗
� ν ∈ M(RN ) with ν(Ω) = S

∗.

We have

S
∗ = ν(Ω) =

�

Ω
|u|2

∗
dx+

�

i∈I

νi.

By the Sobolev inequality and by Theorem ??-(ii)-(iii), we get

�

Ω
|u|2

∗
dx+

�

i∈I

νi ≤ S
∗
��

Ω
|(−∆)

s
2u|2dx

�2∗
2

+ S
∗
�

i∈I

µ
2∗
2
i ,

where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
2∗
2 on R+, for every fixed real s, the terms in

the right hand side of the inequality (??) are bounded from above by the critical Sobolev

constant. We have

S
∗
��

Ω
|(−∆)

s
2u|2dx

�2∗
2

+ S
∗
�

i∈I

µ
2∗
2
i ≤ S

∗

��

Ω
|(−∆)

s
2u|2dx+

�

i∈I

µi

�2∗
2

≤ S
∗
µ(Ω) ≤ S

∗
.

Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.

32

Theorem 1 (C-C-A)
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The concentration result - proof

Proof of (i)

Γ+
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Sobolev inequality + C-C-A
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2u�2

∗

L2(Ω), ∀u ∈ H
s
0(Ω).

Then (uε) concentrates at one point x0 ∈ Ω.

The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.
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where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
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2 on R+, for every fixed real s, the terms in

the right hand side of the inequality (??) are bounded from above by the critical Sobolev
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Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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Theorem 1 (C-C-A)
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The concentration result - proof

Proof of (i)

Γ+

Fε → F

every maximizing sequence for Fε converges to a maximizer of F

and we have the convergence of maxima

Thus, it suffices to prove that

F (u, µ) ≤ S∗, for every (u, µ) ∈ X

and the equality is achieved if and only if (u, µ) = (0, δx0), with x0 ∈ Ω.
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Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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and we have the convergence of maxima

Thus, it suffices to prove that

F (u, µ) ≤ S∗, for every (u, µ) ∈ X

and the equality is achieved if and only if (u, µ) = (0, δx0), with x0 ∈ Ω.
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Sobolev inequality

F (u, µ) ≡
�

Ω
|u|2

∗
dx + S∗

∞�

i=0

µ
2∗
2

i

≤ S∗
��

Ω
|∇u|2dx

� 2∗
2

+ S∗
∞�

i=o

µ
2∗
2

i

convexity of the function t �→ t
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where we also utilized the fact
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11

8

Sobolev inequality + C-C-A
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s
2u�2

∗

L2(Ω), ∀u ∈ H
s
0(Ω).

Then (uε) concentrates at one point x0 ∈ Ω.

The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.

Take a maximizing sequence for the critical Sobolev inequality (un) ∈ H
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where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in
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Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
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2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
2∗
2 on R+, for every fixed real s, the terms in

the right hand side of the inequality (??) are bounded from above by the critical Sobolev

constant. We have
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Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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Let (uε) ∈ H
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∗

L2(Ω), ∀u ∈ H
s
0(Ω).

Then (uε) concentrates at one point x0 ∈ Ω.

The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.
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0(Ω).
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where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
2∗
2 on R+, for every fixed real s, the terms in

the right hand side of the inequality (??) are bounded from above by the critical Sobolev

constant. We have
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Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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0(Ω).

Then (uε) concentrates at one point x0 ∈ Ω.

The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.
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where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
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Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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
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The concentration result - proof

Proof of (i)

Γ+

Fε → F

every maximizing sequence for Fε converges to a maximizer of F

and we have the convergence of maxima

Thus, it suffices to prove that

F (u, µ) ≤ S∗, for every (u, µ) ∈ X

and the equality is achieved if and only if (u, µ) = (0, δx0), with x0 ∈ Ω.
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Sobolev inequality + C-C-A

Let (uε) ∈ H
s
0(Ω) be a maximizing sequence for the critical Sobolev inequality

�u�2
∗

L2∗(Ω) ≤ S
∗�(−∆)

s
2u�2

∗

L2(Ω), ∀u ∈ H
s
0(Ω).

Then (uε) concentrates at one point x0 ∈ Ω.

The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.

Take a maximizing sequence for the critical Sobolev inequality (un) ∈ H
s
0(Ω).

Then

�

Ω
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∗
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∗.

We have
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By the Sobolev inequality and by Theorem ??-(ii)-(iii), we get
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where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
2∗
2 on R+, for every fixed real s, the terms in

the right hand side of the inequality (??) are bounded from above by the critical Sobolev

constant. We have
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Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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.

Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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Theorem 1 (C-C-A)

Let (uε) ∈ H
s
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s
0(Ω).

Then (uε) concentrates at one point x0 ∈ Ω.

The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.
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s
0(Ω).
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where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
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.

Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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Let (uε) ∈ H
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Then (uε) concentrates at one point x0 ∈ Ω.

The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.

Take a maximizing sequence for the critical Sobolev inequality (un) ∈ H
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0(Ω).

Then
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We have
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where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
2∗
2 on R+, for every fixed real s, the terms in

the right hand side of the inequality (??) are bounded from above by the critical Sobolev

constant. We have
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.

Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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Let (uε) ∈ H
s
0(Ω) be a maximizing sequence for the critical Sobolev inequality
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∗�(−∆)

s
2u�2

∗

L2(Ω), ∀u ∈ H
s
0(Ω).

Then (uε) concentrates at one point x0 ∈ Ω.

The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.

Take a maximizing sequence for the critical Sobolev inequality (un) ∈ H
s
0(Ω).

Then
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|un|2

∗
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∗ and so |un|2
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� ν ∈ M(RN ) with ν(Ω) = S

∗.

We have

S
∗ = ν(Ω) =
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|u|2
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By the Sobolev inequality and by Theorem ??-(ii)-(iii), we get
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where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
2∗
2 on R+, for every fixed real s, the terms in

the right hand side of the inequality (??) are bounded from above by the critical Sobolev

constant. We have
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.

Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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Let (uε) ∈ H
s
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L2(Ω), ∀u ∈ H
s
0(Ω).

Then (uε) concentrates at one point x0 ∈ Ω.

The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.

Take a maximizing sequence for the critical Sobolev inequality (un) ∈ H
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0(Ω).

Then
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We have
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where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
2∗
2 on R+, for every fixed real s, the terms in

the right hand side of the inequality (??) are bounded from above by the critical Sobolev

constant. We have
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.

Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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Sobolev inequality is not attained on bounded domains u is zero.

The topology

Fε(u) =
�

Ω
|u|2

∗−ε
dx

the setting for the limit functional

the constrain on the Dirichlet energy of uε : �∇uε�2L2(Ω) ≤ 1

∃µ ∈M(Ω) such that µ(Ω) ≤ 1 and |∇uε|2
∗
� µ in M(Ω)

Sobolev embedding

u ∈ H
1
0 (Ω) such that (up to subsequences) uε � u in L

2∗ .

semi-continuity of L
2-norm

µ ≥ |∇u|2, so we can always decompose µ in such way:

µ = |∇u|2 + µ̃ +
∞�

i=0

µiδxi ,

the non-atomic part

µi ∈ [0, 1] and xi ∈ Ω : xi �= xj if i �= j

The setting for the limit functional is the space X defined by

X = X(Ω) :=
�
(u, µ) ∈ H

1
0 (Ω)×M(Ω) : µ ≥ |∇u|2, µ(Ω) ≤ 1

�

endowed with the following topology τ

(uε, µε)
τ→ (u, µ) def⇔

�
uε � u in L

2∗(Ω)
µε

∗
� µ in M(Ω).

Fε(u, µ) :=





Fε(u) =

�

Ω
|u|2

∗−ε
dx if (u, µ) ∈ X : µ = |∇u|2

0 otherwise

6

�

RN

|(−∆)
s
2u|2dx

�(−∆)
s
2uε�2L2(RN ) ≤ 1

∃ µ ∈ M(RN ) such that µ(RN ) ≤ 1 and |(−∆)
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∗
� µ in M(RN )

H
s
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2u|2
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�
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s
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s
2u|2, µ(RN ) ≤ 1

�
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(uε, µε)
τ→ (u, µ)
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�
uε � u in L

2∗(Ω)

µε
∗
� µ in M(RN ).
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1
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µ = |∇u|2 + µ̃ +
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µiδxi ,

the non-atomic part

µi ∈ [0, 1] and xi ∈ Ω : xi �= xj if i �= j

The setting for the limit functional is the space X defined by
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1
0 (Ω)×M(Ω) : µ ≥ |∇u|2, µ(Ω) ≤ 1

�
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�
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2∗(Ω)
µε
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0 otherwise
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The concentration result - proof

Proof of (i)

Γ+

Fε → F

every maximizing sequence for Fε converges to a maximizer of F

and we have the convergence of maxima

Thus, it suffices to prove that

F (u, µ) ≤ S∗, for every (u, µ) ∈ X

and the equality is achieved if and only if (u, µ) = (0, δx0), with x0 ∈ Ω.

(�)

For every (u, µ) ∈ X

Sobolev inequality

F (u, µ) ≡
�

Ω
|u|2

∗
dx + S∗

∞�

i=0

µ
2∗
2

i

≤ S∗
��

Ω
|∇u|2dx

� 2∗
2

+ S∗
∞�

i=o

µ
2∗
2

i

convexity of the function t �→ t
2∗
2

F (u, µ) ≤ S∗
��

Ω
|∇u|2dx +

∞�

i=o

µi

� 2∗
2

≤ S∗

where we also utilized the fact
�

Ω
|∇u|2dx +

∞�

i=0

µi ≤ µ(Ω) ≤ 1.
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Sobolev inequality + C-C-A

Let (uε) ∈ H
s
0(Ω) be a maximizing sequence for the critical Sobolev inequality

�u�2
∗

L2∗(Ω) ≤ S
∗�(−∆)

s
2u�2

∗

L2(Ω), ∀u ∈ H
s
0(Ω).

Then (uε) concentrates at one point x0 ∈ Ω.

The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.

Take a maximizing sequence for the critical Sobolev inequality (un) ∈ H
s
0(Ω).

Then

�

Ω
|un|2

∗
dx → S

∗ and so |un|2
∗
dx

∗
� ν ∈ M(RN ) with ν(Ω) = S

∗.

We have

S
∗ = ν(Ω) =

�

Ω
|u|2

∗
dx+

�

i∈I

νi.

By the Sobolev inequality and by Theorem ??-(ii)-(iii), we get
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2u|2dx
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�

i∈I

µ
2∗
2
i ,

where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
2∗
2 on R+, for every fixed real s, the terms in

the right hand side of the inequality (??) are bounded from above by the critical Sobolev

constant. We have
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∗
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∗
.

Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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We have

Let (uε) ∈ H
s
0(Ω) be a maximizing sequence for the critical Sobolev inequality

�u�2
∗

L2∗(Ω) ≤ S
∗�(−∆)

s
2u�2

∗

L2(Ω), ∀u ∈ H
s
0(Ω).

Then (uε) concentrates at one point x0 ∈ Ω.

The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.

Take a maximizing sequence for the critical Sobolev inequality (un) ∈ H
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0(Ω).

Then

�

Ω
|un|2

∗
dx → S

∗ and so |un|2
∗
dx

∗
� ν ∈ M(RN ) with ν(Ω) = S
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We have
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where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
2∗
2 on R+, for every fixed real s, the terms in

the right hand side of the inequality (??) are bounded from above by the critical Sobolev

constant. We have
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.

Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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Theorem 1 (C-C-A)

Let (uε) ∈ H
s
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The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.
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where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
2∗
2 on R+, for every fixed real s, the terms in

the right hand side of the inequality (??) are bounded from above by the critical Sobolev
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.

Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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Let (uε) ∈ H
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Then (uε) concentrates at one point x0 ∈ Ω.

The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.
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Then

�

Ω
|un|2

∗
dx → S

∗ and so |un|2
∗
dx

∗
� ν ∈ M(RN ) with ν(Ω) = S
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where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
2∗
2 on R+, for every fixed real s, the terms in

the right hand side of the inequality (??) are bounded from above by the critical Sobolev
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.

Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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Let (uε) ∈ H
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The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.
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∗ and so |un|2
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dx

∗
� ν ∈ M(RN ) with ν(Ω) = S

∗.

We have

S
∗ = ν(Ω) =
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By the Sobolev inequality and by Theorem ??-(ii)-(iii), we get
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where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
2∗
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.

Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the
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, it follows that u is zero.

The function t �→ t
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Hence, concentration occurs at one point x0 ∈ Ω.

32

Sobolev inequality is not attained on bounded domains u is zero.
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where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
2∗
2 on R+, for every fixed real s, the terms in
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Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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Let (uε) ∈ H
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0(Ω).

Then (uε) concentrates at one point x0 ∈ Ω.

The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.
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0(Ω).

Then
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∗.

We have
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By the Sobolev inequality and by Theorem ??-(ii)-(iii), we get
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where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
2∗
2 on R+, for every fixed real s, the terms in

the right hand side of the inequality (??) are bounded from above by the critical Sobolev

constant. We have
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.

Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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.

The topology

Fε(u) =
�

Ω
|u|2

∗−ε
dx

the setting for the limit functional

the constrain on the Dirichlet energy of uε : �∇uε�2L2(Ω) ≤ 1

∃µ ∈M(Ω) such that µ(Ω) ≤ 1 and |∇uε|2
∗
� µ in M(Ω)

Sobolev embedding

u ∈ H
1
0 (Ω) such that (up to subsequences) uε � u in L

2∗ .

semi-continuity of L
2-norm

µ ≥ |∇u|2, so we can always decompose µ in such way:

µ = |∇u|2 + µ̃ +
∞�

i=0

µiδxi ,

the non-atomic part

µi ∈ [0, 1] and xi ∈ Ω : xi �= xj if i �= j

The setting for the limit functional is the space X defined by

X = X(Ω) :=
�
(u, µ) ∈ H

1
0 (Ω)×M(Ω) : µ ≥ |∇u|2, µ(Ω) ≤ 1

�

endowed with the following topology τ

(uε, µε)
τ→ (u, µ) def⇔

�
uε � u in L

2∗(Ω)
µε

∗
� µ in M(Ω).

Fε(u, µ) :=





Fε(u) =

�

Ω
|u|2

∗−ε
dx if (u, µ) ∈ X : µ = |∇u|2

0 otherwise
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�

RN

|(−∆)
s
2u|2dx

�(−∆)
s
2uε�2L2(RN ) ≤ 1

∃ µ ∈ M(RN ) such that µ(RN ) ≤ 1 and |(−∆)
s
2uε|2

∗
� µ in M(RN )

H
s
0(Ω)

µ = |(−∆)
s
2u|2

The setting for the limit functional is the space X defined by

X = X(Ω) :=
�
(u, µ) ∈ H

s
0(Ω)×M(RN ) : µ ≥ |(−∆)

s
2u|2, µ(RN ) ≤ 1

�

endowed with the following topology τ

(uε, µε)
τ→ (u, µ)

def⇔
�
uε � u in L

2∗(Ω)

µε
∗
� µ in M(RN ).
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The topology

Fε(u) =
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Ω
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∗−ε
dx

the setting for the limit functional

the constrain on the Dirichlet energy of uε : �∇uε�2L2(Ω) ≤ 1

∃µ ∈M(Ω) such that µ(Ω) ≤ 1 and |∇uε|2
∗
� µ in M(Ω)

Sobolev embedding

u ∈ H
1
0 (Ω) such that (up to subsequences) uε � u in L

2∗ .

semi-continuity of L
2-norm

µ ≥ |∇u|2, so we can always decompose µ in such way:

µ = |∇u|2 + µ̃ +
∞�

i=0

µiδxi ,

the non-atomic part

µi ∈ [0, 1] and xi ∈ Ω : xi �= xj if i �= j

The setting for the limit functional is the space X defined by

X = X(Ω) :=
�
(u, µ) ∈ H

1
0 (Ω)×M(Ω) : µ ≥ |∇u|2, µ(Ω) ≤ 1

�

endowed with the following topology τ

(uε, µε)
τ→ (u, µ) def⇔

�
uε � u in L

2∗(Ω)
µε

∗
� µ in M(Ω).

Fε(u, µ) :=





Fε(u) =

�

Ω
|u|2

∗−ε
dx if (u, µ) ∈ X : µ = |∇u|2

0 otherwise
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Corollary 1 (concentration of the optimizing sequences) - proof 
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The concentration result - proof

Proof of (i)

Γ+

Fε → F

every maximizing sequence for Fε converges to a maximizer of F

and we have the convergence of maxima

Thus, it suffices to prove that

F (u, µ) ≤ S∗, for every (u, µ) ∈ X

and the equality is achieved if and only if (u, µ) = (0, δx0), with x0 ∈ Ω.

(�)

For every (u, µ) ∈ X

Sobolev inequality

F (u, µ) ≡
�

Ω
|u|2

∗
dx + S∗

∞�

i=0

µ
2∗
2

i

≤ S∗
��

Ω
|∇u|2dx

� 2∗
2

+ S∗
∞�

i=o

µ
2∗
2

i

convexity of the function t �→ t
2∗
2

F (u, µ) ≤ S∗
��

Ω
|∇u|2dx +

∞�

i=o

µi

� 2∗
2

≤ S∗

where we also utilized the fact
�

Ω
|∇u|2dx +

∞�

i=0

µi ≤ µ(Ω) ≤ 1.
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8

Sobolev inequality + C-C-A

Let (uε) ∈ H
s
0(Ω) be a maximizing sequence for the critical Sobolev inequality

�u�2
∗

L2∗(Ω) ≤ S
∗�(−∆)

s
2u�2

∗

L2(Ω), ∀u ∈ H
s
0(Ω).

Then (uε) concentrates at one point x0 ∈ Ω.

The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.

Take a maximizing sequence for the critical Sobolev inequality (un) ∈ H
s
0(Ω).

Then

�

Ω
|un|2

∗
dx → S

∗ and so |un|2
∗
dx

∗
� ν ∈ M(RN ) with ν(Ω) = S

∗.

We have

S
∗ = ν(Ω) =

�

Ω
|u|2

∗
dx+

�

i∈I

νi.

By the Sobolev inequality and by Theorem ??-(ii)-(iii), we get

�

Ω
|u|2

∗
dx+

�

i∈I

νi ≤ S
∗
��

Ω
|(−∆)

s
2u|2dx

�2∗
2

+ S
∗
�

i∈I

µ
2∗
2
i ,

where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
2∗
2 on R+, for every fixed real s, the terms in

the right hand side of the inequality (??) are bounded from above by the critical Sobolev

constant. We have

S
∗
��

Ω
|(−∆)

s
2u|2dx

�2∗
2

+ S
∗
�

i∈I

µ
2∗
2
i ≤ S

∗

��

Ω
|(−∆)

s
2u|2dx+

�

i∈I

µi

�2∗
2

≤ S
∗
µ(Ω) ≤ S

∗
.

Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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We have

Let (uε) ∈ H
s
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�u�2
∗

L2∗(Ω) ≤ S
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s
2u�2

∗

L2(Ω), ∀u ∈ H
s
0(Ω).

Then (uε) concentrates at one point x0 ∈ Ω.

The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.
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0(Ω).

Then
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i ,

where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
2∗
2 on R+, for every fixed real s, the terms in

the right hand side of the inequality (??) are bounded from above by the critical Sobolev

constant. We have
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.

Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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Theorem 1 (C-C-A)

Let (uε) ∈ H
s
0(Ω) be a maximizing sequence for the critical Sobolev inequality
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The result easily follows from the concentration-compactness alternative in Theorem
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where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
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2uε|2dx.

By the convexity of the function t �→ t
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.

Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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Let (uε) ∈ H
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where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
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.

Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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Let (uε) ∈ H
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0(Ω).

Then (uε) concentrates at one point x0 ∈ Ω.

The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.
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Then
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where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
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2 on R+, for every fixed real s, the terms in
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.

Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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F (u, µ) ≤ S∗
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Ω
|(−∆)

s
2u|2dx+

∞�

i=0

µi

�2∗
2

≤ S∗

where we also utilized the fact

�

Ω
|(−∆)

s
2u|2dx+

∞�

i=0

µi ≤ µ(RN ) ≤ 1.
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Let (uε) ∈ H
s
0(Ω) be a maximizing sequence for the critical Sobolev inequality

�u�2
∗

L2∗(Ω) ≤ S
∗�(−∆)

s
2u�2

∗

L2(Ω), ∀u ∈ H
s
0(Ω).

Then (uε) concentrates at one point x0 ∈ Ω.

The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.

Take a maximizing sequence for the critical Sobolev inequality (un) ∈ H
s
0(Ω).

Then

�

Ω
|un|2

∗
dx → S

∗ and so |un|2
∗
dx

∗
� ν ∈ M(RN ) with ν(Ω) = S

∗.

We have

S
∗ = ν(Ω) =

�

Ω
|u|2

∗
dx+

�

i∈I

νi.

By the Sobolev inequality and by Theorem ??-(ii)-(iii), we get
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i∈I

µ
2∗
2
i ,

where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
2∗
2 on R+, for every fixed real s, the terms in

the right hand side of the inequality (??) are bounded from above by the critical Sobolev

constant. We have

S
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s
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2u|2dx+

�

i∈I
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�2∗
2

≤ S
∗
µ(Ω) ≤ S

∗
.

Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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Sobolev inequality is not attained on bounded domains u is zero.

Let (uε) ∈ H
s
0(Ω) be a maximizing sequence for the critical Sobolev inequality
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s
2u�2

∗

L2(Ω), ∀u ∈ H
s
0(Ω).

Then (uε) concentrates at one point x0 ∈ Ω.

The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.

Take a maximizing sequence for the critical Sobolev inequality (un) ∈ H
s
0(Ω).

Then
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Ω
|un|2

∗
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∗ and so |un|2
∗
dx

∗
� ν ∈ M(RN ) with ν(Ω) = S

∗.

We have

S
∗ = ν(Ω) =

�

Ω
|u|2

∗
dx+
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i∈I

νi.

By the Sobolev inequality and by Theorem ??-(ii)-(iii), we get
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2u|2dx
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+ S
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i∈I

µ
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i ,

where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
2∗
2 on R+, for every fixed real s, the terms in

the right hand side of the inequality (??) are bounded from above by the critical Sobolev

constant. We have
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�
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∗
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|(−∆)
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2u|2dx+

�

i∈I

µi

�2∗
2

≤ S
∗
µ(Ω) ≤ S

∗
.

Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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Let (uε) ∈ H
s
0(Ω) be a maximizing sequence for the critical Sobolev inequality

�u�2
∗

L2∗(Ω) ≤ S
∗�(−∆)

s
2u�2

∗

L2(Ω), ∀u ∈ H
s
0(Ω).

Then (uε) concentrates at one point x0 ∈ Ω.

The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.

Take a maximizing sequence for the critical Sobolev inequality (un) ∈ H
s
0(Ω).

Then

�

Ω
|un|2

∗
dx → S

∗ and so |un|2
∗
dx

∗
� ν ∈ M(RN ) with ν(Ω) = S

∗.

We have

S
∗ = ν(Ω) =

�

Ω
|u|2

∗
dx+

�

i∈I

νi.

By the Sobolev inequality and by Theorem ??-(ii)-(iii), we get

�

Ω
|u|2

∗
dx+

�

i∈I

νi ≤ S
∗
��

Ω
|(−∆)

s
2u|2dx

�2∗
2

+ S
∗
�

i∈I

µ
2∗
2
i ,

where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
2∗
2 on R+, for every fixed real s, the terms in

the right hand side of the inequality (??) are bounded from above by the critical Sobolev

constant. We have

S
∗
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Ω
|(−∆)

s
2u|2dx

�2∗
2

+ S
∗
�

i∈I

µ
2∗
2
i ≤ S

∗

��

Ω
|(−∆)

s
2u|2dx+

�

i∈I

µi

�2∗
2

≤ S
∗
µ(Ω) ≤ S

∗
.

Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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.

�

RN

|(−∆)
s
2u|2dx

�(−∆)
s
2uε�2L2(RN ) ≤ 1

∃ µ ∈ M(RN ) such that µ(RN ) ≤ 1 and |(−∆)
s
2uε|2

∗
� µ in M(RN )

H
s
0(Ω)

µ = |(−∆)
s
2u|2

The setting for the limit functional is the space X defined by

X = X(Ω) :=
�
(u, µ) ∈ H

s
0(Ω)×M(RN ) : µ ≥ |(−∆)

s
2u|2, µ(RN ) ≤ 1

�

endowed with the following topology τ

(uε, µε)
τ→ (u, µ)

def⇔
�
uε � u in L

2∗(Ω)

µε
∗
� µ in M(RN ).

28

The topology

Fε(u) =
�

Ω
|u|2

∗−ε
dx

the setting for the limit functional

the constrain on the Dirichlet energy of uε : �∇uε�2L2(Ω) ≤ 1

∃µ ∈M(Ω) such that µ(Ω) ≤ 1 and |∇uε|2
∗
� µ in M(Ω)

Sobolev embedding

u ∈ H
1
0 (Ω) such that (up to subsequences) uε � u in L

2∗ .

semi-continuity of L
2-norm

µ ≥ |∇u|2, so we can always decompose µ in such way:

µ = |∇u|2 + µ̃ +
∞�

i=0

µiδxi ,

the non-atomic part

µi ∈ [0, 1] and xi ∈ Ω : xi �= xj if i �= j

The setting for the limit functional is the space X defined by

X = X(Ω) :=
�
(u, µ) ∈ H

1
0 (Ω)×M(Ω) : µ ≥ |∇u|2, µ(Ω) ≤ 1

�

endowed with the following topology τ

(uε, µε)
τ→ (u, µ) def⇔

�
uε � u in L

2∗(Ω)
µε

∗
� µ in M(Ω).

Fε(u, µ) :=





Fε(u) =

�

Ω
|u|2

∗−ε
dx if (u, µ) ∈ X : µ = |∇u|2

0 otherwise

6

Corollary 1 (concentration of the optimizing sequences) - proof 
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The concentration result - proof

Proof of (i)

Γ+

Fε → F

every maximizing sequence for Fε converges to a maximizer of F

and we have the convergence of maxima

Thus, it suffices to prove that

F (u, µ) ≤ S∗, for every (u, µ) ∈ X

and the equality is achieved if and only if (u, µ) = (0, δx0), with x0 ∈ Ω.

(�)

For every (u, µ) ∈ X

Sobolev inequality

F (u, µ) ≡
�

Ω
|u|2

∗
dx + S∗

∞�

i=0

µ
2∗
2

i

≤ S∗
��

Ω
|∇u|2dx

� 2∗
2

+ S∗
∞�

i=o

µ
2∗
2

i

convexity of the function t �→ t
2∗
2

F (u, µ) ≤ S∗
��

Ω
|∇u|2dx +

∞�

i=o

µi

� 2∗
2

≤ S∗

where we also utilized the fact
�

Ω
|∇u|2dx +

∞�

i=0

µi ≤ µ(Ω) ≤ 1.

11

8

Sobolev inequality + C-C-A

Let (uε) ∈ H
s
0(Ω) be a maximizing sequence for the critical Sobolev inequality

�u�2
∗

L2∗(Ω) ≤ S
∗�(−∆)

s
2u�2

∗

L2(Ω), ∀u ∈ H
s
0(Ω).

Then (uε) concentrates at one point x0 ∈ Ω.

The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.

Take a maximizing sequence for the critical Sobolev inequality (un) ∈ H
s
0(Ω).

Then

�

Ω
|un|2

∗
dx → S

∗ and so |un|2
∗
dx

∗
� ν ∈ M(RN ) with ν(Ω) = S

∗.

We have

S
∗ = ν(Ω) =

�

Ω
|u|2

∗
dx+

�

i∈I

νi.

By the Sobolev inequality and by Theorem ??-(ii)-(iii), we get

�

Ω
|u|2

∗
dx+

�

i∈I

νi ≤ S
∗
��

Ω
|(−∆)

s
2u|2dx

�2∗
2

+ S
∗
�

i∈I

µ
2∗
2
i ,

where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
2∗
2 on R+, for every fixed real s, the terms in

the right hand side of the inequality (??) are bounded from above by the critical Sobolev

constant. We have

S
∗
��

Ω
|(−∆)

s
2u|2dx

�2∗
2

+ S
∗
�

i∈I

µ
2∗
2
i ≤ S

∗

��

Ω
|(−∆)

s
2u|2dx+

�

i∈I

µi

�2∗
2

≤ S
∗
µ(Ω) ≤ S

∗
.

Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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We have

Let (uε) ∈ H
s
0(Ω) be a maximizing sequence for the critical Sobolev inequality

�u�2
∗

L2∗(Ω) ≤ S
∗�(−∆)

s
2u�2

∗

L2(Ω), ∀u ∈ H
s
0(Ω).

Then (uε) concentrates at one point x0 ∈ Ω.

The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.

Take a maximizing sequence for the critical Sobolev inequality (un) ∈ H
s
0(Ω).

Then

�

Ω
|un|2

∗
dx → S

∗ and so |un|2
∗
dx

∗
� ν ∈ M(RN ) with ν(Ω) = S

∗.

We have

S
∗ = ν(Ω) =

�

Ω
|u|2

∗
dx+

�

i∈I

νi.

By the Sobolev inequality and by Theorem ??-(ii)-(iii), we get

�

Ω
|u|2

∗
dx+

�

i∈I

νi ≤ S
∗
��

Ω
|(−∆)

s
2u|2dx

�2∗
2

+ S
∗
�

i∈I

µ
2∗
2
i ,

where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
2∗
2 on R+, for every fixed real s, the terms in

the right hand side of the inequality (??) are bounded from above by the critical Sobolev

constant. We have

S
∗
��

Ω
|(−∆)

s
2u|2dx

�2∗
2

+ S
∗
�

i∈I

µ
2∗
2
i ≤ S

∗

��

Ω
|(−∆)

s
2u|2dx+

�

i∈I

µi

�2∗
2

≤ S
∗
µ(Ω) ≤ S

∗
.

Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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Theorem 1 (C-C-A)

Let (uε) ∈ H
s
0(Ω) be a maximizing sequence for the critical Sobolev inequality

�u�2
∗

L2∗(Ω) ≤ S
∗�(−∆)

s
2u�2

∗

L2(Ω), ∀u ∈ H
s
0(Ω).

Then (uε) concentrates at one point x0 ∈ Ω.

The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.

Take a maximizing sequence for the critical Sobolev inequality (un) ∈ H
s
0(Ω).

Then

�

Ω
|un|2

∗
dx → S

∗ and so |un|2
∗
dx

∗
� ν ∈ M(RN ) with ν(Ω) = S

∗.

We have

S
∗ = ν(Ω) =

�

Ω
|u|2

∗
dx+

�

i∈I

νi.

By the Sobolev inequality and by Theorem ??-(ii)-(iii), we get

�

Ω
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∗
dx+

�

i∈I
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∗
��

Ω
|(−∆)

s
2u|2dx

�2∗
2

+ S
∗
�

i∈I

µ
2∗
2
i ,

where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
2∗
2 on R+, for every fixed real s, the terms in

the right hand side of the inequality (??) are bounded from above by the critical Sobolev

constant. We have

S
∗
��

Ω
|(−∆)

s
2u|2dx

�2∗
2

+ S
∗
�

i∈I

µ
2∗
2
i ≤ S

∗

��

Ω
|(−∆)

s
2u|2dx+

�

i∈I

µi

�2∗
2

≤ S
∗
µ(Ω) ≤ S

∗
.

Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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Let (uε) ∈ H
s
0(Ω) be a maximizing sequence for the critical Sobolev inequality

�u�2
∗

L2∗(Ω) ≤ S
∗�(−∆)

s
2u�2

∗

L2(Ω), ∀u ∈ H
s
0(Ω).

Then (uε) concentrates at one point x0 ∈ Ω.

The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.

Take a maximizing sequence for the critical Sobolev inequality (un) ∈ H
s
0(Ω).

Then

�

Ω
|un|2

∗
dx → S

∗ and so |un|2
∗
dx

∗
� ν ∈ M(RN ) with ν(Ω) = S

∗.

We have

S
∗ = ν(Ω) =

�

Ω
|u|2

∗
dx+

�

i∈I

νi.

By the Sobolev inequality and by Theorem ??-(ii)-(iii), we get

�

Ω
|u|2

∗
dx+

�

i∈I
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∗
��

Ω
|(−∆)

s
2u|2dx

�2∗
2

+ S
∗
�

i∈I

µ
2∗
2
i ,

where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
2∗
2 on R+, for every fixed real s, the terms in

the right hand side of the inequality (??) are bounded from above by the critical Sobolev

constant. We have

S
∗
��

Ω
|(−∆)

s
2u|2dx

�2∗
2

+ S
∗
�

i∈I

µ
2∗
2
i ≤ S

∗

��

Ω
|(−∆)

s
2u|2dx+

�

i∈I

µi

�2∗
2

≤ S
∗
µ(Ω) ≤ S

∗
.

Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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Let (uε) ∈ H
s
0(Ω) be a maximizing sequence for the critical Sobolev inequality

�u�2
∗

L2∗(Ω) ≤ S
∗�(−∆)

s
2u�2

∗

L2(Ω), ∀u ∈ H
s
0(Ω).

Then (uε) concentrates at one point x0 ∈ Ω.

The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.

Take a maximizing sequence for the critical Sobolev inequality (un) ∈ H
s
0(Ω).

Then

�

Ω
|un|2

∗
dx → S

∗ and so |un|2
∗
dx

∗
� ν ∈ M(RN ) with ν(Ω) = S

∗.

We have

S
∗ = ν(Ω) =

�

Ω
|u|2

∗
dx+

�

i∈I

νi.

By the Sobolev inequality and by Theorem ??-(ii)-(iii), we get

�

Ω
|u|2

∗
dx+

�

i∈I

νi ≤ S
∗
��

Ω
|(−∆)

s
2u|2dx

�2∗
2

+ S
∗
�

i∈I

µ
2∗
2
i ,

where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
2∗
2 on R+, for every fixed real s, the terms in

the right hand side of the inequality (??) are bounded from above by the critical Sobolev

constant. We have

S
∗
��

Ω
|(−∆)

s
2u|2dx

�2∗
2

+ S
∗
�

i∈I

µ
2∗
2
i ≤ S

∗

��

Ω
|(−∆)

s
2u|2dx+

�

i∈I

µi

�2∗
2

≤ S
∗
µ(Ω) ≤ S

∗
.

Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the

Sobolev inequality is not attained on bounded domains

, it follows that u is zero.

The function t �→ t
2∗
2 is strictly convex

Only one of the µi’s can be nonzero.

Hence, concentration occurs at one point x0 ∈ Ω.
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provided σ >
N
2 + 1.

Since ϕ ∈ C
∞
0 (RN ) and the embedding H

s
0(Ω) �→ H

s−1(RN ) is compact for all s ∈ (0, N
2 ).

we conclude that [Lε,ϕ] : Hs
0(Ω) → L

2(RN ) is compact. ✷
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Let (uε) ∈ H
s
0(Ω) be a maximizing sequence for the critical Sobolev inequality

�u�2
∗

L2∗(Ω) ≤ S
∗�(−∆)

s
2u�2

∗

L2(Ω), ∀u ∈ H
s
0(Ω).

Then (uε) concentrates at one point x0 ∈ Ω.

The result easily follows from the concentration-compactness alternative in Theorem

??. The key of the proof is again the well-known convexity argument by Lions.

Take a maximizing sequence for the critical Sobolev inequality (un) ∈ H
s
0(Ω).

Then

�

Ω
|un|2

∗
dx → S

∗ and so |un|2
∗
dx

∗
� ν ∈ M(RN ) with ν(Ω) = S

∗.

We have

S
∗ = ν(Ω) =

�

Ω
|u|2

∗
dx+

�

i∈I

νi.

By the Sobolev inequality and by Theorem ??-(ii)-(iii), we get
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µ
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i ,

where µi are the atomic coefficients of the measure µ ∈ M(RN ), that is the limit in

the sense of measures of the sequence |(−∆)
s
2uε|2dx.

By the convexity of the function t �→ t
2∗
2 on R+, for every fixed real s, the terms in

the right hand side of the inequality (??) are bounded from above by the critical Sobolev

constant. We have
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s
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µ
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2
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∗
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s
2u|2dx+

�

i∈I

µi

�2∗
2

≤ S
∗
µ(Ω) ≤ S

∗
.

Therefore, combining the (??), (??) and (??), we have that all the inequalities must

be equalities and thus, using the fact that the
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Corollary 1 (concentration of the optimizing sequences) - proof 
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Proof of Theorem 1 : a suitable tool

Ω ⊂ RN open subset

Let (un) be a sequence in Hs

0(Ω) weakly converging to u such that
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s
2un|2dx

∗
� µ and |un|2

∗
dx

∗
� ν in M(RN ).

Then, either un → u in L2∗

loc(Ω) or there exists a finite set of distinct points x1, . . . , xk

in Ω and positive numbers ν1, . . . , νk such that we have

ν = |u|2
∗
dx+

k�

j=1

νjδxj , ν2
j
(S∗)2

∗
≥ (S∗)2 .

If in addition Ω is bounded, there exist a positive measure µ̃ ∈ M(RN ) with spt µ̃ ⊂ Ω

and positive numbers µ1, . . . , µk such that

µ = |(−∆)
s
2u|2dx+ µ̃+

k�

j=1

µjδxj , νj ≤ S∗ µ
2∗
2
j

.

Let Ω ⊂ RN a bounded open set and let ϕ ∈ C∞
0 (RN ). Then

ϕ((−∆)s/2un)− (−∆)s/2(ϕun) → 0 in L2(RN )

whenever un � 0 in Hs

0(Ω) as n → ∞, i.e.,

the commutator [ϕ, (−∆)s/2] : Hs

0(Ω) → L2(RN ) is a compact operator.

Let L = (−∆)s/2 and for each ε > 0 set Lε = (εId − ∆)s/2. Clearly by conjugation

with Fourier transform we have

Lu = F−1 ◦M|ξ|s ◦ F(u) , Lεu = F−1 ◦M(|ξ|2+ε)s/2 ◦ F(u)

thus, Lε : Hs(Rn) → L2(RN ) is bounded operator.

Estimating the norm in L(Hs, L2) easily yields

�L− Lε� ≤ sup
ξ

|(|ξ|2 + ε)s/2 − |ξ|s|2

(1 + |ξ|2)s
ε→0−→ 0 .

Thus, it is clearly enough to prove that

[Lε,ϕ] : H
s

0(Ω) → L2(RN )

is a compact operator for each ε > 0.

Let Lε = (εId−∆)s/2 and lε(ξ) = (|ξ|2+ε)s/2 the corresponding symbol. Clearly Lε is

a classical pseudodifferential operator of order s, i.e. Lε ∈ OPSs

1,0 (hence Lε ∈ OPBSs

1,1).

Since 0 < s < N

2 , according to [?, Proposition 4.2] we have the following commutator

estimate

�[Lε,ϕ]u�L2(RN ) ≤ C�ϕ�Hσ(RN )�u�Hs−1(RN ) ,

provided σ > N

2 + 1. Since ϕ ∈ C∞
0 (RN ) and the embedding Hs

0(Ω) �→ Hs−1(RN ) is

compact for all s ∈ (0, N

2 ) we conclude that [Lε,ϕ] : Hs

0(Ω) → L2(RN ) is compact, as

desired.
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Lemma [G.P., A. Pisante, 2010]
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Proof of Theorem 1 : a suitable tool
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Let Lε = (εId−∆)s/2 and lε(ξ) = (|ξ|2 + ε)s/2 the corresponding symbol. Clearly

Lε is a classical pseudodifferential operator of order s, i.e. Lε ∈ OPSs

1,0 (hence Lε ∈
OPBSs

1,1).

Since 0 < s < N

2 , according to Taylor (2003) we have the following commutator

estimate

�[Lε,ϕ]u�L2(RN ) ≤ C�ϕ�Hσ(RN )�u�Hs−1(RN ) ,
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Proof of Theorem 1 : a suitable tool

Ω ⊂ RN open subset

Let (un) be a sequence in Hs

0(Ω) weakly converging to u such that

|(−∆)
s
2un|2dx

∗
� µ and |un|2

∗
dx

∗
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∗
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j
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∗
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µ = |(−∆)
s
2u|2dx+ µ̃+

k�

j=1

µjδxj , νj ≤ S∗ µ
2∗
2
j

.

Let Ω ⊂ RN a bounded open set and let ϕ ∈ C∞
0 (RN ). Then

ϕ((−∆)s/2un)− (−∆)s/2(ϕun) → 0 in L2(RN )

whenever un � 0 in Hs

0(Ω) as n → ∞, i.e.,

the commutator [ϕ, (−∆)s/2] : Hs

0(Ω) → L2(RN ) is a compact operator.

Let L = (−∆)s/2 and for each ε > 0 set Lε = (εId − ∆)s/2. Clearly by conjugation

with Fourier transform we have
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a classical pseudodifferential operator of order s, i.e. Lε ∈ OPSs
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Since 0 < s < N

2 , according to [?, Proposition 4.2] we have the following commutator
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�[Lε,ϕ]u�L2(RN ) ≤ C�ϕ�Hσ(RN )�u�Hs−1(RN ) ,

provided σ > N

2 + 1. Since ϕ ∈ C∞
0 (RN ) and the embedding Hs

0(Ω) �→ Hs−1(RN ) is

compact for all s ∈ (0, N

2 ) we conclude that [Lε,ϕ] : Hs

0(Ω) → L2(RN ) is compact, as

desired.
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ε→0−→ 0 .

Thus, it is clearly enough to prove that
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Let Lε = (εId−∆)s/2 and lε(ξ) = (|ξ|2+ε)s/2 the corresponding symbol. Clearly Lε is

a classical pseudodifferential operator of order s, i.e. Lε ∈ OPSs

1,0 (hence Lε ∈ OPBSs

1,1).

Since 0 < s < N

2 , according to [?, Proposition 4.2] we have the following commutator

estimate
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provided σ > N
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0 (RN ) and the embedding Hs
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Lemma [G.P., A. Pisante, 2010]

Proof.

Ω ⊂ RN open subset

Let (un) be a sequence in Hs

0(Ω) weakly converging to u such that

|(−∆)
s
2un|2dx

∗
� µ and |un|2

∗
dx

∗
� ν in M(RN ).

Then, either un → u in L2∗

loc(Ω) or there exists a finite set of distinct points x1, . . . , xk

in Ω and positive numbers ν1, . . . , νk such that we have

ν = |u|2
∗
dx+

k�

j=1

νjδxj , ν2
j
(S∗)2

∗
≥ (S∗)2 .

If in addition Ω is bounded, there exist a positive measure µ̃ ∈ M(RN ) with spt µ̃ ⊂ Ω

and positive numbers µ1, . . . , µk such that

µ = |(−∆)
s
2u|2dx+ µ̃+

k�

j=1

µjδxj , νj ≤ S∗ µ
2∗
2
j
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Let Ω ⊂ RN a bounded open set and let ϕ ∈ C∞
0 (RN ). Then

ϕ((−∆)s/2un)− (−∆)s/2(ϕun) → 0 in L2(RN )

whenever un � 0 in Hs

0(Ω) as n → ∞,

i.e., the commutator [ϕ, (−∆)s/2] : Hs

0(Ω) → L2(RN ) is a compact operator.

Let L = (−∆)s/2. For each ε > 0 we set Lε = (εId−∆)s/2.

By conjugation with Fourier transform

we have

Lu = F−1 ◦M|ξ|s ◦ F(u) , Lεu = F−1 ◦M(|ξ|2+ε)s/2 ◦ F(u)

thus, Lε : Hs(Rn) → L2(RN ) is bounded operator.

Estimating the norm in L(Hs, L2) easily yields

�L− Lε� ≤ sup
ξ

|(|ξ|2 + ε)s/2 − |ξ|s|2

(1 + |ξ|2)s
ε→0−→ 0 .

Thus, it is clearly enough to prove that

[Lε,ϕ] : H
s

0(Ω) → L2(RN )

is a compact operator for each ε > 0.

Let Lε = (εId−∆)s/2 and lε(ξ) = (|ξ|2 + ε)s/2 the corresponding symbol. Clearly

Lε is a classical pseudodifferential operator of order s, i.e. Lε ∈ OPSs

1,0 (hence Lε ∈
OPBSs

1,1).

Since 0 < s < N

2 , according to Taylor (2003) we have the following commutator

estimate

�[Lε,ϕ]u�L2(RN ) ≤ C�ϕ�Hσ(RN )�u�Hs−1(RN ) ,
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s/2
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Thus, it is clearly enough to prove that

[Lε,ϕ] : H
s
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s/2

and lε(ξ) = (|ξ|2 + ε)s/2 the corresponding symbol. Clearly

Lε is a classical pseudodifferential operator of order s, i.e. Lε ∈ OPSs
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N
2 + 1.

Since ϕ ∈ C
∞
0 (RN ) and the embedding H

s
0(Ω) �→ H

s−1(RN ) is compact for all s ∈
(0, N

2 ).

we conclude that [Lε,ϕ] : Hs
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µ = |(−∆)
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1,0 (hence Lε ∈
OPBSs

1,1).

Since 0 < s < N

2 , according to Taylor (2003) we have the following commutator

estimate

�[Lε,ϕ]u�L2(RN ) ≤ C�ϕ�Hσ(RN )�u�Hs−1(RN ) ,

30

is a compact operator for each

Ω ⊂ RN open subset

Let (un) be a sequence in Hs

0(Ω) weakly converging to u such that

|(−∆)
s
2un|2dx

∗
� µ and |un|2

∗
dx

∗
� ν in M(RN ).

Then, either un → u in L2∗

loc(Ω) or there exists a finite set of distinct points x1, . . . , xk

in Ω and positive numbers ν1, . . . , νk such that we have

ν = |u|2
∗
dx+

k�

j=1

νjδxj , ν2
j
(S∗)2

∗
≥ (S∗)2 .

If in addition Ω is bounded, there exist a positive measure µ̃ ∈ M(RN ) with spt µ̃ ⊂ Ω

and positive numbers µ1, . . . , µk such that

µ = |(−∆)
s
2u|2dx+ µ̃+

k�

j=1

µjδxj , νj ≤ S∗ µ
2∗
2
j

.

Let Ω ⊂ RN a bounded open set and let ϕ ∈ C∞
0 (RN ). Then

ϕ((−∆)s/2un)− (−∆)s/2(ϕun) → 0 in L2(RN )

whenever un � 0 in Hs

0(Ω) as n → ∞,

i.e., the commutator [ϕ, (−∆)s/2] : Hs

0(Ω) → L2(RN ) is a compact operator.

Let L = (−∆)s/2. For each ε > 0 we set Lε = (εId−∆)s/2.

By conjugation with Fourier transform

we have

Lu = F−1 ◦M|ξ|s ◦ F(u) , Lεu = F−1 ◦M(|ξ|2+ε)s/2 ◦ F(u)

thus, Lε : Hs(Rn) → L2(RN ) is bounded operator.

Estimating the norm in L(Hs, L2) easily yields

�L− Lε� ≤ sup
ξ

|(|ξ|2 + ε)s/2 − |ξ|s|2

(1 + |ξ|2)s
ε→0−→ 0 .

Thus, it is clearly enough to prove that

[Lε,ϕ] : H
s

0(Ω) → L2(RN )

is a compact operator for each ε > 0.

Let Lε = (εId−∆)s/2 and lε(ξ) = (|ξ|2 + ε)s/2 the corresponding symbol. Clearly

Lε is a classical pseudodifferential operator of order s, i.e. Lε ∈ OPSs

1,0 (hence Lε ∈
OPBSs

1,1).

Since 0 < s < N

2 , according to Taylor (2003) we have the following commutator

estimate

�[Lε,ϕ]u�L2(RN ) ≤ C�ϕ�Hσ(RN )�u�Hs−1(RN ) ,

30

Ω ⊂ RN open subset

Let (un) be a sequence in Hs

0(Ω) weakly converging to u such that

|(−∆)
s
2un|2dx

∗
� µ and |un|2

∗
dx

∗
� ν in M(RN ).

Then, either un → u in L2∗

loc(Ω) or there exists a finite set of distinct points x1, . . . , xk

in Ω and positive numbers ν1, . . . , νk such that we have

ν = |u|2
∗
dx+

k�

j=1

νjδxj , ν2
j
(S∗)2

∗
≥ (S∗)2 .

If in addition Ω is bounded, there exist a positive measure µ̃ ∈ M(RN ) with spt µ̃ ⊂ Ω

and positive numbers µ1, . . . , µk such that

µ = |(−∆)
s
2u|2dx+ µ̃+

k�

j=1

µjδxj , νj ≤ S∗ µ
2∗
2
j

.

Let Ω ⊂ RN a bounded open set and let ϕ ∈ C∞
0 (RN ). Then

ϕ((−∆)s/2un)− (−∆)s/2(ϕun) → 0 in L2(RN )

whenever un � 0 in Hs

0(Ω) as n → ∞,

i.e., the commutator [ϕ, (−∆)s/2] : Hs

0(Ω) → L2(RN ) is a compact operator.

Let L = (−∆)s/2. For each ε > 0 we set Lε = (εId−∆)s/2.

By conjugation with Fourier transform

we have

Lu = F−1 ◦M|ξ|s ◦ F(u) , Lεu = F−1 ◦M(|ξ|2+ε)s/2 ◦ F(u)

thus, Lε : Hs(Rn) → L2(RN ) is bounded operator.

Estimating the norm in L(Hs, L2) easily yields

�L− Lε� ≤ sup
ξ

|(|ξ|2 + ε)s/2 − |ξ|s|2

(1 + |ξ|2)s
ε→0−→ 0 .

Thus, it is clearly enough to prove that

[Lε,ϕ] : H
s

0(Ω) → L2(RN )

is a compact operator for each ε > 0.

Let Lε = (εId−∆)s/2 and lε(ξ) = (|ξ|2 + ε)s/2 the corresponding symbol. Clearly

Lε is a classical pseudodifferential operator of order s, i.e. Lε ∈ OPSs

1,0 (hence Lε ∈
OPBSs

1,1).

Since 0 < s < N

2 , according to Taylor (2003) we have the following commutator

estimate

�[Lε,ϕ]u�L2(RN ) ≤ C�ϕ�Hσ(RN )�u�Hs−1(RN ) ,

30

is a classical pseudodifferential operator of order s, i.e.

Ω ⊂ RN open subset

Let (un) be a sequence in Hs

0(Ω) weakly converging to u such that

|(−∆)
s
2un|2dx

∗
� µ and |un|2

∗
dx

∗
� ν in M(RN ).

Then, either un → u in L2∗

loc(Ω) or there exists a finite set of distinct points x1, . . . , xk

in Ω and positive numbers ν1, . . . , νk such that we have

ν = |u|2
∗
dx+

k�

j=1

νjδxj , ν2
j
(S∗)2

∗
≥ (S∗)2 .

If in addition Ω is bounded, there exist a positive measure µ̃ ∈ M(RN ) with spt µ̃ ⊂ Ω

and positive numbers µ1, . . . , µk such that

µ = |(−∆)
s
2u|2dx+ µ̃+

k�

j=1

µjδxj , νj ≤ S∗ µ
2∗
2
j

.

Let Ω ⊂ RN a bounded open set and let ϕ ∈ C∞
0 (RN ). Then

ϕ((−∆)s/2un)− (−∆)s/2(ϕun) → 0 in L2(RN )

whenever un � 0 in Hs

0(Ω) as n → ∞,

i.e., the commutator [ϕ, (−∆)s/2] : Hs

0(Ω) → L2(RN ) is a compact operator.

Let L = (−∆)s/2. For each ε > 0 we set Lε = (εId−∆)s/2.

By conjugation with Fourier transform

we have

Lu = F−1 ◦M|ξ|s ◦ F(u) , Lεu = F−1 ◦M(|ξ|2+ε)s/2 ◦ F(u)

thus, Lε : Hs(Rn) → L2(RN ) is bounded operator.

Estimating the norm in L(Hs, L2) easily yields

�L− Lε� ≤ sup
ξ

|(|ξ|2 + ε)s/2 − |ξ|s|2
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Non linear elliptic equations involving critical Sobolev exponent

Ω ⊂ RN , N ≥ 3

{

−∆uε = uε
2∗
−1−ε, dans Ω

uε = 0 sur ∂Ω

où 2∗ = 2N/(N − 2)

uε > 0 dans Ω

ε > 0 : le problème (1) a une solutionuε

ε = 0 : l’existence des solutions dépende du domaine Ω

Pohozaev (1965) (Ω étoilé)

Kazdan-Warner (1975) (Ω annulus)

Ding (1989) (Ω contractile avec une géométrie spécifique) ∃ sol’n

Bahri-Coron (1988) (N = 3 and Ω non contractile)

bounded open set

Subcritical approximation

consider the following variational problems

.

If 0 < s < N/2 and 2∗ = 2N/(N − 2s), the Sobolev critical exponent, the following

Sobolev inequality is valid for some positive constant S∗ = S
∗(N, s)

�u�2
∗

L2∗(RN ) ≤ S
∗�(−∆)

s
2u�2

∗

L2(RN ) ∀u ∈ H
s(RN ).

u(x) =
c

(λ2 + |x− x0|2)
N−2s

2

∀x ∈ RN
,

where c,λ ∈ R, and x0 ∈ RN are fixed constants.

S
∗ :=sup

�
F (u) :

�

RN

|(−∆)
s
2u|2dx ≤ 1, u ∈ H

s
0(RN )

�

with F (u):=

�

RN

|u|2
∗
dx.

S
∗
Ω :=sup

�
FΩ(u) :

�

RN

|(−∆)
s
2u|2dx ≤ 1, u ∈ H

s
0(Ω)

�
(0.5)

with FΩ(u):=

�

Ω
|u|2

∗
dx. (0.6)

A simple scaling argument on compactly supported smooth functions shows that S∗ =

S
∗
Ω, but in view of Theorem ?? the variational problem (0.5) has no maximizer.

S
∗
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�
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�
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|(−∆)
s
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s
0(Ω)

�
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Ω
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∗−ε
dx.
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where c ∈ R \ {0}, λ > 0 and x0 ∈ RN are fixed constants.

The Sobolev inequality (1.4) as well as the previous theorem extend very well
known results valid in the case s = 1. The proof in [6] is based on a sharp form of
the Hardy-Littlewood-Sobolev inequality. Using the moving planes method, the
same result has been obtained by Chen, Li and Ou in [4]. At least when 0 < s < 1,
a third approach through symmetrization techniques can be found in [12].

A naive approach to the validity of (1.4) is to study the variational problem

S
∗ :=sup

�
F (u) : u ∈ H

s
0(RN ),

�

RN
|(−∆)

s
2u|2dx ≤ 1

�
(1.6)

where F (u):=

�

RN
|u|2∗dx.(1.7)

Clearly the validity of (1.4) is equivalent to show that the constant S∗ defined
in (1.6) is finite. Moreover, Theorem 1.1 gives an explicit formula for it as well as
for the maximizers of the variational problem (1.6) up to normalization. Note that
even the existence of a maximizer is not trivial since the embedding (1.2) is not
compact, because of translation and dilation invariance. Indeed, if u ∈ H

s
0
(RN ) is

an admissible function in (1.6), the same holds for ux0,λ(x) = λN−2s/2
u(x0 + λx)

for any x0 ∈ RN and any λ > 0. In addition ux0,λ satisfies F (ux0,λ) = F (u) and
tends to zero weakly in H

s
0
, as |x0| → ∞ (translation invariance) or as λ → 0+

and λ → ∞ (dilation invariance).

Another related problem we consider is the following. Given a bounded domain
Ω ⊂ RN , one can define the Sobolev space H

s
0
(Ω) as the closure of C

∞
0
(Ω) in

H
s
0
(RN ) with the norm in (1.3) and the corresponding maximization problem (or

Sobolev embedding), namely

S
∗
Ω :=sup

�
FΩ(u) : u ∈ H

s
0(Ω),

�

RN
|(−∆)

s
2u|2dx ≤ 1

�
(1.8)

where FΩ(u):=

�

Ω
|u|2∗dx.(1.9)

A simple scaling argument on compactly supported smooth functions shows
that S

∗ = S
∗
Ω, but in view of Theorem 1.1 the variational problem (1.8) has

no maximizer. Thus, in order to study the behavior of a maximizing sequence
for (1.6) and (1.8) it is very convenient to establish a concentration-compactness
alternative for bounded sequences in the fractional space H

s
0
, using methods and

ideas introduced in the pioneering works [16] and [17] and developed extensively
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Non linear elliptic equations involving critical Sobolev exponent

Ω ⊂ RN , N ≥ 3

{

−∆uε = uε
2∗
−1−ε, dans Ω

uε = 0 sur ∂Ω

où 2∗ = 2N/(N − 2)

uε > 0 dans Ω

ε > 0 : le problème (1) a une solutionuε

ε = 0 : l’existence des solutions dépende du domaine Ω

Pohozaev (1965) (Ω étoilé)

Kazdan-Warner (1975) (Ω annulus)

Ding (1989) (Ω contractile avec une géométrie spécifique) ∃ sol’n

Bahri-Coron (1988) (N = 3 and Ω non contractile)

bounded open set
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Non linear elliptic equations involving critical Sobolev exponent

Ω ⊂ RN , N ≥ 3

{

−∆uε = uε
2∗
−1−ε, in Ω

uε = 0 su ∂Ω

dove 2∗ = 2N/(N − 2)

uε > 0 in Ω

ε > 0 : il problema (1) ha una soluzione uε

ε = 0 : l’esistenza delle soluzioni dipende dal dominio Ω

Pohozaev (1965) (Ω stellato)

Kazdan-Warner (1975) (Ω anello)

Ding (1989) (Ω contraibile con una geometria particolare) ∃ sol’n

Bahri-Coron (1988) (N = 3 e Ω non contraibile)

If , then the embedding is compact ;
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The previous problem is subcritical. Indeed, since Ω is a bounded open set and the

embedding H
s
0(Ω) �→ L

2∗−ε(Ω) is compact, the previous problem admits a maxi-

mizer uε ∈ H
s
0(Ω). Our purpose is to investigate what happens when ε → 0 both

to the energy functionals Fε and to the corresponding maximizers uε. In view of

the results in [11], [12] and [1], the natural tool for this kind of analysis will be the

theory of Γ-convergence suitably adapted in view of the loss of compactness phe-

nomena described in Theorem 1.2. For an account on other applications of this kind,

the interested reader is referred to [10], [14], [19] and [20]. We prove the following

theorem.

Theorem 1.4. Denote X the space

X = X(Ω) :=
�
(u, µ) ∈ H

s
0(Ω)×M(RN

) : µ ≥ |(−∆)
s
2 u|2dx, µ(RN

) ≤ 1
�
,

endowed with the natural product topology topology τ such that

(1.12) (un, µn)
τ→ (u, µ)

def⇔
�

un � u in L
2∗(Ω)

µn
∗
� µ in M(RN )

and consider the following family of functionals

(1.13) Fε(u, µ) :=






�

Ω
|u|2∗−ε

dx if (u, µ) ∈ X : µ = |(−∆)
s
2 u|2dx,

0 otherwise in X.

Then the Γ+-limit with respect to the topology τ corresponding to (1.12) of the family
of functionals (Fε) defined by (1.13) is the functional F defined by

F (u, µ) =

�

Ω
|u|2∗dx + S

∗
∞�

i=0

µ

2∗
2

i , ∀(u, µ) ∈ X.

where S
∗ is the best Sobolev constant in RN and the µi are the coefficients of the

atomic part of µ.

Combining the previous theorems we are able to describe the behaviour of the

maximizers uε as ε→ 0. We obtain the following result.
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the asymptotic behavior of the solution uε when ε→ 0

Ω unit ball

Atkinson-Peletier (1986) and Brezis-Peletier (1989) showed that

the positive solutions of (1) which are maximizing for the variational problem

S∗ε :=sup

��

Ω
|u|2

∗−εdx :

�

Ω
|∇u|2dx ≤ 1, u = 0 on ∂Ω

�

concentrate at exactly one point x0 ∈ Ω.

Ω general smooth bounded domain

Rey (1989) and Han (1991) obtained the same concentration result

|∇uε|2 ∗
� δx0

also localizing the blowing up

x0 is the harmonic center of Ω; i.e., the minimum of the Robin function

3

If 0 < s < N/2 and 2∗ = 2N/(N − 2s), the Sobolev critical exponent, the following
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s(RN ).
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N−2s

2

∀x ∈ RN
,

where c,λ ∈ R, and x0 ∈ RN are fixed constants.

S
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�
F (u) :

�
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|(−∆)
s
2u|2dx ≤ 1, u ∈ H

s
0(RN )

�

with F (u):=

�

RN

|u|2
∗
dx.

S
∗
Ω :=sup

�
FΩ(u) :

�
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|(−∆)
s
2u|2dx ≤ 1, u ∈ H

s
0(Ω)

�
(0.5)

with FΩ(u):=

�

Ω
|u|2

∗
dx. (0.6)

A simple scaling argument on compactly supported smooth functions shows that S∗ =

S
∗
Ω, but in view of Theorem ?? the variational problem (0.5) has no maximizer.

0 < ε < 2∗ − 2

S
∗
ε :=sup

�
Fε(u) :

�

RN

|(−∆)
s
2u|2dx ≤ 1, u ∈ H

s
0(Ω)

�

with Fε(u):=

�

Ω
|u|2

∗−ε
dx.

the problem admits a maximizer uε ∈ H
s
0(Ω).

34
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where c ∈ R \ {0}, λ > 0 and x0 ∈ RN are fixed constants.

The Sobolev inequality (1.4) as well as the previous theorem extend very well
known results valid in the case s = 1. The proof in [6] is based on a sharp form of
the Hardy-Littlewood-Sobolev inequality. Using the moving planes method, the
same result has been obtained by Chen, Li and Ou in [4]. At least when 0 < s < 1,
a third approach through symmetrization techniques can be found in [12].

A naive approach to the validity of (1.4) is to study the variational problem

S
∗ :=sup

�
F (u) : u ∈ H

s
0(RN ),

�

RN
|(−∆)

s
2u|2dx ≤ 1

�
(1.6)

where F (u):=

�

RN
|u|2∗dx.(1.7)

Clearly the validity of (1.4) is equivalent to show that the constant S∗ defined
in (1.6) is finite. Moreover, Theorem 1.1 gives an explicit formula for it as well as
for the maximizers of the variational problem (1.6) up to normalization. Note that
even the existence of a maximizer is not trivial since the embedding (1.2) is not
compact, because of translation and dilation invariance. Indeed, if u ∈ H

s
0
(RN ) is

an admissible function in (1.6), the same holds for ux0,λ(x) = λN−2s/2
u(x0 + λx)

for any x0 ∈ RN and any λ > 0. In addition ux0,λ satisfies F (ux0,λ) = F (u) and
tends to zero weakly in H

s
0
, as |x0| → ∞ (translation invariance) or as λ → 0+

and λ → ∞ (dilation invariance).

Another related problem we consider is the following. Given a bounded domain
Ω ⊂ RN , one can define the Sobolev space H

s
0
(Ω) as the closure of C

∞
0
(Ω) in

H
s
0
(RN ) with the norm in (1.3) and the corresponding maximization problem (or

Sobolev embedding), namely

S
∗
Ω :=sup

�
FΩ(u) : u ∈ H

s
0(Ω),

�

RN
|(−∆)

s
2u|2dx ≤ 1

�
(1.8)

where FΩ(u):=

�

Ω
|u|2∗dx.(1.9)

A simple scaling argument on compactly supported smooth functions shows
that S

∗ = S
∗
Ω, but in view of Theorem 1.1 the variational problem (1.8) has

no maximizer. Thus, in order to study the behavior of a maximizing sequence
for (1.6) and (1.8) it is very convenient to establish a concentration-compactness
alternative for bounded sequences in the fractional space H

s
0
, using methods and

ideas introduced in the pioneering works [16] and [17] and developed extensively
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Non linear elliptic equations involving critical Sobolev exponent

Ω ⊂ RN , N ≥ 3

{

−∆uε = uε
2∗
−1−ε, dans Ω

uε = 0 sur ∂Ω

où 2∗ = 2N/(N − 2)

uε > 0 dans Ω

ε > 0 : le problème (1) a une solutionuε

ε = 0 : l’existence des solutions dépende du domaine Ω

Pohozaev (1965) (Ω étoilé)

Kazdan-Warner (1975) (Ω annulus)

Ding (1989) (Ω contractile avec une géométrie spécifique) ∃ sol’n

Bahri-Coron (1988) (N = 3 and Ω non contractile)

bounded open set

What happens when          (both to the energy functional

and to the corresponding maximizers     ) ?
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Subcritical approximation

consider the following variational problems
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Non linear elliptic equations involving critical Sobolev exponent

Ω ⊂ RN , N ≥ 3

{

−∆uε = uε
2∗
−1−ε, in Ω

uε = 0 su ∂Ω

dove 2∗ = 2N/(N − 2)

uε > 0 in Ω

ε > 0 : il problema (1) ha una soluzione uε

ε = 0 : l’esistenza delle soluzioni dipende dal dominio Ω

Pohozaev (1965) (Ω stellato)

Kazdan-Warner (1975) (Ω anello)
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If 0 < s < N/2 and 2∗ = 2N/(N − 2s), the Sobolev critical exponent, the following

Sobolev inequality is valid for some positive constant S∗ = S
∗(N, s)
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where c,λ ∈ R, and x0 ∈ RN are fixed constants.
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A simple scaling argument on compactly supported smooth functions shows that S∗ =
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∗
Ω, but in view of Theorem ?? the variational problem (0.5) has no maximizer.
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Le soluzioni positive di (2) che sono massimizzanti per il problema variazionale seguente
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Ω
|u|2

�−εdx :

�

Ω
|(−∆)

1
2u|2dx ≤ 1, u = 0 su ∂Ω

�

si concentrano su un punto x0 ∈ Ω.

dove S� = (2N)/(N−1)

S∗ = (2N)(N−2)

�
−(−∆)suε = uε

2∗−1−ε, uε > 0 in Ω,

uε = 0 on ∂Ω.

Ω ⊂ RN , 2∗ = 2N/(N − 2s),

9

Final remarks

a different way to prove the concentration result

developments

Same framework (with the needed modifications) should work to deal with other non-

linear problems, linked to some Sobolev critical exponent.

Neumann problem

�
(−∆)u = 0 in Ω
∂u
∂ν = u2�−1−ε on ∂Ω

G. P. (w. i. p.)

Fractional powers of the laplacian

�
(−∆)suε = λε|uε|2

∗−2−ε uε in Ω

uε = 0 on ∂Ω

2� depending on s and n

case s = 1/2 : G. P. - Y. Sire (w. i. p.)

no regularity hypothesis on Ω

What about the localization of the blowing up ?

26
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Final remarks

a different way to prove the concentration result

developments

Same framework (with the needed modifications) should work to deal with other non-

linear problems, linked to some Sobolev critical exponent.

Neumann problem

�
(−∆)u = 0 in Ω
∂u
∂ν = u2�−1−ε on ∂Ω

G. P. (w. i. p.)

Fractional powers of the laplacian

�
(−∆)suε = λε|uε|2

∗−2−ε uε in Ω

uε = 0 on ∂Ω

2� depending on s and n

case s = 1/2 : G. P. - Y. Sire (w. i. p.)

no regularity hypothesis on Ω

What about the localization of the blowing up ?
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The asymptotic behavior of the solution uε

Le comportement asymptotique des solutions uε lorsque ε → 0

Ω la boule unitaire :

Atkinson-Peletier (1986) et Brezis-Peletier (1989)

Les solutions positives de (1) qui sont maximisantes pour le problème variationel suivant

S∗
p,ε :=sup

��

Ω
|u|p

∗−εdx : u ∈ W 1,p
0 (Ω),
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Ω
|∇u|pdx ≤ 1
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se concentrent sur un point x0 ∈ ∂Ω̃.

∃ Ω̃
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∗
� δx0 en M(Ω)

Ω un domaine général régulière :

Rey (1989) et Han (1991)

|∇uε|2
∗
� δx0 en M(Ω)

où x0 est un point critique de la fonction de Robin de Ω

RΩ(x) → +∞

x → ∂Ω

8
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s
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s(RN ).

u(x) =
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0 < ε < 2∗ − 2

S
∗
ε :=sup

�
Fε(u) :

�

RN

|(−∆)
s
2u|2dx ≤ 1, u ∈ H

s
0(Ω)

�

with Fε(u):=

�

Ω
|u|2

∗−ε
dx.
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−(−∆)suε = uε
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Final remarks

a different way to prove the concentration result

developments

Same framework (with the needed modifications) should work to deal with other non-

linear problems, linked to some Sobolev critical exponent.

Neumann problem

�
(−∆)u = 0 in Ω
∂u
∂ν = u2�−1−ε on ∂Ω

G. P. (w. i. p.)

Fractional powers of the laplacian

�
(−∆)suε = λε|uε|2

∗−2−ε uε in Ω

uε = 0 on ∂Ω

2� depending on s and n

case s = 1/2 : G. P. - Y. Sire (w. i. p.)

no regularity hypothesis on Ω

What about the localization of the blowing up ?
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A variational approach

A different approach

We can prove

the concentration result for the solutions uε of (1) that are maximizing for

S∗ε :=sup
��

Ω
|u|2

∗−εdx :
�

Ω
|∇u|2dx ≤ 1, u = 0 on ∂Ω

�

by the means of De Giorgi’s Γ-convergence

We are interested to the Γ-convergence of the functional

Fε(u) :=
�

Ω
|u|2

∗−εdx

The idea of the Γ-convergence is replacing a sequence of functionals (Fε) by an

effective Γ-limit functional F , that is able to capture the main characteristics of

the sequence (Fε).

Γ-convergence techniques for concentration problems come from

Flucher-Müller (1999)

Flucher-Garroni-Müller (2001)

Amar-Garroni (2003)

Gε(u) := ε−2∗
�

Ω
g(εu)dx

g non-negative u.s.c. such that g(t) ≤ c|t|2∗

5

CONCENTRATION-COMPACTNESS IN FRACTIONAL SOBOLEV SPACES 3

where c ∈ R \ {0}, λ > 0 and x0 ∈ RN are fixed constants.

The Sobolev inequality (1.4) as well as the previous theorem extend very well
known results valid in the case s = 1. The proof in [6] is based on a sharp form of
the Hardy-Littlewood-Sobolev inequality. Using the moving planes method, the
same result has been obtained by Chen, Li and Ou in [4]. At least when 0 < s < 1,
a third approach through symmetrization techniques can be found in [12].

A naive approach to the validity of (1.4) is to study the variational problem

S
∗ :=sup

�
F (u) : u ∈ H

s
0(RN ),

�

RN
|(−∆)

s
2u|2dx ≤ 1

�
(1.6)

where F (u):=

�

RN
|u|2∗dx.(1.7)

Clearly the validity of (1.4) is equivalent to show that the constant S∗ defined
in (1.6) is finite. Moreover, Theorem 1.1 gives an explicit formula for it as well as
for the maximizers of the variational problem (1.6) up to normalization. Note that
even the existence of a maximizer is not trivial since the embedding (1.2) is not
compact, because of translation and dilation invariance. Indeed, if u ∈ H

s
0
(RN ) is

an admissible function in (1.6), the same holds for ux0,λ(x) = λN−2s/2
u(x0 + λx)

for any x0 ∈ RN and any λ > 0. In addition ux0,λ satisfies F (ux0,λ) = F (u) and
tends to zero weakly in H

s
0
, as |x0| → ∞ (translation invariance) or as λ → 0+

and λ → ∞ (dilation invariance).

Another related problem we consider is the following. Given a bounded domain
Ω ⊂ RN , one can define the Sobolev space H

s
0
(Ω) as the closure of C

∞
0
(Ω) in

H
s
0
(RN ) with the norm in (1.3) and the corresponding maximization problem (or

Sobolev embedding), namely

S
∗
Ω :=sup

�
FΩ(u) : u ∈ H

s
0(Ω),
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|(−∆)

s
2u|2dx ≤ 1
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(1.8)

where FΩ(u):=
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that S
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Ω, but in view of Theorem 1.1 the variational problem (1.8) has

no maximizer. Thus, in order to study the behavior of a maximizing sequence
for (1.6) and (1.8) it is very convenient to establish a concentration-compactness
alternative for bounded sequences in the fractional space H

s
0
, using methods and

ideas introduced in the pioneering works [16] and [17] and developed extensively

The concentration result - proof

Proof of (i)

Γ+
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every maximizing sequence for Fε converges to a maximizer of F

and we have the convergence of maxima

Thus, it suffices to prove that
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A variational approach

A different approach

We can prove

the concentration result for the solutions uε of (1) that are maximizing for

S∗ε :=sup
��

Ω
|u|2

∗−εdx :
�

Ω
|∇u|2dx ≤ 1, u = 0 on ∂Ω

�

by the means of De Giorgi’s Γ-convergence

We are interested to the Γ-convergence of the functional

Fε(u) :=
�

Ω
|u|2

∗−εdx

The idea of the Γ-convergence is replacing a sequence of functionals (Fε) by an

effective Γ-limit functional F , that is able to capture the main characteristics of

the sequence (Fε).

Γ-convergence techniques for concentration problems come from

Flucher-Müller (1999)

Flucher-Garroni-Müller (2001)

Amar-Garroni (2003)

Gε(u) := ε−2∗
�

Ω
g(εu)dx

g non-negative u.s.c. such that g(t) ≤ c|t|2∗

5

CONCENTRATION-COMPACTNESS IN FRACTIONAL SOBOLEV SPACES 3

where c ∈ R \ {0}, λ > 0 and x0 ∈ RN are fixed constants.
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If 0 < s < N/2 and 2∗ = 2N/(N − 2s), the Sobolev critical exponent, the following

Sobolev inequality is valid for some positive constant S∗ = S
∗(N, s)

�u�2
∗

L2∗(RN ) ≤ S
∗�(−∆)

s
2u�2

∗

L2(RN ) ∀u ∈ H
s(RN ).

�u�2
∗

L2∗(Ω) ≤ S
∗�(−∆)

s
2u�2

∗

L2(RN ) ∀u ∈ H
s
0(Ω).

H
s
0(Ω) → L

2∗(Ω)

u(x) =
c

(λ2 + |x− x0|2)
N−2s

2

∀x ∈ RN
,

where c,λ ∈ R, and x0 ∈ RN are fixed constants.

S
∗ :=sup

�
F (u) :

�

RN

|(−∆)
s
2u|2dx ≤ 1, u ∈ H

s
0(RN )

�

with F (u):=

�

RN

|u|2
∗
dx.

S
∗
Ω :=sup

�
FΩ(u) :

�

RN

|(−∆)
s
2u|2dx ≤ 1, u ∈ H

s
0(Ω)

�
(0.5)

with FΩ(u):=

�

Ω
|u|2

∗
dx. (0.6)

A simple scaling argument on compactly supported smooth functions shows that S∗ =

S
∗
Ω, but in view of Theorem ?? the variational problem (0.5) has no maximizer.

0 < ε < 2∗ − 2

S
∗
ε :=sup

�
Fε(u) :

�

RN

|(−∆)
s
2u|2dx ≤ 1, u ∈ H

s
0(Ω)

�

with Fε(u):=

�

Ω
|u|2

∗−ε
dx.

Fε(u, µ):=

�

Ω
|u|2

∗−ε
dx .

the problem admits a maximizer uε ∈ H
s
0(Ω).

µε = |(−∆)
s
2uε|2

−(−∆)su(x) = W
�(u(x)) ∀x ∈ RN

W
1,p
0 (Ω)

H
s
0(Ω)

34

�

RN

|(−∆)
s
2u|2dx

�(−∆)
s
2uε�2L2(RN ) ≤ 1

∃ µ ∈ M(RN ) such that µ(RN ) ≤ 1 and |(−∆)
s
2uε|2

∗
� µ in M(RN )

H
s
0(Ω)

µ = |(−∆)
s
2u|2

The setting for the limit functional is the space X defined by

X =
�
(u, µ) ∈ H

s
0(Ω)×M(RN ) : µ ≥ |(−∆)

s
2u|2, µ(RN ) ≤ 1

�

endowed with the following topology τ

(uε, µε)
τ→ (u, µ)

def⇔
�
uε � u in L

2∗(Ω)

µε
∗
� µ in M(RN ).

28

Theorem 1 (the Γ-convergence result)

Theorem 1 [G. P.]

There exists the Γ+-limit F of the sequence of functionals Fε and

F (u, µ) =
�

Ω
|u|2

∗
dx + S

∗
∞�

i=0

µ
2∗
2

i , ∀(u, µ) ∈ X,

where S
∗ is the best Sobolev constant for which is

�u�L2∗(Ω) ≤ S
∗�∇u�L2(Ω), ∀u ∈ H

1
0 (Ω),

7
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The concentration result - proof
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Theorem 1 (the Γ-convergence result)

Theorem 1 [G. P.]

There exists the Γ+-limit F of the sequence of functionals Fε and

F (u, µ) =

�

Ω
|u|2

∗
dx+S

∗
∞�

i=0

µ
2∗
2
i , ∀(u, µ) ∈ X, �u�2

∗

L2∗(Ω) ≤ S
∗�∇u�2

∗

L2(Ω), ∀u ∈ H
1
0 (Ω).

où S
∗ est la meilleure constante de Sobolev telle que�

w−Lp∗
(Ω)×M(Ω)

�
�
w−L2∗(Ω)×M(Ω)

�
�
w−L2∗(Ω)×M(RN )

�
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2
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�u�L2∗(Ω) ≤ S
∗�∇u�L2(Ω), ∀u ∈ H

1
0 (Ω),

7

.

Theorem 2 [G. P., A. Pisante, 2010]
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A variational approach

A different approach

We can prove

the concentration result for the solutions uε of (1) that are maximizing for

S∗ε :=sup
��

Ω
|u|2

∗−εdx :
�

Ω
|∇u|2dx ≤ 1, u = 0 on ∂Ω

�

by the means of De Giorgi’s Γ-convergence

We are interested to the Γ-convergence of the functional

Fε(u) :=
�

Ω
|u|2

∗−εdx

The idea of the Γ-convergence is replacing a sequence of functionals (Fε) by an

effective Γ-limit functional F , that is able to capture the main characteristics of

the sequence (Fε).

Γ-convergence techniques for concentration problems come from

Flucher-Müller (1999)

Flucher-Garroni-Müller (2001)

Amar-Garroni (2003)

Gε(u) := ε−2∗
�

Ω
g(εu)dx

g non-negative u.s.c. such that g(t) ≤ c|t|2∗

5

CONCENTRATION-COMPACTNESS IN FRACTIONAL SOBOLEV SPACES 3

where c ∈ R \ {0}, λ > 0 and x0 ∈ RN are fixed constants.

The Sobolev inequality (1.4) as well as the previous theorem extend very well
known results valid in the case s = 1. The proof in [6] is based on a sharp form of
the Hardy-Littlewood-Sobolev inequality. Using the moving planes method, the
same result has been obtained by Chen, Li and Ou in [4]. At least when 0 < s < 1,
a third approach through symmetrization techniques can be found in [12].

A naive approach to the validity of (1.4) is to study the variational problem

S
∗ :=sup

�
F (u) : u ∈ H

s
0(RN ),

�

RN
|(−∆)

s
2u|2dx ≤ 1

�
(1.6)

where F (u):=

�

RN
|u|2∗dx.(1.7)

Clearly the validity of (1.4) is equivalent to show that the constant S∗ defined
in (1.6) is finite. Moreover, Theorem 1.1 gives an explicit formula for it as well as
for the maximizers of the variational problem (1.6) up to normalization. Note that
even the existence of a maximizer is not trivial since the embedding (1.2) is not
compact, because of translation and dilation invariance. Indeed, if u ∈ H

s
0
(RN ) is

an admissible function in (1.6), the same holds for ux0,λ(x) = λN−2s/2
u(x0 + λx)

for any x0 ∈ RN and any λ > 0. In addition ux0,λ satisfies F (ux0,λ) = F (u) and
tends to zero weakly in H

s
0
, as |x0| → ∞ (translation invariance) or as λ → 0+

and λ → ∞ (dilation invariance).

Another related problem we consider is the following. Given a bounded domain
Ω ⊂ RN , one can define the Sobolev space H

s
0
(Ω) as the closure of C

∞
0
(Ω) in

H
s
0
(RN ) with the norm in (1.3) and the corresponding maximization problem (or

Sobolev embedding), namely

S
∗
Ω :=sup

�
FΩ(u) : u ∈ H

s
0(Ω),

�

RN
|(−∆)

s
2u|2dx ≤ 1

�
(1.8)

where FΩ(u):=

�

Ω
|u|2∗dx.(1.9)

A simple scaling argument on compactly supported smooth functions shows
that S

∗ = S
∗
Ω, but in view of Theorem 1.1 the variational problem (1.8) has

no maximizer. Thus, in order to study the behavior of a maximizing sequence
for (1.6) and (1.8) it is very convenient to establish a concentration-compactness
alternative for bounded sequences in the fractional space H

s
0
, using methods and

ideas introduced in the pioneering works [16] and [17] and developed extensively

The concentration result - proof

Proof of (i)

Γ+

Fε → F

every maximizing sequence for Fε converges to a maximizer of F

and we have the convergence of maxima

Thus, it suffices to prove that

F (u, µ) ≤ S∗, for every (u, µ) ∈ X

and the equality is achieved if and only if (u, µ) = (0, δx0), with x0 ∈ Ω.

(�)

For every (u, µ) ∈ X

Sobolev inequality

F (u, µ) ≡
�

Ω
|u|2

∗
dx + S∗

∞�

i=0

µ
2∗
2

i

≤ S∗
��

Ω
|∇u|2dx

� 2∗
2

+ S∗
∞�

i=o

µ
2∗
2

i

convexity of the function t �→ t
2∗
2

F (u, µ) ≤ S∗
��

Ω
|∇u|2dx +

∞�

i=o

µi

� 2∗
2

≤ S∗

where we also utilized the fact
�

Ω
|∇u|2dx +

∞�

i=0

µi ≤ µ(Ω) ≤ 1.
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If 0 < s < N/2 and 2∗ = 2N/(N − 2s), the Sobolev critical exponent, the following

Sobolev inequality is valid for some positive constant S∗ = S
∗(N, s)

�u�2
∗

L2∗(RN ) ≤ S
∗�(−∆)

s
2u�2

∗

L2(RN ) ∀u ∈ H
s(RN ).

�u�2
∗

L2∗(Ω) ≤ S
∗�(−∆)

s
2u�2

∗

L2(RN ) ∀u ∈ H
s
0(Ω).

H
s
0(Ω) → L

2∗(Ω)

u(x) =
c

(λ2 + |x− x0|2)
N−2s

2

∀x ∈ RN
,

where c,λ ∈ R, and x0 ∈ RN are fixed constants.

S
∗ :=sup

�
F (u) :

�

RN

|(−∆)
s
2u|2dx ≤ 1, u ∈ H

s
0(RN )

�

with F (u):=

�

RN

|u|2
∗
dx.

S
∗
Ω :=sup

�
FΩ(u) :

�

RN

|(−∆)
s
2u|2dx ≤ 1, u ∈ H

s
0(Ω)

�
(0.5)

with FΩ(u):=

�

Ω
|u|2

∗
dx. (0.6)

A simple scaling argument on compactly supported smooth functions shows that S∗ =

S
∗
Ω, but in view of Theorem ?? the variational problem (0.5) has no maximizer.

0 < ε < 2∗ − 2

S
∗
ε :=sup

�
Fε(u) :

�

RN

|(−∆)
s
2u|2dx ≤ 1, u ∈ H

s
0(Ω)

�

with Fε(u):=

�

Ω
|u|2

∗−ε
dx.

Fε(u, µ):=

�

Ω
|u|2

∗−ε
dx .

the problem admits a maximizer uε ∈ H
s
0(Ω).

µε = |(−∆)
s
2uε|2

−(−∆)su(x) = W
�(u(x)) ∀x ∈ RN

W
1,p
0 (Ω)

H
s
0(Ω)

34

�

RN

|(−∆)
s
2u|2dx

�(−∆)
s
2uε�2L2(RN ) ≤ 1

∃ µ ∈ M(RN ) such that µ(RN ) ≤ 1 and |(−∆)
s
2uε|2

∗
� µ in M(RN )

H
s
0(Ω)

µ = |(−∆)
s
2u|2

The setting for the limit functional is the space X defined by

X =
�
(u, µ) ∈ H

s
0(Ω)×M(RN ) : µ ≥ |(−∆)

s
2u|2, µ(RN ) ≤ 1

�

endowed with the following topology τ

(uε, µε)
τ→ (u, µ)

def⇔
�
uε � u in L

2∗(Ω)

µε
∗
� µ in M(RN ).

28

Theorem 1 (the Γ-convergence result)

Theorem 1 [G. P.]

There exists the Γ+-limit F of the sequence of functionals Fε and

F (u, µ) =
�

Ω
|u|2

∗
dx + S

∗
∞�

i=0

µ
2∗
2

i , ∀(u, µ) ∈ X,

where S
∗ is the best Sobolev constant for which is

�u�L2∗(Ω) ≤ S
∗�∇u�L2(Ω), ∀u ∈ H

1
0 (Ω),

7
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Theorem 3 : the concentration result

Theorem 3 [G. P., A. Pisante, 2010]

As

The asymptotic behavior of the solution uε

the asymptotic behavior of the solution uε when ε→ 0

Ω unit ball

Atkinson-Peletier (1986) and Brezis-Peletier (1989) showed that

the positive solutions of (1) which are maximizing for the variational problem

S∗ε :=sup

��

Ω
|u|2

∗−εdx :

�

Ω
|∇u|2dx ≤ 1, u = 0 on ∂Ω

�

concentrate at exactly one point x0 ∈ Ω.

Ω general smooth bounded domain

Rey (1989) and Han (1991) obtained the same concentration result

|∇uε|2 ∗
� δx0

also localizing the blowing up

x0 is the harmonic center of Ω; i.e., the minimum of the Robin function

3

,

.

Theorem 2 (the concentration result)

Theorem 2 [G. P.]

Let uε be a maximizing sequence for S∗
ε . Then uε concentrates in some x0 ∈ Ω, i.e.,

(uε, µε)
τ→ (0, δx0), with µε = |∇uε|2.

Moreover,

for every x0 ∈ Ω there exists a maximizing sequence concentrating in x0.

(i) (ii)

10

F (u, µ) ≤ S
∗

��

Ω
|(−∆)

s
2u|2dx+

∞�

i=0

µi

�2∗
2

≤ S
∗

where we also utilized the fact

�

Ω
|(−∆)

s
2u|2dx+

∞�

i=0

µi ≤ µ(RN ) ≤ 1.

|∇uε|p
∗
� δx0 p ∈ (1, N)

�u�2
∗

L2∗(Ω) ≤ S
∗�(−∆)

s
2u�2

∗

L2(Ω), ∀u ∈ H
s
0(Ω).

29

The concentration result - proof

Proof of (i)

Γ+

Fε → F

every maximizing sequence for Fε converges to a maximizer of F

and we have the convergence of maxima

Thus, it suffices to prove that

F (u, µ) ≤ S∗, for every (u, µ) ∈ X

and the equality is achieved if and only if (u, µ) = (0, δx0), with x0 ∈ Ω.

(�)

For every (u, µ) ∈ X

Sobolev inequality

F (u, µ) ≡
�

Ω
|u|2

∗
dx + S∗

∞�

i=0

µ
2∗
2

i

≤ S∗
��

Ω
|∇u|2dx

� 2∗
2

+ S∗
∞�

i=o

µ
2∗
2

i

convexity of the function t �→ t
2∗
2

F (u, µ) ≤ S∗
��

Ω
|∇u|2dx +

∞�

i=o

µi

� 2∗
2

≤ S∗

where we also utilized the fact
�

Ω
|∇u|2dx +

∞�

i=0

µi ≤ µ(Ω) ≤ 1.

11

(i )

(ii )

H
s
0(Ω)

(u, µ) = (0, δx0)

(u, µ) =
�
0,
�n

j=1 µjδxj

�

(u, µ) ∈ X̃

(u, µ) ∈ X

Let Ω ⊂ RN be a bounded open set and for each 0 < ε < 2∗ − 2 Then

(i) lim
ε→0

S
∗
ε = S

∗ ;

(ii) As ε = εn → 0,

Let uε ∈ H
s
0(Ω) be a maximizer for S∗

ε . Then (up to subsequences) uε � 0 in H
s
0(Ω)

and it concentrates at some point x0 ∈ Ω both in L
2∗ and in H

s, i.e.

|uε|2
∗
dx

∗
� S

∗δx0 and |(−∆)
s
2uε|2dx

∗
� δx0 in M(RN ).

(iii) There exists a sequence of points {xn} ⊂ RN , xn → x0 and a sequence of numbers

{λn} � 0, such that ũn(x) = λN−2s/2
n un(xn + λnx) converges to u(x) as given by

(??), both in L
2∗(RN ) and in H

s
0(RN ) as n → ∞.

35

(iii )

H
s
0(Ω)

(u, µ) = (0, δx0)

(u, µ) =
�
0,
�n

j=1 µjδxj

�

(u, µ) ∈ X̃

(u, µ) ∈ X

Let Ω ⊂ RN be a bounded open set and for each 0 < ε < 2∗ − 2 Then

(i) lim
ε→0

S
∗
ε = S

∗ ;

(ii) As ε = εn → 0,

Let uε ∈ H
s
0(Ω) be a maximizer for S∗

ε . Then (up to subsequences) uε � 0 in H
s
0(Ω)

and it concentrates at some point x0 ∈ Ω both in L
2∗ and in H

s, i.e.

|uε|2
∗
dx

∗
� S

∗δx0 and |(−∆)
s
2uε|2dx

∗
� δx0 in M(RN ).

(iii) asdasd

∃ xε → x0 and λε � 0 s. t. the function ũε defined by ũε(x) = λε
N−2s/2

uε(xε+λεx)

converges to u maximizer for S∗ in H
s
0

�
and in L

2∗
�
.

35

, ,
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problem ?
Which will be the “preferred” function ?
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See for instance, the fractional Yamabe problem (Chang-Gonzalez (2010), Gonzalez-Qing (2010), ...).

•Generalised Brezis-Nirenberg problem :

Final remarks

a different way to prove the concentration result

developments

Same framework (with the needed modifications) should work to deal with other non-

linear problems, linked to some Sobolev critical exponent.

Neumann problem

�
(−∆)u = 0 in Ω
∂u
∂ν = u

2�−1−ε on ∂Ω

G. P. (w. i. p.)

Fractional powers of the laplacian

�
(−∆)suε = λε|uε|2

∗−2−ε
uε in Ω

uε = 0 on ∂Ω

�
(−∆)suε − λu = |uε|2

∗−2−ε
uε in Ω

uε = 0 on ∂Ω

(−∆)su− λu = |u|2
∗−2

u in H
s
0(Ω)

�
, λ > 0.

2� depending on s and n

case s = 1/2 : G. P. - Y. Sire (w. i. p.)

no regularity hypothesis on Ω

What about the localization of the blowing up ?

26
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(s =1 Brezis-Nirenberg(1983)), (s = 2 Edmunds-et al.(1990)), (s = 2m Pucci-Serrin(1990)), (s = 1/2 Tan(2010))
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•An extended concentration-compactness alternative.

(Also, a pseudo-differential approach to deal with the nonlocality of fractional operators)

•What can we say about the localization of the concentration point for the subcritical 
problem ?
Which will be the “preferred” function ?

•Some developments in progress

Existence, multiplicity, qualitative properties, level sets, etc...
The critic case

Non linear elliptic equations involving critical Sobolev exponent

Ω ⊂ RN , N ≥ 3

{

−∆uε = uε
2∗
−1−ε, in Ω

uε = 0 su ∂Ω

dove 2∗ = 2N/(N − 2)

uε > 0 in Ω

ε > 0 : il problema (1) ha una soluzione uε

ε = 0 : l’esistenza delle soluzioni dipende dal dominio Ω

Pohozaev (1965) (Ω stellato)

Kazdan-Warner (1975) (Ω anello)

Ding (1989) (Ω contraibile con una geometria particolare) ∃ sol’n
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È il centro armonico di Ω ?

Stessa domanda per il problema (2)

13

Ω ≡ BR ⊂ RN , N ≥ 2 s ∈ (0, 1)

uε soluzioni di (3) massimizzanti per

S∗

ε (BR) :=sup

{
∫

Ω
|u|2

∗

s−εdx : u ∈ Hs
0 (BR)

∫

Ω
|(−∆)

s
2 u|2dx ≤ 1

}

comportamento asintotico di

G[s](uε; BR) =

∫

BR

|uε|2
∗

s−εdx

11

.

Final remarks

See for instance, the fractional Yamabe problem (Chang-Gonzalez (2010), Gonzalez-Qing (2010), ...).

•Generalised Brezis-Nirenberg problem :

Final remarks

a different way to prove the concentration result

developments

Same framework (with the needed modifications) should work to deal with other non-

linear problems, linked to some Sobolev critical exponent.
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What about the localization of the blowing up ?
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•An extended concentration-compactness alternative.

(Also, a pseudo-differential approach to deal with the nonlocality of fractional operators)

•What can we say about the localization of the concentration point for the subcritical 
problem ?
Which will be the “preferred” function ?

•Some developments in progress

Existence, multiplicity, qualitative properties, level sets, etc...
The critic case

Non linear elliptic equations involving critical Sobolev exponent
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Nonlinear problems involving the fractional powers of the Laplacian, 
work in progress.
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