Sobolev embeddings and concentration-compactness alternative for fractional Sobolev spaces

Giampiero Palatucci
INDAM Research Fellowship 2010-2011
(Università di Roma "Tor Vergata" - Université de Nîmes)

Optimization Days

An international workshop on Calculus of Variations

Università Politecnica delle Marche
June 6-8, 2011

Plan of the talk

```
(with A.Pisante) Sobolev embeddings and concentration-compactness alternative for fractional Sobolev spaces, submitted paper, 2010.
```


1. Introduction

2. Concentration-compactness alternative

3. Final remarks

Plan of the talk

```
(with A.Pisante) Sobolev embeddings and concentration-compactness alternative for fractional Sobolev spaces, submitted paper, 2010.
```


1. Introduction

2. Concentration-compactness alternative
3. Final remarks

Problems involving the fractional powers of the Laplacian

Let $s>0$.

$$
-(-\Delta)^{s} u=f
$$

Problems involving the fractional powers of the Laplacian

Let $s>0$.

$$
-(-\Delta)^{s} u=f
$$

- Natural spaces
$H_{0}^{s}\left(\mathbb{R}^{N}\right)$, the completion of $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ w.r.t. the norm

$$
\|u\|_{H_{0}^{s}}^{2}=\left\|(-\Delta)^{\frac{s}{2}} u\right\|_{L^{2}}^{2}=\int_{\mathbb{R}^{N}}|\xi|^{2 s}|\hat{u}(\xi)|^{2} d \xi
$$

Problems involving the fractional powers of the Laplacian

Let $s>0$.

$$
-(-\Delta)^{s} u=f
$$

- Natural spaces
$H_{0}^{s}\left(\mathbb{R}^{N}\right)$, the completion of $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ w.r.t. the norm

$$
\|u\|_{H_{0}^{s}}^{2}=\left\|(-\Delta)^{\frac{s}{2}} u\right\|_{L^{2}}^{2}=\int_{\mathbb{R}^{N}}|\xi|^{2 s}|\hat{u}(\xi)|^{2} d \xi
$$

The fractional powers of the Laplacian are experiencing impressive applications in different subjects:
thin obstacle problems (Silvestre 2007, Milakis-Silvestre 2008)
financial market problems (Cont-Tankov 2004)
phase transitions (Alberti et al. 1998, Cabré-SolaMorales 2005, Sire-Valdinoci 2009, Farina et al. 2011) water waves (Stoker 1957, Whitham 1974, Craig-Nicholls 2004, De La Lave-Valdinoci 2009) dislocations in crystals (Toland 1997, Gonzalez-Monneau 2011)
soft thin films (Kurzke 2006)
semipermeable membranes and flame propagation (Caffarelli-Mellet-Sire 2011)
quasi-geostrophic flows (Majda-Takab 1996, Cordoba 1998, Caffarelli-Vasseur 2010)
minimal surfaces (Caffarelli-Roquejoffre-Savin 2010, Caffarelli-Valdinoci 2011)
anomalous diffusion (Metzler-Klafter 2000)
ultra-relativistic limits of quantum mechanics (Fefferman-De La Lave 1986)
multiple scattering (Duistermaat-Guillemin 1975, Colton-Cress 1998, Grote-Kirsch 2004) etc...

Fractional Sobolev embeddings

If $0<s<N / 2$ and $2^{*}=2 N /(N-2 s)$, the Sobolev critical exponent, the following Sobolev inequality is valid for some positive constant $S^{*}=S^{*}(N, s)$
($\star) \quad\|u\|_{L^{2^{*}}\left(\mathbb{R}^{N}\right)}^{2^{*}} \leq S^{*}\left\|(-\Delta)^{\frac{s}{2}} u\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2^{*}} \quad \forall u \in H_{0}^{s}\left(\mathbb{R}^{N}\right)$.

Fractional Sobolev embeddings

If $0<s<N / 2$ and $2^{*}=2 N /(N-2 s)$, the Sobolev critical exponent, the following Sobolev inequality is valid for some positive constant $S^{*}=S^{*}(N, s)$
($\star) \quad\|u\|_{L^{2^{*}}\left(\mathbb{R}^{N}\right)}^{2^{*}} \leq S^{*}\left\|(-\Delta)^{\frac{s}{2}} u\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2^{*}} \quad \forall u \in H_{0}^{s}\left(\mathbb{R}^{N}\right)$.

Cotsiolis-Tavoularis (2004): $\quad(\boldsymbol{\star})$ is attained iff $u(x)=\frac{c}{\left(\lambda^{2}+\left|x-x_{0}\right|^{2}\right)^{\frac{N-2 s}{2}}} \forall x \in \mathbb{R}^{N}$, where $c \in \mathbb{R} \backslash\{0\}, \lambda>0$ and $x_{0} \in \mathbb{R}^{N}$ are fixed constants.

Fractional Sobolev embeddings

If $0<s<N / 2$ and $2^{*}=2 N /(N-2 s)$, the Sobolev critical exponent, the following Sobolev inequality is valid for some positive constant $S^{*}=S^{*}(N, s)$
($\star) \quad\|u\|_{L^{2^{*}}\left(\mathbb{R}^{N}\right)}^{2^{*}} \leq S^{*}\left\|(-\Delta)^{\frac{s}{2}} u\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2^{*}} \quad \forall u \in H_{0}^{s}\left(\mathbb{R}^{N}\right)$.

Cotsiolis-Tavoularis (2004): $\quad(\boldsymbol{\star})$ is attained iff $u(x)=\frac{c}{\left(\lambda^{2}+\left|x-x_{0}\right|^{2}\right)^{\frac{N-2 s}{2}}} \forall x \in \mathbb{R}^{N}$, where $c \in \mathbb{R} \backslash\{0\}, \lambda>0$ and $x_{0} \in \mathbb{R}^{N}$ are fixed constants.

See also Chen-Li-Ou (2006), Frank-Seringer (2008).

Fractional Sobolev embeddings

If $0<s<N / 2$ and $2^{*}=2 N /(N-2 s)$, the Sobolev critical exponent, the following Sobolev inequality is valid for some positive constant $S^{*}=S^{*}(N, s)$
($\star) \quad\|u\|_{L^{2^{*}}\left(\mathbb{R}^{N}\right)}^{2^{*}} \leq S^{*}\left\|(-\Delta)^{\frac{s}{2}} u\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2^{*}} \quad \forall u \in H_{0}^{s}\left(\mathbb{R}^{N}\right)$.

Cotsiolis-Tavoularis (2004): $\quad(\boldsymbol{\star})$ is attained iff $u(x)=\frac{c}{\left(\lambda^{2}+\left|x-x_{0}\right|^{2}\right)^{\frac{N-2 s}{2}}} \forall x \in \mathbb{R}^{N}$, where $c \in \mathbb{R} \backslash\{0\}, \lambda>0$ and $x_{0} \in \mathbb{R}^{N}$ are fixed constants.

See also Chen-Li-Ou (2006), Frank-Seringer (2008).

A naive approach to (\star) is to study the variational problem

$$
S^{*}:=\sup \left\{F(u): u \in H_{0}^{s}\left(\mathbb{R}^{N}\right), \int_{\mathbb{R}^{N}}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x \leq 1\right\} \text { with } F(u):=\int_{\mathbb{R}^{N}}|u|^{2^{*}} d x
$$

Fractional Sobolev embeddings

If $0<s<N / 2$ and $2^{*}=2 N /(N-2 s)$, the Sobolev critical exponent, the following Sobolev inequality is valid for some positive constant $S^{*}=S^{*}(N, s)$

$$
(\star) \quad\|u\|_{L^{2^{*}}\left(\mathbb{R}^{N}\right)}^{2^{*}} \leq S^{*}\left\|(-\Delta)^{\frac{s}{2}} u\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2^{*}} \quad \forall u \in H_{0}^{s}\left(\mathbb{R}^{N}\right)
$$

Cotsiolis-Tavoularis (2004): $\quad(\boldsymbol{\star})$ is attained iff $u(x)=\frac{c}{\left(\lambda^{2}+\left|x-x_{0}\right|^{2}\right)^{\frac{N-2 s}{2}}} \forall x \in \mathbb{R}^{N}$, where $c \in \mathbb{R} \backslash\{0\}, \lambda>0$ and $x_{0} \in \mathbb{R}^{N}$ are fixed constants.

See also Chen-Li-Ou (2006), Frank-Seringer (2008).

A naive approach to (\star) is to study the variational problem

$$
S^{*}:=\sup \left\{F(u): u \in H_{0}^{s}\left(\mathbb{R}^{N}\right), \int_{\mathbb{R}^{N}}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x \leq 1\right\} \text { with } F(u):=\int_{\mathbb{R}^{N}}|u|^{2^{*}} d x
$$

$\Omega \subset \mathbb{R}^{N}$ bounded open set

$$
S_{\Omega}^{*}:=\sup \left\{F_{\Omega}(u): u \in H_{0}^{s}(\Omega), \int_{\mathbb{R}^{N}}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x \leq 1\right\} \text { with } F_{\Omega}(u):=\int_{\Omega}|u|^{2^{*}} d x
$$

Fractional Sobolev embeddings

If $0<s<N / 2$ and $2^{*}=2 N /(N-2 s)$, the Sobolev critical exponent, the following Sobolev inequality is valid for some positive constant $S^{*}=S^{*}(N, s)$

$$
(\star) \quad\|u\|_{L^{2^{*}}\left(\mathbb{R}^{N}\right)}^{2^{*}} \leq S^{*}\left\|(-\Delta)^{\frac{s}{2}} u\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2^{*}} \quad \forall u \in H_{0}^{s}\left(\mathbb{R}^{N}\right)
$$

Cotsiolis-Tavoularis (2004): $\quad(\boldsymbol{\star})$ is attained iff $u(x)=\frac{c}{\left(\lambda^{2}+\left|x-x_{0}\right|^{2}\right)^{\frac{N-2 s}{2}}} \forall x \in \mathbb{R}^{N}$, where $c \in \mathbb{R} \backslash\{0\}, \lambda>0$ and $x_{0} \in \mathbb{R}^{N}$ are fixed constants.

See also Chen-Li-Ou (2006), Frank-Seringer (2008).

A naive approach to (\star) is to study the variational problem

$$
S^{*}:=\sup \left\{F(u): u \in H_{0}^{s}\left(\mathbb{R}^{N}\right), \int_{\mathbb{R}^{N}}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x \leq 1\right\} \text { with } F(u):=\int_{\mathbb{R}^{N}}|u|^{2^{*}} d x
$$

$\Omega \subset \mathbb{R}^{N}$ bounded open set

$$
S_{\Omega}^{*}:=\sup \left\{F_{\Omega}(u): u \in H_{0}^{s}(\Omega), \int_{\mathbb{R}^{N}}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x \leq 1\right\} \text { with } F_{\Omega}(u):=\int_{\Omega}|u|^{2^{*}} d x
$$

1. Introduction

2. Concentration-compactness alternative
3. Final remarks

1. Introduction

2. Concentration-compactness alternative
3. Final remarks

Concentration-compactness alternative for fractional Sobolev spaces

$\Omega \subseteq \mathbb{R}^{N}$. If $0<s<N / 2$ and $2^{*}=2 N /(N-2 s)$,

Theorem 1 [G.P., A. Pisante, 2010]

Let $\left(u_{n}\right)$ be a sequence in $H_{0}^{s}(\Omega)$ weakly converging to u such that

$$
\left|(-\Delta)^{\frac{s}{2}} u_{n}\right|^{2} d x \stackrel{*}{\rightharpoonup} \mu \quad \text { and } \quad\left|u_{n}\right|^{2^{*}} d x \stackrel{*}{\rightharpoonup} \nu \text { in } \mathcal{M}\left(\mathbb{R}^{N}\right) .
$$

Then, either $u_{n} \rightarrow u$ in $L_{\text {loc }}^{2^{*}}\left(\mathbb{R}^{N}\right)$ or there exists a finite set of distinct points x_{1}, \ldots, x_{k} in $\bar{\Omega}$ and positive numbers ν_{1}, \ldots, ν_{k} such that we have

$$
\nu=|u|^{2^{*}} d x+\sum_{j=1}^{k} \nu_{j} \delta_{x_{j}}, \quad\left(S^{*}\right)^{1-\frac{2^{*}}{2}} \leq \nu_{j}
$$

If in addition Ω is bounded, there exist a positive measure $\tilde{\mu} \in \mathcal{M}\left(\mathbb{R}^{N}\right)$ with spt $\tilde{\mu} \subset \bar{\Omega}$ and positive numbers μ_{1}, \ldots, μ_{k} such that

$$
\mu=\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x+\tilde{\mu}+\sum_{j=1}^{k} \mu_{j} \delta_{x_{j}}, \quad \nu_{j} \leq S^{*} \mu_{j}^{\frac{2^{*}}{2}}
$$

Concentration-compactness alternative for fractional Sobolev spaces

$\Omega \subseteq \mathbb{R}^{N}$. If $0<s<N / 2$ and $2^{*}=2 N /(N-2 s)$,

Theorem 1 [G.P., A. Pisante, 2010]

Let $\left(u_{n}\right)$ be a sequence in $H_{0}^{s}(\Omega)$ weakly converging to u such that

$$
\left|(-\Delta)^{\frac{s}{2}} u_{n}\right|^{2} d x \stackrel{*}{\rightharpoonup} \mu \quad \text { and } \quad\left|u_{n}\right|^{2^{*}} d x \stackrel{*}{\rightharpoonup} \nu \text { in } \mathcal{M}\left(\mathbb{R}^{N}\right) .
$$

Then, either $u_{n} \rightarrow u$ in $L_{\text {loc }}^{2^{*}}\left(\mathbb{R}^{N}\right)$ or there exists a finite set of distinct points x_{1}, \ldots, x_{k} in $\bar{\Omega}$ and positive numbers ν_{1}, \ldots, ν_{k} such that we have

$$
\nu=|u|^{2^{*}} d x+\sum_{j=1}^{k} \nu_{j} \delta_{x_{j}}, \quad\left(S^{*}\right)^{1-\frac{2^{*}}{2}} \leq \nu_{j}
$$

If in addition Ω is bounded, there exist a positive measure $\tilde{\mu} \in \mathcal{M}\left(\mathbb{R}^{N}\right)$ with spt $\tilde{\mu} \subset \bar{\Omega}$ and positive numbers μ_{1}, \ldots, μ_{k} such that

$$
\mu=\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x+\tilde{\mu}+\sum_{j=1}^{k} \mu_{j} \delta_{x_{j}}, \quad \nu_{j} \leq S^{*} \mu_{j}^{\frac{2^{*}}{2}}
$$

$s=1,2 \mathrm{~m} \quad$ Standard C-C-A P. L. Lions (1985)

Corollary 1 (concentration of the optimizing sequences)

$\Omega \subset \mathbb{R}^{N}$ bounded open set .

Corollary 1

Let $\left(u_{n}\right) \in H_{0}^{s}(\Omega)$ be a maximizing sequence for the critical Sobolev inequality

$$
\|u\|_{L^{2^{*}}(\Omega)}^{2^{*}} \leq S^{*}\left\|(-\Delta)^{\frac{s}{2}} u\right\|_{L^{2}(\Omega)}^{2^{*}}
$$

Then $\left(u_{n}\right)$ concentrates at one point $x_{0} \in \bar{\Omega}$.

Corollary 1 (concentration of the optimizing sequences)

$\Omega \subset \mathbb{R}^{N}$ bounded open set .

Corollary 1

Let $\left(u_{n}\right) \in H_{0}^{s}(\Omega)$ be a maximizing sequence for the critical Sobolev inequality

$$
\|u\|_{L^{2^{*}}(\Omega)}^{2^{*}} \leq S^{*}\left\|(-\Delta)^{\frac{s}{2}} u\right\|_{L^{2}(\Omega)}^{2^{*}}
$$

Then $\left(u_{n}\right)$ concentrates at one point $x_{0} \in \bar{\Omega}$.

Proof.
We want to prove that $\left|(-\Delta)^{\frac{s}{2}} u_{n}\right|^{2} d x \stackrel{*}{\rightharpoonup} \delta_{x_{0}}$ in $\mathcal{M}\left(\mathbb{R}^{N}\right)$.

Corollary 1 (concentration of the optimizing sequences)

$\Omega \subset \mathbb{R}^{N}$ bounded open set .

Corollary 1

Let $\left(u_{n}\right) \in H_{0}^{s}(\Omega)$ be a maximizing sequence for the critical Sobolev inequality

$$
\|u\|_{L^{2^{*}}(\Omega)}^{2^{*}} \leq S^{*}\left\|(-\Delta)^{\frac{s}{2}} u\right\|_{L^{2}(\Omega)}^{2^{*}}
$$

Then $\left(u_{n}\right)$ concentrates at one point $x_{0} \in \bar{\Omega}$.

Proof.
We want to prove that $\left|(-\Delta)^{\frac{s}{2}} u_{n}\right|^{2} d x \stackrel{*}{\rightharpoonup} \delta_{x_{0}}$ in $\mathcal{M}\left(\mathbb{R}^{N}\right)$.

We have $\int_{\Omega}\left|u_{n}\right|^{2^{*}} d x \rightarrow S^{*}$
and so $\left|u_{n}\right|^{2^{*}} d x \stackrel{*}{\rightharpoonup} \nu \in \mathcal{M}\left(\mathbb{R}^{N}\right)$ with $\nu(\Omega)=S^{*}$.

Corollary 1 (concentration of the optimizing sequences) - proof

$$
\mu=\left|(-\Delta)^{\frac{s}{2}} u\right|^{2}+\tilde{\mu}+\sum_{i=0}^{\infty} \mu_{i} \delta_{x_{i}}
$$

We have $\quad S^{*}=\nu(\Omega)$

Corollary 1 (concentration of the optimizing sequences) - proof

$$
\mu=\left|(-\Delta)^{\frac{s}{2}} u\right|^{2}+\tilde{\mu}+\sum_{i=0}^{\infty} \mu_{i} \delta_{x_{i}}
$$

We have $S^{*}=\nu(\Omega)$

Corollary 1 (concentration of the optimizing sequences) - proof

$$
\mu=\left|(-\Delta)^{\frac{s}{2}} u\right|^{2}+\tilde{\mu}+\sum_{i=0}^{\infty} \mu_{i} \delta_{x_{i}}
$$

We have $S^{*}=\nu(\Omega)$

$$
=\int_{\Omega}|u|^{2^{*}} d x+\sum_{i \in I} \nu_{i}
$$

Corollary 1 (concentration of the optimizing sequences) - proof

$$
\mu=\left|(-\Delta)^{\frac{s}{2}} u\right|^{2}+\tilde{\mu}+\sum_{i=0}^{\infty} \mu_{i} \delta_{x_{i}}
$$

We have $S^{*}=\nu(\Omega)$

Corollary 1 (concentration of the optimizing sequences) - proof

$$
\mu=\left|(-\Delta)^{\frac{s}{2}} u\right|^{2}+\tilde{\mu}+\sum_{i=0}^{\infty} \mu_{i} \delta_{x_{i}}
$$

We have

$$
\begin{aligned}
S^{*} & =\nu(\Omega) \\
& =\int_{\Omega}|u|^{2^{*}} d x+\sum_{i \in I} \nu_{i} \\
& \square S^{*}\left(\int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x\right)^{\frac{2^{*}}{2}}+S^{*} \sum_{i \in I} \mu_{i}^{\frac{2^{*}}{2}}
\end{aligned}
$$

Corollary 1 (concentration of the optimizing sequences) - proof

$$
\mu=\left|(-\Delta)^{\frac{s}{2}} u\right|^{2}+\tilde{\mu}+\sum_{i=0}^{\infty} \mu_{i} \delta_{x_{i}}
$$

We have

$$
\begin{aligned}
S^{*} & =\nu(\Omega) \\
& =\int_{\Omega}|u|^{2^{*}} d x+\sum_{i \in I} \nu_{i} \\
& \square \\
& \leq S^{*}\left(\int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x\right)^{\frac{2^{*}}{2}}+S^{*} \sum_{i \in I} \mu_{i}^{\frac{2^{*}}{2}}
\end{aligned}
$$ convexity of the function $t \mapsto t^{\frac{2^{*}}{2}}$

Corollary 1 (concentration of the optimizing sequences) - proof

$$
\mu=\left|(-\Delta)^{\frac{s}{2}} u\right|^{2}+\tilde{\mu}+\sum_{i=0}^{\infty} \mu_{i} \delta_{x_{i}}
$$

We have

$$
\begin{array}{rlrl}
S^{*} & =\nu(\Omega) & \text { Theorem } 1 \text { (C-C-A) } \\
& =\int_{\Omega}|u|^{2^{*}} d x+\sum_{i \in I} \nu_{i} & \\
& \leq S^{*}\left(\int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x\right)^{\frac{2^{*}}{2}}+S^{*} \sum_{i \in I} \mu_{i}^{\frac{2^{*}}{2}} \\
& \leq S^{*}\left(\int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x+\sum_{i \in I} \mu_{i}\right)^{\frac{2^{*}}{2}} &
\end{array}
$$

Corollary 1 (concentration of the optimizing sequences) - proof

$$
\mu=\left|(-\Delta)^{\frac{s}{2}} u\right|^{2}+\tilde{\mu}+\sum_{i=0}^{\infty} \mu_{i} \delta_{x_{i}}
$$

We have $\quad S^{*}=\nu(\Omega)$
$=\int_{\Omega}|u|^{2^{*}} d x+\sum_{i \in I} \nu_{i}$

$$
\text { Sobolev inequality }+ \text { C-C-A }
$$

$$
\leq S^{*}\left(\int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x\right)^{\frac{2^{*}}{2}}+S^{*} \sum_{i \in I} \mu_{i}^{\frac{2^{*}}{2}}
$$ convexity of the function $t \mapsto t^{\frac{2^{*}}{2}}$

$\leq S^{*}\left(\int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x+\sum_{i \in I} \mu_{i}\right)^{\frac{2^{*}}{2}}$
$\int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x+\sum_{i \in I} \mu_{i} \leq \mu\left(\mathbb{R}^{N}\right) \leq 1$

Corollary 1 (concentration of the optimizing sequences) - proof

$$
\mu=\left|(-\Delta)^{\frac{s}{2}} u\right|^{2}+\tilde{\mu}+\sum_{i=0}^{\infty} \mu_{i} \delta_{x_{i}}
$$

We have $\quad S^{*}=\nu(\Omega)$
$=\int_{\Omega}|u|^{2^{*}} d x+\sum_{i \in I} \nu_{i}$

$$
\text { Sobolev inequality }+ \text { C-C-A }
$$

$$
\leq S^{*}\left(\int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x\right)^{\frac{2^{*}}{2}}+S^{*} \sum_{i \in I} \mu_{i}^{\frac{2^{*}}{2}}
$$ convexity of the function $t \mapsto t^{\frac{2^{*}}{2}}$

$\leq S^{*}\left(\int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x+\sum_{i \in I} \mu_{i}\right)^{\frac{2^{*}}{2}}$

$$
\int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x+\sum_{i \in I} \mu_{i} \leq \mu\left(\mathbb{R}^{N}\right) \leq 1
$$

$$
\leq S^{*}
$$

Corollary 1 (concentration of the optimizing sequences) - proof

$$
\mu=\left|(-\Delta)^{\frac{s}{2}} u\right|^{2}+\tilde{\mu}+\sum_{i=0}^{\infty} \mu_{i} \delta_{x_{i}}
$$

We have $S^{*}=\nu(\Omega)$
$=\int_{\Omega}|u|^{2^{*}} d x+\sum_{i \in I} \nu_{i}$
Sobolev inequality + C-C-A

$$
\leq S^{*}\left(\int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x\right)^{\frac{2^{*}}{2}}+S^{*} \sum_{i \in I} \mu_{i}^{\frac{2^{*}}{2}}
$$ convexity of the function $t \mapsto t^{2^{2^{*}}}$

$\leq S^{*}\left(\int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x+\sum_{i \in I} \mu_{i}\right)^{\frac{2^{*}}{2}}$

$$
\int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x+\sum_{i \in I} \mu_{i} \leq \mu\left(\mathbb{R}^{N}\right) \leq 1
$$

$$
\leq S^{*}
$$

Corollary 1 (concentration of the optimizing sequences) - proof

$$
\mu=\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} \quad+\sum_{i=0}^{\infty} \mu_{i} \delta_{x_{i}}
$$

We have $S^{*}=\nu(\Omega)$
$=\int_{\Omega}|u|^{2^{*}} d x+\sum_{i \in I} \nu_{i}$
Sobolev inequality + C-C-A

$$
\leq S^{*}\left(\int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x\right)^{\frac{2^{*}}{2}}+S^{*} \sum_{i \in I} \mu_{i}^{\frac{2^{*}}{2}}
$$ convexity of the function $t \mapsto t^{\frac{2^{*}}{2}}$

$\leq S^{*}\left(\int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x+\sum_{i \in I} \mu_{i}\right)^{\frac{2^{*}}{2}}$

$$
\int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x+\sum_{i \in I} \mu_{i} \leq \mu\left(\mathbb{R}^{N}\right) \leq 1
$$

$$
\leq S^{*}
$$

Corollary 1 (concentration of the optimizing sequences) - proof

$$
\mu=\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} \quad+\sum_{i=0}^{\infty} \mu_{i} \delta_{x_{i}}
$$

We have $S^{*}=\nu(\Omega)$

$$
\leq S^{*}\left(\int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x\right)^{\frac{2^{*}}{2}}+S^{*} \sum_{i \in I} \mu_{i}^{\frac{2^{*}}{2}}
$$ convexity of the function $t \mapsto t^{\frac{2^{*}}{2}}$

$$
\leq S^{*}\left(\int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x+\sum_{i \in I} \mu_{i}\right)^{\frac{2^{*}}{2}}
$$

$$
\int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x+\sum_{i \in I} \mu_{i} \leq \mu\left(\mathbb{R}^{N}\right) \leq 1
$$

$$
\leq S^{*}
$$

Sobolev inequality is not attained on bounded domains $\Rightarrow u$ is zero.

Corollary 1 (concentration of the optimizing sequences) - proof

$$
\mu=\quad+\sum_{i=0}^{\infty} \mu_{i} \delta_{x_{i}}
$$

We have $S^{*}=\nu(\Omega)$

$$
\leq S^{*}\left(\int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x\right)^{\frac{2^{*}}{2}}+S^{*} \sum_{i \in I} \mu_{i}^{\frac{2^{*}}{2}}
$$ convexity of the function $t \mapsto t^{\frac{2^{*}}{2}}$

$$
\leq S^{*}\left(\int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x+\sum_{i \in I} \mu_{i}\right)^{\frac{2^{*}}{2}}
$$

$$
\int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x+\sum_{i \in I} \mu_{i} \leq \mu\left(\mathbb{R}^{N}\right) \leq 1
$$

$$
\leq S^{*}
$$

Sobolev inequality is not attained on bounded domains $\Rightarrow u$ is zero.

Corollary 1 (concentration of the optimizing sequences) - proof

$$
\mu=\quad+\sum_{i=0}^{\infty} \mu_{i} \delta_{x_{i}}
$$

We have $S^{*}=\nu(\Omega)$

$$
\leq S^{*}\left(\int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x\right)^{\frac{2^{*}}{2}}+S^{*} \sum_{i \in I} \mu_{i}^{\frac{2^{*}}{2}}
$$

$\leq S^{*}\left(\int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x+\sum_{i \in I} \mu_{i}\right)^{\frac{2^{*}}{2}}$

$$
\int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x+\sum_{i \in I} \mu_{i} \leq \mu\left(\mathbb{R}^{N}\right) \leq 1
$$

$$
\leq S^{*}
$$

Sobolev inequality is not attained on bounded domains $\Rightarrow u$ is zero. The function $t \mapsto t^{\frac{2^{*}}{2}}$ is strictly convex \Longleftrightarrow Only one of the μ_{i} 's can be nonzero.

Corollary 1 (concentration of the optimizing sequences) - proof

$\mu=\quad \delta_{x_{i}}$

We have $S^{*}=\nu(\Omega)$

$$
\leq S^{*}\left(\int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x\right)^{\frac{2^{*}}{2}}+S^{*} \sum_{i \in I} \mu_{i}^{\frac{2^{*}}{2}}
$$ convexity of the function $t \mapsto t^{\frac{2^{*}}{2}}$

$\leq S^{*}\left(\int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x+\sum_{i \in I} \mu_{i}\right)^{\frac{2^{*}}{2}}$

$$
\int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x+\sum_{i \in I} \mu_{i} \leq \mu\left(\mathbb{R}^{N}\right) \leq 1
$$

$$
\leq S^{*}
$$

Sobolev inequality is not attained on bounded domains $\Rightarrow u$ is zero. The function $t \mapsto t^{\frac{2^{*}}{2}}$ is strictly convex \Rightarrow Only one of the μ_{i} 's can be nonzero.

Corollary 1 (concentration of the optimizing sequences) - proof
$\mu=\quad \delta_{x_{i}}$

We have $S^{*}=\nu(\Omega)$

$$
\leq S^{*}\left(\int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x\right)^{\frac{2^{*}}{2}}+S^{*} \sum_{i \in I} \mu_{i}^{\frac{2^{*}}{2}}
$$

$\leq S^{*}\left(\int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x+\sum_{i \in I} \mu_{i}\right)^{\frac{2^{*}}{2}}$

$$
\int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x+\sum_{i \in I} \mu_{i} \leq \mu\left(\mathbb{R}^{N}\right) \leq 1
$$

$$
\leq S^{*}
$$

Sobolev inequality is not attained on bounded domains $\Rightarrow u$ is zero. The function $t \mapsto t^{\frac{2^{*}}{2}}$ is strictly convex \Rightarrow Only one of the μ_{i} 's can be nonzero. Hence, concentration occurs at one point $x_{0} \in \bar{\Omega}$.

Proof of Theorem 1: a suitable tool

Lemma [G.P., A. Pisante, 2010]
Let $\Omega \subset \mathbb{R}^{N}$ a bounded open set and let $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$. Then

$$
\varphi\left((-\Delta)^{s / 2} u_{n}\right)-(-\Delta)^{s / 2}\left(\varphi u_{n}\right) \rightarrow 0 \quad \text { in } \quad L^{2}\left(\mathbb{R}^{N}\right)
$$

whenever $u_{n} \rightharpoonup 0$ in $H_{0}^{s}(\Omega)$ as $n \rightarrow \infty$,
i.e., the commutator $\left[\varphi,(-\Delta)^{s / 2}\right]: H_{0}^{s}(\Omega) \rightarrow L^{2}\left(\mathbb{R}^{N}\right)$ is a compact operator.

Proof of Theorem 1: a suitable tool

Lemma [G.P., A. Pisante, 2010]
Let $\Omega \subset \mathbb{R}^{N}$ a bounded open set and let $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$. Then

$$
\varphi\left((-\Delta)^{s / 2} u_{n}\right)-(-\Delta)^{s / 2}\left(\varphi u_{n}\right) \rightarrow 0 \quad \text { in } \quad L^{2}\left(\mathbb{R}^{N}\right)
$$

whenever $u_{n} \rightharpoonup 0$ in $H_{0}^{s}(\Omega)$ as $n \rightarrow \infty$,
i.e., the commutator $\left[\varphi,(-\Delta)^{s / 2}\right]: H_{0}^{s}(\Omega) \rightarrow L^{2}\left(\mathbb{R}^{N}\right)$ is a compact operator.

Proof of Theorem 1: a suitable tool

Lemma [G.P., A. Pisante, 2010]
Let $\Omega \subset \mathbb{R}^{N}$ a bounded open set and let $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$. Then

$$
\varphi\left((-\Delta)^{s / 2} u_{n}\right)-(-\Delta)^{s / 2}\left(\varphi u_{n}\right) \rightarrow 0 \quad \text { in } \quad L^{2}\left(\mathbb{R}^{N}\right)
$$

whenever $u_{n} \rightharpoonup 0$ in $H_{0}^{s}(\Omega)$ as $n \rightarrow \infty$,
i.e., the commutator $\left[\varphi,(-\Delta)^{s / 2}\right]: H_{0}^{s}(\Omega) \rightarrow L^{2}\left(\mathbb{R}^{N}\right)$ is a compact operator.

Proof.

Proof of Theorem 1: a suitable tool

Lemma [G.P., A. Pisante, 2010]
Let $\Omega \subset \mathbb{R}^{N}$ a bounded open set and let $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$. Then

$$
\varphi\left((-\Delta)^{s / 2} u_{n}\right)-(-\Delta)^{s / 2}\left(\varphi u_{n}\right) \rightarrow 0 \quad \text { in } \quad L^{2}\left(\mathbb{R}^{N}\right)
$$

whenever $u_{n} \rightharpoonup 0$ in $H_{0}^{s}(\Omega)$ as $n \rightarrow \infty$,
i.e., the commutator $\left[\varphi,(-\Delta)^{s / 2}\right]: H_{0}^{s}(\Omega) \rightarrow L^{2}\left(\mathbb{R}^{N}\right)$ is a compact operator.

Proof.
Let $L=(-\Delta)^{s / 2}$. For each $\varepsilon>0$ we set $L_{\varepsilon}=(\varepsilon I d-\Delta)^{s / 2}$.

Proof of Theorem 1: a suitable tool

Lemma [G.P., A. Pisante, 2010]
Let $\Omega \subset \mathbb{R}^{N}$ a bounded open set and let $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$. Then

$$
\varphi\left((-\Delta)^{s / 2} u_{n}\right)-(-\Delta)^{s / 2}\left(\varphi u_{n}\right) \rightarrow 0 \quad \text { in } \quad L^{2}\left(\mathbb{R}^{N}\right)
$$

whenever $u_{n} \rightharpoonup 0$ in $H_{0}^{s}(\Omega)$ as $n \rightarrow \infty$, i.e., the commutator $\left[\varphi,(-\Delta)^{s / 2}\right]: H_{0}^{s}(\Omega) \rightarrow L^{2}\left(\mathbb{R}^{N}\right)$ is a compact operator.

Proof.
Let $L=(-\Delta)^{s / 2}$. For each $\varepsilon>0$ we set $L_{\varepsilon}=(\varepsilon I d-\Delta)^{s / 2}$.
By conjugation with Fourier transform, we have

$$
L u=\mathcal{F}^{-1} \circ M_{|\xi|^{s}} \circ \mathcal{F}(u), \quad L_{\varepsilon} u=\mathcal{F}^{-1} \circ M_{\left(|\xi|^{2}+\varepsilon\right)^{s / 2}} \circ \mathcal{F}(u)
$$

Proof of Theorem 1: a suitable tool

Lemma [G.P., A. Pisante, 2010]
Let $\Omega \subset \mathbb{R}^{N}$ a bounded open set and let $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$. Then

$$
\varphi\left((-\Delta)^{s / 2} u_{n}\right)-(-\Delta)^{s / 2}\left(\varphi u_{n}\right) \rightarrow 0 \quad \text { in } \quad L^{2}\left(\mathbb{R}^{N}\right)
$$

whenever $u_{n} \rightharpoonup 0$ in $H_{0}^{s}(\Omega)$ as $n \rightarrow \infty$, i.e., the commutator $\left[\varphi,(-\Delta)^{s / 2}\right]: H_{0}^{s}(\Omega) \rightarrow L^{2}\left(\mathbb{R}^{N}\right)$ is a compact operator.

Proof.
Let $L=(-\Delta)^{s / 2}$. For each $\varepsilon>0$ we set $L_{\varepsilon}=(\varepsilon I d-\Delta)^{s / 2}$.
By conjugation with Fourier transform, we have

$$
L u=\mathcal{F}^{-1} \circ M_{|\xi|^{s}} \circ \mathcal{F}(u), \quad L_{\varepsilon} u=\mathcal{F}^{-1} \circ M_{\left(|\xi|^{2}+\varepsilon\right)^{s / 2}} \circ \mathcal{F}(u)
$$

Estimating the norm in $\mathcal{L}\left(H^{s}, L^{2}\right)$

$$
\left\|L_{\varepsilon}-L\right\| \leq \sup _{\xi} \frac{\left|\left(\varepsilon+|\xi|^{2}\right)^{s / 2}-|\xi|^{s}\right|}{\left(1+|\xi|^{2}\right)^{\frac{s}{2}}} \xrightarrow{\varepsilon \rightarrow 0} 0
$$

Proof of the lemma

It remains to prove that
$\left[L_{\varepsilon}, \varphi\right]: H_{0}^{s}(\Omega) \rightarrow L^{2}\left(\mathbb{R}^{N}\right)$ is a compact operator for each $\varepsilon>0$.

Proof of the lemma

It remains to prove that

$$
\left[L_{\varepsilon}, \varphi\right]: H_{0}^{s}(\Omega) \rightarrow L^{2}\left(\mathbb{R}^{N}\right) \text { is a compact operator for each } \varepsilon>0
$$

L_{ε} is a classical pseudodifferential operator of order s, i.e. $L_{\varepsilon} \in O P S_{1,0}^{s}$.

Proof of the lemma

It remains to prove that

$$
\left[L_{\varepsilon}, \varphi\right]: H_{0}^{s}(\Omega) \rightarrow L^{2}\left(\mathbb{R}^{N}\right) \text { is a compact operator for each } \varepsilon>0
$$

L_{ε} is a classical pseudodifferential operator of order s, i.e. $L_{\varepsilon} \in O P S_{1,0}^{s}$.

Hence $L_{\varepsilon} \in O P \mathcal{B} S_{1,1}^{s}$ and, since $0<s<\frac{N}{2}$, according to Taylor (2002), we have the following commutator estimate

$$
\left\|\left[L_{\varepsilon}, \varphi\right] u\right\|_{L^{2}\left(\mathbb{R}^{N}\right)} \leq C\|\varphi\|_{H^{\sigma}\left(\mathbb{R}^{N}\right)}\|u\|_{H^{s-1}\left(\mathbb{R}^{N}\right)}
$$

provided $\sigma>\frac{N}{2}+1$.

Proof of the lemma

It remains to prove that

$$
\left[L_{\varepsilon}, \varphi\right]: H_{0}^{s}(\Omega) \rightarrow L^{2}\left(\mathbb{R}^{N}\right) \text { is a compact operator for each } \varepsilon>0
$$

L_{ε} is a classical pseudodifferential operator of order s, i.e. $L_{\varepsilon} \in O P S_{1,0}^{s}$.

Hence $L_{\varepsilon} \in O P \mathcal{B} S_{1,1}^{s}$ and, since $0<s<\frac{N}{2}$, according to Taylor (2002), we have the following commutator estimate

$$
\left\|\left[L_{\varepsilon}, \varphi\right] u\right\|_{L^{2}\left(\mathbb{R}^{N}\right)} \leq C\|\varphi\|_{H^{\sigma}\left(\mathbb{R}^{N}\right)}\|u\|_{H^{s-1}\left(\mathbb{R}^{N}\right)}
$$

provided $\sigma>\frac{N}{2}+1$.

Since $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ and the embedding $H_{0}^{s}(\Omega) \hookrightarrow H^{s-1}\left(\mathbb{R}^{N}\right)$ is compact for all $s \in\left(0, \frac{N}{2}\right)$, we conclude that $\left[L_{\varepsilon}, \varphi\right]: H_{0}^{s}(\Omega) \rightarrow L^{2}\left(\mathbb{R}^{N}\right)$ is compact.

Subcritical approximation

$\Omega \subset \mathbb{R}^{N}$ bounded open set.
For any $0<\varepsilon<2^{*}-2$ consider the following variational problems

$$
\begin{gathered}
S_{\varepsilon}^{*}:=\sup \left\{F_{\varepsilon}(u): u \in H_{0}^{s}(\Omega), \int_{\mathbb{R}^{N}}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x \leq 1\right\} \\
\text { with } F_{\varepsilon}(u):=\int_{\Omega}|u|^{2^{*}-\varepsilon} d x
\end{gathered}
$$

Subcritical approximation

$\Omega \subset \mathbb{R}^{N}$ bounded open set.
For any $0<\varepsilon<2^{*}-2$ consider the following variational problems

$$
\begin{gathered}
S_{\varepsilon}^{*}:=\sup \left\{F_{\varepsilon}(u): u \in H_{0}^{s}(\Omega), \int_{\mathbb{R}^{N}}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x \leq 1\right\} \\
\text { with } F_{\varepsilon}(u):=\int_{\Omega}|u|^{2^{*}-\varepsilon} d x .
\end{gathered}
$$

If $\varepsilon>0$, then the embedding $H_{0}^{s}(\Omega) \hookrightarrow L^{2^{*}-\varepsilon}(\Omega)$ is compact; the problem admits a maximizer $u_{\varepsilon} \in H_{0}^{s}(\Omega)$.

Subcritical approximation

$\Omega \subset \mathbb{R}^{N}$ bounded open set.
For any $0<\varepsilon<2^{*}-2$ consider the following variational problems

$$
\begin{gathered}
S_{\varepsilon}^{*}:=\sup \left\{F_{\varepsilon}(u): u \in H_{0}^{s}(\Omega), \int_{\mathbb{R}^{N}}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x \leq 1\right\} \\
\text { with } F_{\varepsilon}(u):=\int_{\Omega}|u|^{2^{*}-\varepsilon} d x
\end{gathered}
$$

If $\varepsilon>0$, then the embedding $H_{0}^{s}(\Omega) \hookrightarrow L^{2^{*}-\varepsilon}(\Omega)$ is compact; the problem admits a maximizer $u_{\varepsilon} \in H_{0}^{s}(\Omega)$.

What happens when $\varepsilon \rightarrow 0$ (both to the energy functional and to the corresponding maximizers u_{ε}) ?

Nonlinear elliptic equations involving critical Sobolev exponent

$$
\Omega \subset \mathbb{R}^{N}, 2^{*}=2 N /(N-2 s), 0<\varepsilon<2^{*}-2\left\{\begin{array}{clrl}
(-\Delta)^{s} u_{\varepsilon} & =\lambda_{\varepsilon}\left|u_{\varepsilon}\right|^{2^{*}-2-\varepsilon} u_{\varepsilon} & & \text { in } \Omega \\
u_{\varepsilon} & =0 & & \text { on } \partial \Omega
\end{array}\right.
$$

Nonlinear elliptic equations involving critical Sobolev exponent

$$
\Omega \subset \mathbb{R}^{N}, 2^{*}=2 N /(N-2 s), 0<\varepsilon<2^{*}-2\left\{\begin{array}{clrl}
(-\Delta)^{s} u_{\varepsilon} & =\lambda_{\varepsilon}\left|u_{\varepsilon}\right|^{2^{*}-2-\varepsilon} u_{\varepsilon} & & \text { in } \Omega \\
u_{\varepsilon} & =0 & & \text { on } \partial \Omega
\end{array}\right.
$$

$$
S=1
$$

- Atkinson-Peletier (1986) Ω unit ball.

Nonlinear elliptic equations involving critical Sobolev exponent

$$
\Omega \subset \mathbb{R}^{N}, 2^{*}=2 N /(N-2 s), 0<\varepsilon<2^{*}-2 \quad\left\{\begin{array}{clrl}
(-\Delta)^{s} u_{\varepsilon} & =\lambda_{\varepsilon}\left|u_{\varepsilon}\right|^{2^{*}-2-\varepsilon} u_{\varepsilon} & & \text { in } \Omega \\
u_{\varepsilon} & =0 & & \text { on } \partial \Omega
\end{array}\right.
$$

$$
S=1
$$

- Atkinson-Peletier (1986) Ω unit ball.
- Brezis-Peletier (1989) Ω spherical domain.

Nonlinear elliptic equations involving critical Sobolev exponent

$$
\Omega \subset \mathbb{R}^{N}, 2^{*}=2 N /(N-2 s), 0<\varepsilon<2^{*}-2\left\{\begin{array}{clrl}
(-\Delta)^{s} u_{\varepsilon} & =\lambda_{\varepsilon}\left|u_{\varepsilon}\right|^{2^{*}-2-\varepsilon} u_{\varepsilon} & & \text { in } \Omega \\
u_{\varepsilon} & =0 & & \text { on } \partial \Omega
\end{array}\right.
$$

$$
S=1
$$

- Atkinson-Peletier (1986) Ω unit ball.
- Brezis-Peletier (1989) Ω spherical domain.
- Rey (1989) and Han (1991) Ω smooth bounded domain.

Nonlinear elliptic equations involving critical Sobolev exponent
$\Omega \subset \mathbb{R}^{N}, 2^{*}=2 N /(N-2 s), 0<\varepsilon<2^{*}-2 \quad\left\{\begin{array}{clrl}(-\Delta)^{s} u_{\varepsilon} & =\lambda_{\varepsilon}\left|u_{\varepsilon}\right|^{2^{*}-2-\varepsilon} u_{\varepsilon} & & \text { in } \Omega \\ u_{\varepsilon} & =0 & & \text { on } \partial \Omega\end{array}\right.$ $S=1$

- Atkinson-Peletier (1986) Ω unit ball.
- Brezis-Peletier (1989) Ω spherical domain.
- Rey (1989) and Han (1991) Ω smooth bounded domain.

They showed that
The sequences u_{ε} which are maximizers for the Sobolev imbeddings concentrate at exactly one point $x_{0} \in \Omega$.; i.e. $\left|\nabla u_{\varepsilon}\right|^{2} \xrightarrow{*} \delta_{x_{0}}$,

Nonlinear elliptic equations involving critical Sobolev exponent
$\Omega \subset \mathbb{R}^{N}, 2^{*}=2 N /(N-2 s), 0<\varepsilon<2^{*}-2\left\{\begin{array}{clrl}(-\Delta)^{s} u_{\varepsilon} & =\lambda_{\varepsilon}\left|u_{\varepsilon}\right|^{2^{*}-2-\varepsilon} u_{\varepsilon} & & \text { in } \Omega \\ u_{\varepsilon} & =0 & & \text { on } \partial \Omega\end{array}\right.$ $S=1$

- Atkinson-Peletier (1986) Ω unit ball.
- Brezis-Peletier (1989) Ω spherical domain.
- Rey (1989) and Han (1991) Ω smooth bounded domain.

They showed that
The sequences u_{ε} which are maximizers for the Sobolev imbeddings concentrate at exactly one point $x_{0} \in \Omega$.; i.e. $\left|\nabla u_{\varepsilon}\right|^{2} \xrightarrow{*} \delta_{x_{0}}$, localizing the blowing up :
x_{0} is a critical point of the Robin function \mathcal{R}_{Ω}.

Nonlinear elliptic equations involving critical Sobolev exponent
$\Omega \subset \mathbb{R}^{N}, 2^{*}=2 N /(N-2 s), 0<\varepsilon<2^{*}-2\left\{\begin{array}{clrl}(-\Delta)^{s} u_{\varepsilon} & =\lambda_{\varepsilon}\left|u_{\varepsilon}\right|^{2^{*}-2-\varepsilon} u_{\varepsilon} & & \text { in } \Omega \\ u_{\varepsilon} & =0 & & \text { on } \partial \Omega\end{array}\right.$

$$
S=1
$$

- Atkinson-Peletier (1986) Ω unit ball.
• Brezis-Peletier (1989) Ω spherical domain.
• Rey (1989) and Han (1991) Ω smooth bounded domain.
® They showed that
®

The sequences u_{ε} which are maximizers for the Sobolev imbeddings concentrate at exactly one point $x_{0} \in \Omega$.; i.e. $\left|\nabla u_{\varepsilon}\right|^{2} \xrightarrow{*} \delta_{x_{0}}$, localizing the blowing up :
x_{0} is a critical point of the Robin function \mathcal{R}_{Ω}.

Nonlinear elliptic equations involving critical Sobolev exponent
$\Omega \subset \mathbb{R}^{N}, 2^{*}=2 N /(N-2 s), 0<\varepsilon<2^{*}-2\left\{\begin{array}{clrl}(-\Delta)^{s} u_{\varepsilon} & =\lambda_{\varepsilon}\left|u_{\varepsilon}\right|^{2^{*}-2-\varepsilon} u_{\varepsilon} & & \text { in } \Omega \\ u_{\varepsilon} & =0 & & \text { on } \partial \Omega\end{array}\right.$

- Brezis-Peletier (1989) Ω spherical domain.
- Rey (1989) and Han (1991) Ω smooth bounded domain.

They showed that
The sequences u_{ε} which are maximizers for the Sobolev imbeddings concentrate at exactly one point $x_{0} \in \Omega$.; i.e. $\left|\nabla u_{\varepsilon}\right|^{2} \xrightarrow{*} \delta_{x_{0}}$, localizing the blowing up :
x_{0} is a critical point of the Robin function \mathcal{R}_{Ω}.

- G.P. (2010, 2011) Ω general (possibly not smooth) bounded domain: same concentration result for p-laplacian operators, i.e., $\left|\nabla u_{\varepsilon}\right|^{p} \xrightarrow{*} \delta_{x_{0}} \quad p \in(1, N)$.

Nonlinear elliptic equations involving critical Sobolev exponent
$\Omega \subset \mathbb{R}^{N}, 2^{*}=2 N /(N-2 s), 0<\varepsilon<2^{*}-2 \quad\left\{\begin{array}{clrl}(-\Delta)^{s} u_{\varepsilon} & =\lambda_{\varepsilon}\left|u_{\varepsilon}\right|^{2^{*}-2-\varepsilon} u_{\varepsilon} & & \text { in } \Omega \\ u_{\varepsilon} & =0 & & \text { on } \partial \Omega\end{array}\right.$

- G.P. (2010, 2011) Ω general (possibly not smooth) bounded domain: same concentration result for p-laplacian operators, i.e., $\left|\nabla u_{\varepsilon}\right|^{p} \xrightarrow{*} \delta_{x_{0}} p \in(1, N)$.

A variational approach

$$
S_{\varepsilon}^{*}:=\sup \left\{\int_{\Omega}|u|^{2^{*}-\varepsilon} d x: u \in H_{0}^{s}(\Omega), \int_{\mathbb{R}^{N}}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x \leq 1\right\}
$$

A variational approach

$$
S_{\varepsilon}^{*}:=\sup \left\{\int_{\Omega}|u|^{2^{*}-\varepsilon} d x: u \in H_{0}^{s}(\Omega), \int_{\mathbb{R}^{N}}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x \leq 1\right\}
$$

$$
\begin{array}{r}
\forall(u, \mu) \in X=\left\{(u, \mu) \in \operatorname{Hi}_{0}^{s}(\Omega) \times \mathcal{M}^{*}\left(\mathbb{R}^{N}\right): \mu \geq\left|(-\Delta)^{\frac{s}{2}} u\right|^{2}, \mu\left(\mathbb{R}^{N}\right)<1\right\} \\
\mathcal{F}_{\varepsilon}(u, \mu):=\int_{\Omega}|u|^{2^{*}-\varepsilon} d x
\end{array}
$$

A variational approach

$$
S_{\varepsilon}^{*}:=\sup \left\{\int_{\Omega}|u|^{2^{*}-\varepsilon} d x: u \in H_{0}^{s}(\Omega), \int_{\mathbb{R}^{N}}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x \leq 1\right\}
$$

$$
\begin{gathered}
\forall(u, \mu) \in X=\left\{(u, \mu) \in H_{0}^{s}(\Omega) \times \mathcal{M}\left(\mathbb{R}^{N}\right): \mu \geq\left|(-\Delta)^{\frac{s}{2}} u\right|^{2}, \mu\left(\mathbb{R}^{N}\right) \leq 1\right\} \\
F_{\varepsilon}(u, \mu):=\int_{\Omega}|u|^{2^{*}-\varepsilon} d x
\end{gathered}
$$

A variational approach

$$
S_{\varepsilon}^{*}:=\sup \left\{\int_{\Omega}|u|^{2^{*}-\varepsilon} d x: u \in H_{0}^{s}(\Omega), \int_{\mathbb{R}^{N}}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x \leq 1\right\}
$$

Theorem 2 [G.P., A. Pisante, 2010]

$$
\begin{aligned}
\forall(u, \mu) \in X=\{(u, \mu) \in & \left.H_{0}^{s}(\Omega) \times \mathcal{M}\left(\mathbb{R}^{N}\right): \mu \geq\left|(-\Delta)^{\frac{s}{2}} u\right|^{2}, \mu\left(\mathbb{R}^{N}\right) \leq 1\right\} \\
& F_{\varepsilon}(u, \mu):=\int_{\Omega}|u|^{2^{*}-\varepsilon} d x \\
& \downarrow \Gamma^{+}\left(w-L^{2^{*}}(\Omega) \times \mathcal{M}\left(\mathbb{R}^{N}\right)\right) \\
& F(u, \mu)=\int_{\Omega}|u|^{2^{*}} d x+S^{*} \sum_{i=0}^{\infty} \mu_{i}^{\frac{2^{*}}{2}}
\end{aligned}
$$

Theorem 3: the concentration result

Theorem 3 [G.P., A. Pisante, 2010]
As $\varepsilon \rightarrow 0$,
(i) $S_{\varepsilon}^{*} \rightarrow S^{*}$.
(ii) Let $u_{\varepsilon} \in H_{0}^{s}(\Omega)$ be a maximizer for S_{ε}^{*}. Then (up to subsequences) $u_{\varepsilon} \rightharpoonup 0$ in $H_{0}^{s}(\Omega)$ and it concentrates at some point $x_{0} \in \bar{\Omega}$ both in $L^{2^{*}}$ and in H^{s}, i.e.

$$
\left|u_{\varepsilon}\right|^{2^{*}} d x \stackrel{*}{\rightharpoonup} S^{*} \delta_{x_{0}} \text { and }\left|(-\Delta)^{\frac{s}{2}} u_{\varepsilon}\right|^{2} d x \stackrel{*}{\rightharpoonup} \delta_{x_{0}} \text { in } \mathcal{M}\left(\mathbb{R}^{N}\right) .
$$

(iii) $\exists x_{\varepsilon} \rightarrow x_{0}$ and $\lambda_{\varepsilon} \searrow 0$ s.t. the function \tilde{u}_{ε} defined by $\tilde{u}_{\varepsilon}(x)=\lambda_{\varepsilon}{ }^{N-2 s / 2} u_{\varepsilon}\left(x_{\varepsilon}+\lambda_{\varepsilon} x\right)$ converges to u, maximizer for S^{*}, in $H_{0}^{s}\left(\right.$ and in $L^{2^{*}}$).

1. Introduction
 2. Concentration-compactness alternative

3. Final remarks

1. Introduction
 2. Concentration-compactness alternative

3. Final remarks

Final remarks

- An extended concentration-compactness alternative.

Final remarks

- An extended concentration-compactness alternative.

See for instance, the fractional Yamabe problem (Chang-Gonzalez (2010), Gonzalez-Qing (2010), ...).

Final remarks

- An extended concentration-compactness alternative.

See for instance, the fractional Yamabe problem (Chang-Gonzalez (2010), Gonzalez-Qing (2010), ...). (Also, a pseudo-differential approach to deal with the nonlocality of fractional operators)

Final remarks

- An extended concentration-compactness alternative.

See for instance, the fractional Yamabe problem (Chang-Gonzalez (2010), Gonzalez-Qing (2010), ...). (Also, a pseudo-differential approach to deal with the nonlocality of fractional operators)

- What can we say about the localization of the concentration point for the subcritical problem?
Which will be the "preferred" function?

Final remarks

- An extended concentration-compactness alternative.

See for instance, the fractional Yamabe problem (Chang-Gonzalez (2010), Gonzalez-Qing (2010), ...). (Also, a pseudo-differential approach to deal with the nonlocality of fractional operators)

- What can we say about the localization of the concentration point for the subcritical problem?
Which will be the "preferred" function?
- Generalised Brezis-Nirenberg problem:

$$
(-\Delta)^{s} u-\lambda u=|u|^{2^{*}-2} u \quad \text { in } H_{0}^{s}(\Omega)^{\prime}, \quad \lambda>0
$$

Final remarks

- An extended concentration-compactness alternative.

See for instance, the fractional Yamabe problem (Chang-Gonzalez (2010), Gonzalez-Qing (2010), ...). (Also, a pseudo-differential approach to deal with the nonlocality of fractional operators)

- What can we say about the localization of the concentration point for the subcritical problem?
Which will be the "preferred" function?
- Generalised Brezis-Nirenberg problem:

$$
(-\Delta)^{s} u-\lambda u=|u|^{2^{*}-2} u \quad \text { in } H_{0}^{s}(\Omega)^{\prime}, \quad \lambda>0
$$

Existence of solutions for $s \in(0,1)$ and $\lambda>0$?

Final remarks

- An extended concentration-compactness alternative.

See for instance, the fractional Yamabe problem (Chang-Gonzalez (2010), Gonzalez-Qing (2010), ...). (Also, a pseudo-differential approach to deal with the nonlocality of fractional operators)

- What can we say about the localization of the concentration point for the subcritical problem?
Which will be the "preferred" function?
- Generalised Brezis-Nirenberg problem:

$$
(-\Delta)^{s} u-\lambda u=|u|^{2^{*}-2} u \quad \text { in } H_{0}^{s}(\Omega)^{\prime}, \quad \lambda>0
$$

Existence of solutions for $s \in(0,1)$ and $\lambda>0$?
$(s=1$ Brezis-Nirenberg(1983) $),(s=2$ Edmunds-et al.(1990) $),(s=2 \mathrm{mPucci-Serrin}(1990)),(s=1 / 2 \operatorname{Tan}(2010))$

Final remarks

- An extended concentration-compactness alternative.

See for instance, the fractional Yamabe problem (Chang-Gonzalez (2010), Gonzalez-Qing (2010), ...). (Also, a pseudo-differential approach to deal with the nonlocality of fractional operators)

- What can we say about the localization of the concentration point for the subcritical problem?
Which will be the "preferred" function?
- Generalised Brezis-Nirenberg problem:

$$
(-\Delta)^{s} u-\lambda u=|u|^{2^{*}-2} u \quad \text { in } H_{0}^{s}(\Omega)^{\prime}, \quad \lambda>0
$$

Existence of solutions for $s \in(0,1)$ and $\lambda>0$?
$(s=1$ Brezis-Nirenberg(1983) $),(s=2$ Edmunds-et al.(1990) $),(s=2 \mathrm{mPucci-Serrin}(1990)),(s=1 / 2 \operatorname{Tan}(2010))$

- Some developments in progress

The critic case $\varepsilon=0: \quad(-\Delta)^{s} u=u^{2_{s}^{*}-1}, \quad s \in(0,1)$.
Existence, multiplicity, qualitative properties, level sets, etc...

Final remarks

- An extended concentration-compactness alternative.

See for instance, the fractional Yamabe problem (Chang-Gonzalez (2010), Gonzalez-Qing (2010), ...). (Also, a pseudo-differential approach to deal with the nonlocality of fractional operators)

- What can we say about the localization of the concentration point for the subcritical problem?
Which will be the "preferred" function?
- Generalised Brezis-Nirenberg problem:

$$
(-\Delta)^{s} u-\lambda u=|u|^{2^{*}-2} u \quad \text { in } H_{0}^{s}(\Omega)^{\prime}, \quad \lambda>0
$$

Existence of solutions for $s \in(0,1)$ and $\lambda>0$?
$(s=1$ Brezis-Nirenberg(1983) $),(s=2$ Edmunds-et al.(1990) $),(s=2 \mathrm{mPucci-Serrin}(1990)),(s=1 / 2 \operatorname{Tan}(2010))$

- Some developments in progress

The critic case $\varepsilon=0: \quad(-\Delta)^{s} u=u^{2_{s}^{*}-1}, \quad s \in(0,1)$.
Existence, multiplicity, qualitative properties, level sets, etc...

Sobolev embeddings and concentration-compactness alternative for fractional Sobolev spaces

Giampiero Palatucci

Optimization Days

An international workshop on Calculus of Variations

Università Politecnica delle Marche

$$
\text { June } 6-8,2011
$$

Sobolev embeddings and concentration-compactness alternative for fractional Sobolev spaces

Giampiero Palatucci
 grazte

Optimization Days
An international workshop on Calculus of Variations

Università Politecnica delle Marche

$$
\text { June 6-8, } 2011
$$

