On some variational problems in Riemannian and Fractal Geometry

Giovanni Molica Bisci*

*Mediterranean University of Reggio Calabria
Faculty of Architecture
P.A.U. - Department
e-mail: gmolica@unirc.it

Optimization Days
Ancona - June 6-8, 2011

Index

（1）Abstract
（2）A problem on Riemannian manifolds
－Preliminaries
－Abstract result
－Main Results
－Three solutions on the sphere
－An Example
（3）Infinitely many solutions
－Abstract result
－Infinitely many positive weak solutions for Elliptic problems
－Elliptic problems and Orlicz－Sobolev spaces
（4）Infinitely many solutions for the Sierpiniski fractal
－The problem
－Abstract framework
－Main ResultReferences

Index

1. Abstract
2. A problem on Riemannian manifolds

- Preliminaries
- Abstract result
- Main Results
- Three solutions on the sphere
- An Example

Infinitely many solutions

- Abstract result
- Infinitely many positive weak solutions for Elliptic problems
- Elliptic problems and Orlicz-Sobolev spaces
(4) Infinitely many solutions for the Sierpinski fractal
- The problem
- Abstract framework
- Main ResultReferences

Index

(1) Abstract

2 A problem on Riemannian manifolds

- Preliminaries
- Abstract result
- Main Results
- Three solutions on the sphere
- An Example
(3) Infinitely many solutions
- Abstract result
- Infinitely many positive weak solutions for Elliptic problems
- Elliptic problems and Orlicz-Sobolev spacesInfinitely many solutions for the Sierpiniski fractal
- The problem
- Abstract framework
- Main ResultReferences

Index

(1) Abstract

2 A problem on Riemannian manifolds

- Preliminaries
- Abstract result
- Main Results
- Three solutions on the sphere
- An Example

3 Infinitely many solutions

- Abstract result
- Infinitely many positive weak solutions for Elliptic problems
- Elliptic problems and Orlicz-Sobolev spaces

4. Infinitely many solutions for the Sierpiniski fractal

- The problem
- Abstract framework
- Main Result

Index

(1) Abstract

2 A problem on Riemannian manifolds

- Preliminaries
- Abstract result
- Main Results
- Three solutions on the sphere
- An Example
(3) Infinitely many solutions
- Abstract result
- Infinitely many positive weak solutions for Elliptic problems
- Elliptic problems and Orlicz-Sobolev spaces

4. Infinitely many solutions for the Sierpinski fractal

- The problem
- Abstract framework
- Main Result
(5) References

Abstract

We present some resent results, obtained in collaboration with G. Bonanno and V. Rădulescu on some variational problems arising from Geometry.
More precisely, in the first part of the talk, we deal with elliptic problems defined on compact Riemannian manifolds. This study is motivated by the Emden-Fowler equation that appears in mathematical physics, after a suitable change of coordinates, one obtains a new problem defined on the unit sphere \mathbb{S}^{d} endowed of the standard metric.
In the second part, under an appropriate oscillating behavior either at zero or at infinity of the nonlinear term, the existence of a sequence of weak solutions for an eigenvalue Dirichlet problem, on a fractal domain, is proved.

Abstract

We present some resent results, obtained in collaboration with G . Bonanno and V. Rădulescu on some variational problems arising from Geometry.
More precisely, in the first part of the talk, we deal with elliptic problems defined on compact Riemannian manifolds. This study is motivated by the Emden-Fowler equation that appears in mathematical physics, after a suitable change of coordinates, one obtains a new problem defined on the unit sphere \mathbb{S}^{d} endowed of the standard metric.
In the second part, under an appropriate oscillating behavior either at zero or at infinity of the nonlinear term, the existence of a sequence of weak solutions for an eigenvalue Dirichlet problem, on a fractal domain, is proved.

We cite the following very recent monograph as general reference on this subject
A. Kristály, V. Rădulescu and Cs. Varga

Variational Principles in Mathematical Physics, Geometry, and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems, Cambridge University press, 2010.

The problem

Let (\mathcal{M}, g) be a compact d-dimensional Riemannian manifold without boundary, where $d \geq 3$. Let Δ_{g} denote the Laplace-Beltrami operator on (\mathcal{M}, g) and assume that the functions $\alpha, K \in C^{\infty}(\mathcal{M})$ are positive. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a locally Hölder continuous function with sublinear growth and λ is a positive real parameter. We are interested in the existence of solutions to the following eigenvalue problem:

$$
-\Delta_{g} w+\alpha(\sigma) w=\lambda K(\sigma) f(w), \quad \sigma \in \mathcal{M}, w \in H_{1}^{2}(\mathcal{M})
$$

The problem

Let (\mathcal{M}, g) be a compact d-dimensional Riemannian manifold without boundary, where $d \geq 3$. Let Δ_{g} denote the Laplace-Beltrami operator on (\mathcal{M}, g) and assume that the functions $\alpha, K \in C^{\infty}(\mathcal{M})$ are positive. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a locally Hölder continuous function with sublinear growth and λ is a positive real parameter. We are interested in the existence of solutions to the following eigenvalue problem:

$$
-\Delta_{g} w+\alpha(\sigma) w=\lambda K(\sigma) f(w), \quad \sigma \in \mathcal{M}, w \in H_{1}^{2}(\mathcal{M})
$$

A problem on Riemannian manifolds

By using variational methods we find a well determined open interval of values of the parameter λ for which problem $\left(P_{\lambda}\right)$ admits at least three solutions.

A problem on Riemannian manifolds

By using variational methods we find a well determined open interval of values of the parameter λ for which problem $\left(P_{\lambda}\right)$ admits at least three solutions.

A problem on Riemannian manifolds

A remarkable case of problem $\left(P_{\lambda}\right)$ is

$$
-\Delta_{h} w+s(1-s-d) w=\lambda K(\sigma) f(w), \quad \sigma \in \mathbb{S}^{d}, w \in H_{1}^{2}\left(\mathbb{S}^{d}\right),\left(S_{\lambda}\right)
$$

where \mathbb{S}^{d} is the unit sphere in R^{d+1}, h is the standard metric induced by the embedding $\mathbb{S}^{d} \hookrightarrow \mathbf{R}^{d+1}, s$ is a constant such that $1-d<s<0$, and Δ_{h} denotes the Laplace-Beltrami operator on $\left(\mathbb{S}^{d}, h\right)$.

A problem on Riemannian manifolds

A remarkable case of problem $\left(P_{\lambda}\right)$ is

$$
-\Delta_{h} w+s(1-s-d) w=\lambda K(\sigma) f(w), \quad \sigma \in \mathbb{S}^{d}, w \in H_{1}^{2}\left(\mathbb{S}^{d}\right),\left(S_{\lambda}\right)
$$

where \mathbb{S}^{d} is the unit sphere in \mathbf{R}^{d+1}, h is the standard metric induced by the embedding $\mathbb{S}^{d} \hookrightarrow \mathbf{R}^{d+1}, s$ is a constant such that $1-d<s<0$, and Δ_{h} denotes the Laplace-Beltrami operator on (\mathbb{S}^{d}, h).

A problem on Riemannian manifolds

Existence results for problem (S_{λ}) yield, by using an appropriate change of coordinates, the existence of solutions to the following parameterized Emden-Fowler equation

$$
-\Delta u=\lambda|x|^{s-2} K(x /|x|) f\left(|x|^{-s} u\right), \quad x \in \mathbb{R}^{d+1} \backslash\{0\} .
$$

A problem on Riemannian manifolds

Existence results for problem $\left(S_{\lambda}\right)$ yield, by using an appropriate change of coordinates, the existence of solutions to the following parameterized Emden-Fowler equation

$$
-\Delta u=\lambda|x|^{s-2} K(x /|x|) f\left(|x|^{-s} u\right), \quad x \in \mathbb{R}^{d+1} \backslash\{0\} .
$$

A problem on Riemannian manifolds

Moreover, we observe that the existence of a smooth positive solution for problem $\left(S_{\lambda}\right)$, when $s=-d / 2$ or $s=-d / 2+1$, and $f(t)=|t|^{\frac{4}{d-2}} t$, can be viewed as an affirmative answer to the famous Yamabe problem on \mathbb{S}^{d}.
For these topics we refer to Aubin, Cotsiolis and Iliopoulos, Hebey, Kazdan and Warner, Vázquez and Véron, and to the excellent survey by Lee and Parker.
In these cases the right hand-side of problem $\left(S_{\lambda}\right)$ involves the critical Sobolev exponent.

A problem on Riemannian manifolds

Moreover, we observe that the existence of a smooth positive solution for problem $\left(S_{\lambda}\right)$, when $s=-d / 2$ or $s=-d / 2+1$, and $f(t)=|t|^{\frac{4}{d-2}} t$, can be viewed as an affirmative answer to the famous Yamabe problem on \mathbb{S}^{d}.
For these topics we refer to Aubin, Cotsiolis and Iliopoulos, Hebey, Kazdan and Warner, Vázquez and Véron, and to the excellent survey by Lee and Parker.
In these cases the right hand-side of problem $\left(S_{\lambda}\right)$ involves the critical Sobolev exponent.

A problem on Riemannian manifolds

Cotsiolis and Iliopoulos as well as Vázquez and Véron studied problem $\left(\mathfrak{F}_{\lambda}\right)$ in

Équations elliptiques non linéaires à croissance de Sobolev sur-critique, Bull. Sci. Math. 119 (1995), 419-431.

Solutions positives d'équations elliptiques semi-linéaires sur des variétés riemanniennes compactes, C. R. Acad. Sci. Paris, Sér. I Math. 312 (1991), 811-815.
by applying either minimization or minimax methods, provided that $f(t)=|t|^{p-1} t$, with $p>1$.

A problem on Riemannian manifolds

Cotsiolis and Iliopoulos as well as Vázquez and Véron studied problem $\left(\mathfrak{F}_{\lambda}\right)$ in
A. Cotsiolis and D. Iliopoulos

Équations elliptiques non linéaires à croissance de Sobolev sur-critique, Bull. Sci. Math. 119 (1995), 419-431.

Solutions positives d'équations elliptiques semi-linéaires sur des variétés riemanniennes compactes, C. R. Acad. Sci. Paris, Sér. I Math. 312 (1991), 811-815.
by applying either minimization or minimax methods, provided that $f(t)=|t|^{p-1} t$, with $p>1$.

A problem on Riemannian manifolds

Cotsiolis and Iliopoulos as well as Vázquez and Véron studied problem $\left(\mathfrak{F}_{\lambda}\right)$ in
A. Cotsiolis and D. Iliopoulos

Équations elliptiques non linéaires à croissance de Sobolev sur-critique, Bull. Sci. Math. 119 (1995), 419-431.
J.L. Vázquez and L. Véron

Solutions positives d'équations elliptiques semi-linéaires sur des variétés riemanniennes compactes, C. R. Acad. Sci. Paris, Sér. I Math. 312 (1991), 811-815.
by applying either minimization or minimax methods, provided that $f(t)=|t|^{p-1} t$, with $p>1$.

Successively, in

Sublinear eigenvalue problems on compact Riemannian manifolds with applications in Emden-Fowler equations, Studia Math. 191 (2009), 237-246.
the authors are interested on the existence of multiple solutions of problem $\left(P_{\lambda}\right)$ in order to obtain solutions for parameterized Emden-Fowler equation (\mathfrak{v}_{λ}) considering nonlinear terms of sublinear type at infinity.

Successively, in
A. Kristály, V. Rădulescu

Sublinear eigenvalue problems on compact Riemannian manifolds with applications in Emden-Fowler equations, Studia Math. 191 (2009), 237-246.
the authors are interested on the existence of multiple solutions of problem $\left(P_{\lambda}\right)$ in order to obtain solutions for parameterized Emden-Fowler equation (\mathfrak{F}_{λ}) considering nonlinear terms of sublinear type at infinity.

A problem on Riemannian manifolds

In particular, for λ sufficiently large, the existence of two nontrivial solutions for problem $\left(P_{\lambda}\right)$ has been successfully obtained through a careful analysis of the standard mountain pass geometry. Theorem 9.2 p. 220 in

Variational Principles in Mathematical Physics, Geometry, and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems, Cambridge University press, 2010.

In particular, for λ sufficiently large, the existence of two nontrivial solutions for problem $\left(P_{\lambda}\right)$ has been successfully obtained through a careful analysis of the standard mountain pass geometry. Theorem 9.2 p. 220 in
A. Kristály, V. Rădulescu and Cs. Varga

Variational Principles in Mathematical Physics, Geometry, and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems, Cambridge University press, 2010.

A problem on Riemannian manifolds

Further, Kristály, Rădulescu and Varga proved the existence of an open interval of positive parameters for which problem $\left(P_{\lambda}\right)$ admits two distinct nontrivial solutions by using an abstract three critical points theorem due to Bonanno.

Some remarks on a three critical points theorem, Nonlinear Anal. TMA 54 (2003), 651-665.

A problem on Riemannian manifolds

Further, Kristály, Rădulescu and Varga proved the existence of an open interval of positive parameters for which problem $\left(P_{\lambda}\right)$ admits two distinct nontrivial solutions by using an abstract three critical points theorem due to Bonanno.
G. Bonanno

Some remarks on a three critical points theorem, Nonlinear Anal. TMA 54 (2003), 651-665.

Some basic facts

We start this section with a short list of notions in Riemmanian geometry. We refer to
T. Aubin

Nonlinear Analysis on Manifolds. Monge-Ampeère Equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 252. Springer-Verlag, New York, 1982.
and

Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, Courant Lecture Notes in Mathematics, New York, 1999.

for detailed derivations of the geometric quantities, their motivation and further applications.

Some basic facts

We start this section with a short list of notions in Riemmanian geometry. We refer to
T. Aubin

Nonlinear Analysis on Manifolds. Monge-Ampeère Equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 252. Springer-Verlag, New York, 1982.
and
E. Hebey

Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, Courant Lecture Notes in Mathematics, New York, 1999.
for detailed derivations of the geometric quantities, their motivation and further applications.

Some basic facts

Let (\mathcal{M}, g) be a smooth compact d-dimensional $(d \geq 3)$ Riemannian manifold without boundary and let $g_{i j}$ be the components of the metric g. As usual, we denote by $C^{\infty}(\mathcal{M})$ the space of smooth functions defined on \mathcal{M}. Let $\alpha \in C^{\infty}(\mathcal{M})$ be a positive function and put $\|\alpha\|_{\infty}:=\max _{\sigma \in \mathcal{M}} \alpha(\sigma)$.

Some basic facts

Let (\mathcal{M}, g) be a smooth compact d-dimensional $(d \geq 3)$ Riemannian manifold without boundary and let $g_{i j}$ be the components of the metric g. As usual, we denote by $C^{\infty}(\mathcal{M})$ the space of smooth functions defined on \mathcal{M}. Let $\alpha \in C^{\infty}(\mathcal{M})$ be a positive function and put $\|\alpha\|_{\infty}:=\max _{\sigma \in \mathcal{M}} \alpha(\sigma)$.

Some basic facts

For every $w \in C^{\infty}(\mathcal{M})$, set

$$
\|w\|_{H_{\alpha}^{2}}^{2}:=\int_{\mathcal{M}}|\nabla w(\sigma)|^{2} d \sigma_{g}+\int_{\mathcal{M}} \alpha(\sigma)|w(\sigma)|^{2} d \sigma_{g},
$$

where ∇w is the covariant derivative of w, and $d \sigma_{g}$ is the Riemannian measure. In local coordinates $\left(x^{1}, \ldots, x^{d}\right)$, the components of ∇w are given by

$$
\left(\nabla^{2} w\right)_{i j}=\frac{\partial^{2} w}{\partial x^{i} \partial x^{j}}-\Gamma_{i j}^{k} \frac{\partial w}{\partial x^{k}},
$$

where

$$
\Gamma_{i j}^{k}:=\frac{1}{2}\left(\frac{\partial g_{l j}}{\partial x^{i}}+\frac{\partial g_{l i}}{\partial x^{j}}-\frac{\partial g_{i j}}{\partial x^{k}}\right) g^{l k}
$$

are the usual Christoffel symbols and $g^{l k}$ are the elements of the inverse matrix of g.

Some basic facts

For every $w \in C^{\infty}(\mathcal{M})$, set

$$
\|w\|_{H_{\alpha}^{2}}^{2}:=\int_{\mathcal{M}}|\nabla w(\sigma)|^{2} d \sigma_{g}+\int_{\mathcal{M}} \alpha(\sigma)|w(\sigma)|^{2} d \sigma_{g},
$$

where ∇w is the covariant derivative of w, and $d \sigma_{g}$ is the Riemannian measure. In local coordinates $\left(x^{1}, \ldots, x^{d}\right)$, the components of ∇w are given by

$$
\left(\nabla^{2} w\right)_{i j}=\frac{\partial^{2} w}{\partial x^{i} \partial x^{j}}-\Gamma_{i j}^{k} \frac{\partial w}{\partial x^{k}},
$$

where

$$
\Gamma_{i j}^{k}:=\frac{1}{2}\left(\frac{\partial g_{l j}}{\partial x^{i}}+\frac{\partial g_{l i}}{\partial x^{j}}-\frac{\partial g_{i j}}{\partial x^{k}}\right) g^{l k}
$$

are the usual Christoffel symbols and $g^{l k}$ are the elements of the inverse matrix of g.

Some basic facts

Here, and in the sequel, the Einstein's summation convention is adopted. Moreover, the measure element $d \sigma_{g}$ assume the form $d \sigma_{g}=\sqrt{\operatorname{det} g} d x$, where $d x$ stands for the Lebesgue's volume element of \mathbf{R}^{d}. Hence, let

$$
\operatorname{Vol}_{g}(\mathcal{M}):=\int_{\mathcal{M}} d \sigma_{g} .
$$

In particular, if $(\mathcal{M}, g)=\left(\mathbb{S}^{d}, h\right)$, where \mathbb{S}^{d} is the unit sphere in \mathbf{R}^{d+1} and h is the standard metric induced by the embedding $\mathbb{S}^{d} \hookrightarrow \mathbf{R}^{d+1}$, we set

$$
\omega_{d}:=\operatorname{Vol}_{h}\left(\mathbb{S}^{d}\right):=\int_{\mathbb{S}^{d}} d \sigma_{h} .
$$

Some basic facts

Here, and in the sequel, the Einstein's summation convention is adopted. Moreover, the measure element $d \sigma_{g}$ assume the form $d \sigma_{g}=\sqrt{\operatorname{det} g} d x$, where $d x$ stands for the Lebesgue's volume element of \mathbf{R}^{d}. Hence, let

$$
\operatorname{Vol}_{g}(\mathcal{M}):=\int_{\mathcal{M}} d \sigma_{g} .
$$

In particular, if $(\mathcal{M}, g)=\left(\mathbb{S}^{d}, h\right)$, where \mathbb{S}^{d} is the unit sphere in \mathbf{R}^{d+1} and h is the standard metric induced by the embedding $\mathbb{S}^{d} \hookrightarrow \mathbf{R}^{d+1}$, we set

$$
\omega_{d}:=\operatorname{Vol}_{h}\left(\mathbb{S}^{d}\right):=\int_{\mathbb{S}^{d}} d \sigma_{h} .
$$

Some basic facts

The Sobolev space $H_{\alpha}^{2}(\mathcal{M})$ is defined as the completion of $C^{\infty}(\mathcal{M})$ with respect to the norm $\|\cdot\|_{H_{\alpha}^{2}}$. Then $H_{\alpha}^{2}(\mathcal{M})$ is a Hilbert space endowed with the inner product

$$
\left\langle w_{1}, w_{2}\right\rangle_{H_{\alpha}^{2}}=\int_{\mathcal{M}}\left\langle\nabla w_{1}, \nabla w_{2}\right\rangle_{g} d \sigma_{g}+\int_{\mathcal{M}} \alpha(\sigma)\left\langle w_{1}, w_{2}\right\rangle_{g} d \sigma_{g},
$$

where $\langle\cdot, \cdot\rangle_{g}$ is the inner product on covariant tensor fields associated to g.

Some basic facts

The Sobolev space $H_{\alpha}^{2}(\mathcal{M})$ is defined as the completion of $C^{\infty}(\mathcal{M})$ with respect to the norm $\|\cdot\|_{H_{\alpha}^{2}}$. Then $H_{\alpha}^{2}(\mathcal{M})$ is a Hilbert space endowed with the inner product

$$
\left\langle w_{1}, w_{2}\right\rangle_{H_{\alpha}^{2}}=\int_{\mathcal{M}}\left\langle\nabla w_{1}, \nabla w_{2}\right\rangle_{g} d \sigma_{g}+\int_{\mathcal{M}} \alpha(\sigma)\left\langle w_{1}, w_{2}\right\rangle_{g} d \sigma_{g}
$$

where $\langle\cdot, \cdot\rangle_{g}$ is the inner product on covariant tensor fields associated to g.

Some basic facts

Since α is positive, the norm $\|\cdot\|_{H_{\alpha}^{2}}$ is equivalent with the standard norm

$$
\|w\|_{H_{1}^{2}}:=\left(\int_{\mathcal{M}}|\nabla w(\sigma)|^{2} d \sigma_{g}+\int_{\mathcal{M}}|w(\sigma)|^{2} d \sigma_{g}\right)^{1 / 2} .
$$

Moreover, if $w \in H_{\alpha}^{2}(\mathcal{M})$, the following inequalities hold

$$
\begin{equation*}
\min \left\{1, \min _{\sigma \in \mathcal{M}} \alpha(\sigma)^{1 / 2}\right\}\|w\|_{H_{1}^{2}} \leq\|w\|_{H_{\alpha}^{2}} \leq \max \left\{1,\|\alpha\|_{\infty}^{1 / 2}\right\}\|w\|_{H_{1}^{2}} . \tag{1}
\end{equation*}
$$

Some basic facts

Since α is positive, the norm $\|\cdot\|_{H_{\alpha}^{2}}$ is equivalent with the standard norm

$$
\|w\|_{H_{1}^{2}}:=\left(\int_{\mathcal{M}}|\nabla w(\sigma)|^{2} d \sigma_{g}+\int_{\mathcal{M}}|w(\sigma)|^{2} d \sigma_{g}\right)^{1 / 2} .
$$

Moreover, if $w \in H_{\alpha}^{2}(\mathcal{M})$, the following inequalities hold

$$
\begin{equation*}
\min \left\{1, \min _{\sigma \in \mathcal{M}} \alpha(\sigma)^{1 / 2}\right\}\|w\|_{H_{1}^{2}} \leq\|w\|_{H_{\alpha}^{2}} \leq \max \left\{1,\|\alpha\|_{\infty}^{1 / 2}\right\}\|w\|_{H_{1}^{2}} . \tag{1}
\end{equation*}
$$

Some basic facts

From the Rellich-Kondrachov theorem for compact manifolds without boundary one has

$$
H_{\alpha}^{2}(\mathcal{M}) \hookrightarrow L^{q}(\mathcal{M})
$$

for every $q \in[1,2 d /(d-2)]$. In particular, the embedding is compact whenever $q \in[1,2 d /(d-2))$.
Hence, there exists a positive constant S_{q} such that

$$
\begin{equation*}
\|w\|_{q} \leq S_{q}\|w\|_{H_{\alpha}^{2}}, \quad \text { for all } w \in H_{\alpha}^{2}(\mathcal{M}) \tag{2}
\end{equation*}
$$

Some basic facts

From the Rellich-Kondrachov theorem for compact manifolds without boundary one has

$$
H_{\alpha}^{2}(\mathcal{M}) \hookrightarrow L^{q}(\mathcal{M})
$$

for every $q \in[1,2 d /(d-2)]$. In particular, the embedding is compact whenever $q \in[1,2 d /(d-2))$.
Hence, there exists a positive constant S_{q} such that

$$
\begin{equation*}
\|w\|_{q} \leq S_{q}\|w\|_{H_{\alpha}^{2}}, \quad \text { for all } w \in H_{\alpha}^{2}(\mathcal{M}) \tag{2}
\end{equation*}
$$

Some basic facts

From now on, we assume that the nonlinearity f satisfies the following structural condition:
$f: \mathbb{R} \rightarrow \mathbb{R}$ is a locally Hölder continuous function sublinear at infinity, that is,

$$
\lim _{|t| \rightarrow \infty} \frac{f(t)}{t}=0 .
$$

Some basic facts

From now on, we assume that the nonlinearity f satisfies the following structural condition:
$f: \mathbb{R} \rightarrow \mathbb{R}$ is a locally Hölder continuous function sublinear at infinity, that is,
$\left(\mathrm{h}_{\infty}\right)$

$$
\lim _{|t| \rightarrow \infty} \frac{f(t)}{t}=0 .
$$

Weak solutions of problem $\left(P_{\lambda}\right)$

A function $w \in H_{1}^{2}(\mathcal{M})$ is said a weak solution of $\left(P_{\lambda}\right)$ if
$\int_{\mathcal{M}}\langle\nabla w, \nabla v\rangle_{g} d \sigma_{g}+\int_{\mathcal{M}} \alpha(\sigma)\langle w, v\rangle_{g} d \sigma_{g}-\lambda \int_{\mathcal{M}} K(\sigma) f(w(\sigma)) v(\sigma) d \sigma_{g}=0$,
for every $v \in H_{1}^{2}(\mathcal{M})$.

Weak solutions of problem $\left(P_{\lambda}\right)$

A function $w \in H_{1}^{2}(\mathcal{M})$ is said a weak solution of $\left(P_{\lambda}\right)$ if
$\int_{\mathcal{M}}\langle\nabla w, \nabla v\rangle_{g} d \sigma_{g}+\int_{\mathcal{M}} \alpha(\sigma)\langle w, v\rangle_{g} d \sigma_{g}-\lambda \int_{\mathcal{M}} K(\sigma) f(w(\sigma)) v(\sigma) d \sigma_{g}=0$,
for every $v \in H_{1}^{2}(\mathcal{M})$.

Weak solutions of problem $\left(P_{\lambda}\right)$

From a variational stand point the weak solutions of $\left(P_{\lambda}\right)$ in $H_{1}^{2}(\mathcal{M})$, are the critical points of the C^{1}-functional given by

$$
J_{\lambda}(u):=\frac{\|w\|_{H_{\alpha}^{2}}^{2}}{2}-\lambda \int_{\mathcal{M}} K(\sigma) F(w(\sigma)) d \sigma_{g},
$$

for every $u \in H_{1}^{2}(\mathcal{M})$.

Weak solutions of problem $\left(P_{\lambda}\right)$

From a variational stand point the weak solutions of $\left(P_{\lambda}\right)$ in $H_{1}^{2}(\mathcal{M})$, are the critical points of the C^{1}-functional given by

$$
J_{\lambda}(u):=\frac{\|w\|_{H_{\alpha}^{2}}^{2}}{2}-\lambda \int_{\mathcal{M}} K(\sigma) F(w(\sigma)) d \sigma_{g},
$$

for every $u \in H_{1}^{2}(\mathcal{M})$.

Theorem (G. Bonanno and S.A. Marano, Appl. Anal. 2010)

Let X be a reflexive real Banach space, $\Phi: X \rightarrow \mathrm{R}$ be a coercive, continuously Gâteaux differentiable and sequentially weakly lower semicontinuous functional whose Gâteaux derivative admits a continuous inverse on $X^{*}, \Psi: X \rightarrow \mathbf{R}$ be a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact such that $\Phi(0)=\Psi(0)=0$. Assume that there exist $r>0$ and $\bar{x} \in X$, with $r<\Phi(\bar{x})$, such that:
$\left(a_{1}\right) \frac{\sup _{\Phi(x) \leq r} \Psi(x)}{r}<\frac{\Psi(\bar{x})}{\Phi(\bar{x})} ;$
(a_{2}) for each $\left.\lambda \in \Lambda_{r}:=\right] \frac{\Phi(\bar{x})}{\Psi(\bar{x})}, \frac{r}{\sup _{\Phi(x) \leq r} \Psi(x)}[$ the functional
$\Phi-\lambda \Psi$ is coercive.
Then, for each $\lambda \in \Lambda_{r}$, the functional $\Phi-\lambda \Psi$ has at least three distinct critical points in X.

Theorem (G. Bonanno and S.A. Marano, Appl. Anal. 2010)
Let X be a reflexive real Banach space, $\Phi: X \rightarrow \mathbf{R}$ be a coercive, continuously Gâteaux differentiable and sequentially weakly lower semicontinuous functional whose Gâteaux derivative admits a continuous inverse on $X^{*}, \Psi: X \rightarrow \mathbf{R}$ be a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact such that $\Phi(0)=\Psi(0)=0$. Assume that there exist $r>0$ and $\bar{x} \in X$, with $r<\Phi(\bar{x})$, such that:
$\left(a_{1}\right) \frac{\sup _{\Phi(x) \leq r} \Psi(x)}{r}<\frac{\Psi(\bar{x})}{\Phi(\bar{x})} ;$
$\left(a_{2}\right)$ for each $\left.\lambda \in \Lambda_{r}:=\right] \frac{\Phi(\bar{x})}{\Psi(\bar{x})}, \frac{r}{\sup _{\Phi(x) \leq r} \Psi(x)}[$ the functional
$\Phi-\lambda \Psi$ is coercive.
Then, for each $\lambda \in \Lambda_{r}$, the functional $\Phi-\lambda \Psi$ has at least three distinct critical points in X.

Index

Marn Results
Three solutions on the sphere An Example

Main results on the existence of at least three solutions

Notations

We set

$$
\kappa_{\alpha}:=\left(\frac{2}{\|\alpha\|_{L^{1}(\mathcal{M})}}\right)^{1 / 2}
$$

and

$$
K_{1}:=\frac{S_{1}}{\sqrt{2}}\|\alpha\|_{L^{1}(\mathcal{M})}, \quad K_{2}:=\frac{S_{q}^{q}}{2^{\frac{2-q}{2}} q}\|\alpha\|_{L^{1}(\mathcal{M})}
$$

Further, let

$$
F(\xi):=\int_{0}^{\xi} f(t) d t
$$

for every $\xi \in \mathbb{R}$.

Notations

We set

$$
\kappa_{\alpha}:=\left(\frac{2}{\|\alpha\|_{L^{1}(\mathcal{M})}}\right)^{1 / 2}
$$

and

$$
K_{1}:=\frac{S_{1}}{\sqrt{2}}\|\alpha\|_{L^{1}(\mathcal{M})}, \quad K_{2}:=\frac{S_{q}^{q}}{2^{\frac{2-q}{2}} q}\|\alpha\|_{L^{1}(\mathcal{M})} .
$$

Further, let

$$
F(\xi):=\int_{0}^{\xi} f(t) d t
$$

for every $\xi \in \mathbb{R}$.

Existence of three solutions

Theorem (G. Bonanno,--, V. Rădulescu; Nonlinear Anal. (2011))

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $\left(\mathrm{h}_{\infty}\right)$ holds and assume that
(h_{1}) There exist two nonnegative constants a_{1}, a_{2} such that

$$
|f(t)| \leq a_{1}+a_{2}|t|^{q-1}, \quad \text { for all } t \in \mathbf{R}
$$

where $q \in] 1,2 d /(d-2)[$;
(hi2) There exist two positive constants γ and δ, with $\delta>\gamma \kappa_{\alpha}$, such that

$$
\frac{F(\delta)}{\delta^{2}}>\frac{\|K\|_{\infty}}{\|K\|_{L^{1}(\mathcal{M})}}\left(a_{1} \frac{K_{1}}{\gamma}+a_{2} K_{2} \gamma^{q-2}\right)
$$

Then, for each parameter $\lambda \in \Lambda_{(\gamma, \delta)}$ the problem $\left(P_{\lambda}\right)$, possesses at least three solutions in $H_{1}^{2}(\mathcal{M})$.

Existence of three solutions

Theorem (G. Bonanno,--, V. Rădulescu; Nonlinear Anal. (2011))
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $\left(\mathrm{h}_{\infty}\right)$ holds and assume that
$\left(h_{1}\right)$ There exist two nonnegative constants a_{1}, a_{2} such that

$$
|f(t)| \leq a_{1}+a_{2}|t|^{q-1}, \quad \text { for all } t \in \mathbf{R},
$$

where $q \in] 1,2 d /(d-2)[$;
$\left(h_{2}\right)$ There exist two positive constants γ and δ, with $\delta>\gamma \kappa_{\alpha}$, such that

$$
\frac{F(\delta)}{\delta^{2}}>\frac{\|K\|_{\infty}}{\|K\|_{L^{1}(\mathcal{M})}}\left(a_{1} \frac{K_{1}}{\gamma}+a_{2} K_{2} \gamma^{q-2}\right)
$$

Then, for each parameter $\lambda \in \Lambda_{(\gamma, \delta)}$ the problem $\left(P_{\lambda}\right)$, possesses at least three solutions in $H_{1}^{2}(\mathcal{M})$.

Index

Existence of three solutions

Where

$$
\left.\Lambda_{(\gamma, \delta)}:=\right] \frac{\delta^{2}\|\alpha\|_{L^{1}(\mathcal{M})}}{2 F(\delta)\|K\|_{L^{1}(\mathcal{M})}}, \frac{\|\alpha\|_{L^{1}(\mathcal{M})}}{2\|K\|_{\infty}\left(a_{1} \frac{K_{1}}{\gamma}+a_{2} K_{2} \gamma^{q-2}\right)} \text {. }
$$

Existence of three solutions

Where

$$
\left.\Lambda_{(\gamma, \delta)}:=\right] \frac{\delta^{2}\|\alpha\|_{L^{1}(\mathcal{M})}}{2 F(\delta)\|K\|_{L^{1}(\mathcal{M})}}, \frac{\|\alpha\|_{L^{1}(\mathcal{M})}}{2\|K\|_{\infty}\left(a_{1} \frac{K_{1}}{\gamma}+a_{2} K_{2} \gamma^{q-2}\right)} \text {. }
$$

Existence of three solutions for the problem

$$
-\Delta_{h} w+\alpha(\sigma) w=\lambda K(\sigma) f(\omega), \quad \sigma \in \mathbb{S}^{d}, w \in H_{1}^{2}\left(\mathbb{S}^{d}\right)
$$

Three solutions on the sphere

Let $\alpha, K \in C^{\infty}\left(\mathbb{S}^{d}\right)$ be positive and set

$$
\begin{equation*}
K_{1}^{\star}:=\frac{k_{1}\|\alpha\|_{L^{1}\left(\mathbb{S}^{d}\right)}}{\sqrt{2} \min \left\{1, \min _{\sigma \in \mathbb{S}^{d}} \alpha(\sigma)^{1 / 2}\right\}} \tag{3}
\end{equation*}
$$

Further, for $q \in] 1,2 d /(d-2)[$, we will denote

$$
\begin{equation*}
K_{2}^{\star}:=\frac{\kappa_{q}^{q}\|\alpha\|_{L^{1}\left(\mathbb{S}^{d}\right)}}{2^{\frac{2-q}{2}} q \min \left\{1, \min _{\sigma \in \mathbb{S}^{d}} \alpha(\sigma)^{q / 2}\right\}} . \tag{4}
\end{equation*}
$$

Three solutions on the sphere

Let $\alpha, K \in C^{\infty}\left(\mathbb{S}^{d}\right)$ be positive and set

$$
\begin{equation*}
K_{1}^{\star}:=\frac{\kappa_{1}\|\alpha\|_{L^{1}\left(\mathbb{S}^{d}\right)}}{\sqrt{2} \min \left\{1, \min _{\sigma \in \mathbb{S}^{d}} \alpha(\sigma)^{1 / 2}\right\}} . \tag{3}
\end{equation*}
$$

Further, for $q \in] 1,2 d /(d-2)[$, we will denote

$$
\begin{equation*}
K_{2}^{\star}:=\frac{\kappa_{q}^{q}\|\alpha\|_{L^{1}\left(\mathbb{S}^{d}\right)}}{2^{\frac{2-q}{2}} q \min \left\{1, \min _{\sigma \in \mathbb{S}^{d}} \alpha(\sigma)^{q / 2}\right\}} . \tag{4}
\end{equation*}
$$

Three solutions on the sphere

Where

$$
\kappa_{q}:=\left\{\begin{array}{l}
\omega_{d}^{\frac{2-q}{2 q}} \text { if } q \in[1,2[, \\
\max \left\{\left(\frac{q-2}{d \omega_{d}^{\frac{q-2}{q}}}\right)^{1 / 2}, \frac{1}{\omega_{d}^{\frac{-2}{2 q}}}\right\} \text { if } q \in\left[2, \frac{2 d}{d-2}[.\right.
\end{array}\right.
$$

Three solutions on the sphere

Where

$$
\kappa_{q}:=\left\{\begin{array}{l}
\omega_{d}^{\frac{2-q}{q}} \quad \text { if } \quad q \in[1,2[, \\
\max \left\{\left(\frac{q-2}{d \omega_{d}^{\frac{q-2}{q}}}\right)^{1 / 2}, \frac{1}{\omega_{d}^{\frac{q-2}{2 q}}}\right\} \quad \text { if } \quad q \in\left[2, \frac{2 d}{d-2}[.\right.
\end{array}\right.
$$

Three solutions on the sphere

Corollary

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $\left(\mathrm{h}_{\infty}\right)$ and $\left(\mathrm{h}_{1}\right)$ hold. Further, assume that there exist two positive constants γ and δ, with $\delta>\gamma \kappa_{\alpha}$, and
$\left(h_{2}^{\star}\right) \frac{F(\delta)}{\delta^{2}}>\frac{\|K\|_{\infty}}{\|K\|_{L^{1}\left(\mathcal{S}^{d}\right)}}\left(a_{1} \frac{K_{1}^{\star}}{\gamma}+a_{2} K_{2}^{\star} \gamma^{q-2}\right)$,
where K_{1}^{\star} and K_{2}^{\star} are given respectively by (3) and (4).
Then, for each parameter λ belonging to $\Lambda_{(\gamma, \delta)}^{\star}$ the problem $\left(S_{\lambda}^{\alpha}\right)$ possesses at least three distinct solutions.

Three solutions on the sphere

Corollary
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $\left(\mathrm{h}_{\infty}\right)$ and $\left(\mathrm{h}_{1}\right)$ hold. Further, assume that there exist two positive constants γ and δ, with $\delta>\gamma \kappa_{\alpha}$, and
$\left(h_{2}^{\star}\right) \frac{F(\delta)}{\delta^{2}}>\frac{\|K\|_{\infty}}{\|K\|_{L^{1}\left(\mathbb{S}^{d}\right)}}\left(a_{1} \frac{K_{1}^{\star}}{\gamma}+a_{2} K_{2}^{\star} \gamma^{q-2}\right)$,
where K_{1}^{\star} and K_{2}^{\star} are given respectively by (3) and (4).
Then, for each parameter λ belonging to $\Lambda_{(\gamma, \delta)}^{\star}$ the problem $\left(S_{\lambda}^{\alpha}\right)$ possesses at least three distinct solutions.

Three solutions on the sphere

Where

$$
\left.\Lambda_{(\gamma, \delta)}^{\star}:=\right] \frac{\delta^{2}\|\alpha\|_{L^{1}\left(\mathbb{S}^{d}\right)}}{2 F(\delta)\|K\|_{L^{1}\left(\mathbb{S}^{d}\right)}}, \frac{\|\alpha\|_{L^{1}\left(\mathbb{S}^{d}\right)}}{2\|K\|_{\infty}\left(a_{1} \frac{K_{1}^{\star}}{\gamma}+a_{2} K_{2}^{\star} \gamma^{q-2}\right)}[.
$$

Three solutions on the sphere

Where

$$
\left.\Lambda_{(\gamma, \delta)}^{\star}:=\right] \frac{\delta^{2}\|\alpha\|_{L^{1}\left(\mathbb{S}^{d}\right)}}{2 F(\delta)\|K\|_{L^{1}\left(\mathbb{S}^{d}\right)}}, \frac{\|\alpha\|_{L^{1}\left(\mathbb{S}^{d}\right)}}{2\|K\|_{\infty}\left(a_{1} \frac{K_{1}^{\star}}{\gamma}+a_{2} K_{2}^{\star} \gamma^{q-2}\right)} \text {. }
$$

Existence of three solutions for the Emden-Fowler problem

$$
-\Delta u=\lambda|x|^{s-2} K(x /|x|) f\left(|x|^{-s} u\right), \quad x \in \mathbb{R}^{d+1} \backslash\{0\}
$$

Emden-Fowler problems

Next, we consider the following parameterized Emden-Fowler problem that arises in astrophysics, conformal Riemannian geometry, and in the theories of thermionic emission, isothermal stationary gas sphere, and gas combustion:

$$
-\Delta u=\lambda|x|^{s-2} K(x /|x|) f\left(|x|^{-s} u\right), \quad x \in \mathbb{R}^{d+1} \backslash\{0\} .
$$

The equation $\left(\mathfrak{F}_{\lambda}\right)$ has been studied when f has the form $f(t)=|t|^{p-1} t, p>1$, see Cotsiolis-Iliopoulos, Vázquez-Véron. In these papers, the authors obtained existence and multiplicity results for $\left(\mathfrak{F}_{\lambda}\right)$, applying either minimization or minimax methods.

Emden-Fowler problems

Next, we consider the following parameterized Emden-Fowler problem that arises in astrophysics, conformal Riemannian geometry, and in the theories of thermionic emission, isothermal stationary gas sphere, and gas combustion:

$$
-\Delta u=\lambda|x|^{s-2} K(x /|x|) f\left(|x|^{-s} u\right), \quad x \in \mathbb{R}^{d+1} \backslash\{0\} .
$$

The equation $\left(\mathfrak{F}_{\lambda}\right)$ has been studied when f has the form $f(t)=|t|^{p-1} t, p>1$, see Cotsiolis-Iliopoulos, Vázquez-Véron. In these papers, the authors obtained existence and multiplicity results for $\left(\mathfrak{F}_{\lambda}\right)$, applying either minimization or minimax methods.

Emden-Fowler problems

The solutions of $\left(\mathfrak{F}_{\lambda}\right)$ are being sought in the particular form

$$
\begin{equation*}
u(x)=r^{s} w(\sigma) \tag{5}
\end{equation*}
$$

where, $(r, \sigma):=(|x|, x /|x|) \in(0, \infty) \times \mathbb{S}^{d}$ are the spherical coordinates in $\mathbb{R}^{d+1} \backslash\{0\}$ and w be a smooth function defined on \mathbb{S}^{d}. This type of transformation is also used by Bidaut-Véron and Véron, where the asymptotic of a special form of $\left(\mathfrak{F}_{\lambda}\right)$ has been studied. Throughout (5), taking into account that

$$
\Delta u=r^{-d} \frac{\partial}{\partial r}\left(r^{d} \frac{\partial u}{\partial r}\right)+r^{-2} \Delta_{h} u
$$

the equation $\left(\mathfrak{F}_{\lambda}\right)$ reduces to

$$
-\Delta_{h} w+s(1-s-d) w=\lambda K(\sigma) f(w), \quad \sigma \in \mathbb{S}^{d}, w \in H_{1}^{2}\left(\mathbb{S}^{d}\right)
$$

see also Kristály and Rădulescu.

Emden-Fowler problems

The solutions of $\left(\mathfrak{F}_{\lambda}\right)$ are being sought in the particular form

$$
\begin{equation*}
u(x)=r^{s} w(\sigma) \tag{5}
\end{equation*}
$$

where, $(r, \sigma):=(|x|, x /|x|) \in(0, \infty) \times \mathbb{S}^{d}$ are the spherical coordinates in $\mathbb{R}^{d+1} \backslash\{0\}$ and w be a smooth function defined on \mathbb{S}^{d}. This type of transformation is also used by Bidaut-Véron and Véron, where the asymptotic of a special form of $\left(\mathfrak{F}_{\lambda}\right)$ has been studied. Throughout (5), taking into account that

$$
\Delta u=r^{-d} \frac{\partial}{\partial r}\left(r^{d} \frac{\partial u}{\partial r}\right)+r^{-2} \Delta_{h} u
$$

the equation $\left(\widetilde{F}_{\lambda}\right)$ reduces to

$$
-\Delta_{h} w+s(1-s-d) w=\lambda K(\sigma) f(w), \quad \sigma \in \mathbb{S}^{d}, w \in H_{1}^{2}\left(\mathbb{S}^{d}\right)
$$

see also Kristály and Rădulescu.

Three solutions for Emden-Fowler problems

Corollary

Assume that d and s are two constants such that $1-d<s<0$. Further, let $K \in C^{\infty}\left(\mathbb{S}^{d}\right)$ be a positive function and $f: \mathbb{R} \rightarrow \mathbb{R}$ as in the previous Corollary. Then, for each parameter λ belonging to

$$
\left.\Lambda_{(\gamma, \delta)}^{s, d}:=\right] \frac{s(1-s-d) \omega_{d} \delta^{2}}{2 F(\delta)\|K\|_{L^{1}\left(\mathbb{S}^{d}\right)}}, \frac{s(1-s-d) \omega_{d}}{2\|K\|_{\infty}\left(a_{1} \frac{K_{1}^{\star}}{\gamma}+a_{2} K_{2}^{\star} \gamma^{q-2}\right)}[
$$

the following problem

$$
-\Delta u=\lambda|x|^{s-2} K(x /|x|) f\left(|x|^{-s} u\right), \quad x \in \mathbb{R}^{d+1} \backslash\{0\}
$$

admits at least three distinct solutions.

Three solutions for Emden-Fowler problems

Corollary

Assume that d and s are two constants such that $1-d<s<0$. Further, let $K \in C^{\infty}\left(\mathbb{S}^{d}\right)$ be a positive function and $f: \mathbb{R} \rightarrow \mathbb{R}$ as in the previous Corollary. Then, for each parameter λ belonging to

$$
\left.\Lambda_{(\gamma, \delta)}^{s, d}:=\right] \frac{s(1-s-d) \omega_{d} \delta^{2}}{2 F(\delta)\|K\|_{L^{1}\left(S^{d}\right)}}, \frac{s(1-s-d) \omega_{d}}{2\|K\|_{\infty}\left(a_{1} \frac{K_{1}^{\star}}{\gamma}+a_{2} K_{2}^{\star} \gamma^{q-2}\right)}[
$$

the following problem

$$
\begin{equation*}
-\Delta u=\lambda|x|^{s-2} K(x /|x|) f\left(|x|^{-s} u\right), \quad x \in \mathbb{R}^{d+1} \backslash\{0\}, \tag{F}
\end{equation*}
$$

admits at least three distinct solutions.

Index

Main Result.s
Three solutions on the sphere

Example and Application

Example

Let (\mathcal{M}, g) be a compact d-dimensional $(d \geq 3)$ Riemannian manifold without boundary, fix $q \in] 2,2 d /(d-2)$ [and let $K \in C^{\infty}(\mathcal{M})$ be a positive function. Moreover, let $h: \mathbf{R} \rightarrow \mathbf{R}$ be the function defined by

$$
h(t):= \begin{cases}1+|t|^{q-1} & \text { if }|t| \leq r \\ \frac{\left(1+r^{2}\right)\left(1+r^{q-1}\right)}{1+t^{2}} & \text { if }|t|>r\end{cases}
$$

where r is a fixed constant such that

$$
\begin{equation*}
r>\max \left\{\left(\frac{2}{\operatorname{Vol}_{g}(\mathcal{M})}\right)^{1 / 2}, q^{\frac{1}{q-2}}\left(\frac{\|K\|_{\infty}}{\|K\|_{L^{1}(\mathcal{M})}}\left(K_{1}+K_{2}\right)\right)^{\frac{1}{q-2}}\right\} \tag{6}
\end{equation*}
$$

Example

Let (\mathcal{M}, g) be a compact d-dimensional $(d \geq 3)$ Riemannian manifold without boundary, fix $q \in] 2,2 d /(d-2)$ [and let $K \in C^{\infty}(\mathcal{M})$ be a positive function. Moreover, let $h: \mathbf{R} \rightarrow \mathbf{R}$ be the function defined by

$$
h(t):= \begin{cases}1+|t|^{q-1} & \text { if }|t| \leq r \\ \frac{\left(1+r^{2}\right)\left(1+r^{q-1}\right)}{1+t^{2}} & \text { if }|t|>r,\end{cases}
$$

where r is a fixed constant such that

$$
\begin{equation*}
r>\max \left\{\left(\frac{2}{\operatorname{Vol}_{g}(\mathcal{M})}\right)^{1 / 2}, q^{\frac{1}{q-2}}\left(\frac{\|K\|_{\infty}}{\|K\|_{L^{1}(\mathcal{M})}}\left(K_{1}+K_{2}\right)\right)^{\frac{1}{q-2}}\right\} . \tag{6}
\end{equation*}
$$

Example

From our Theorem, for each parameter

$$
\lambda \in] \frac{q r^{2} \operatorname{Vol}_{g}(\mathcal{M})}{2\left(q r+r^{q}\right)\|K\|_{L^{1}(\mathcal{M})}}, \frac{\operatorname{Vol}_{g}(\mathcal{M})}{2\|K\|_{\infty}\left(K_{1}+K_{2}\right)}[,
$$

the following problem

$$
-\Delta_{g} w+w=\lambda K(\sigma) h(w), \quad \sigma \in \mathcal{M}, w \in H_{1}^{2}(\mathcal{M}),
$$

possesses at least three nontrivial solutions.

Example

From our Theorem, for each parameter

$$
\lambda \in] \frac{q r^{2} \operatorname{Vol}_{g}(\mathcal{M})}{2\left(q r+r^{q}\right)\|K\|_{L^{1}(\mathcal{M})}}, \frac{\operatorname{Vol}_{g}(\mathcal{M})}{2\|K\|_{\infty}\left(K_{1}+K_{2}\right)}[,
$$

the following problem

$$
-\Delta_{g} w+w=\lambda K(\sigma) h(w), \quad \sigma \in \mathcal{M}, w \in H_{1}^{2}(\mathcal{M})
$$

possesses at least three nontrivial solutions.

Three solutions for Elliptic problems

We just mention that similar results for elliptic problems on bounded domains of the Euclidean space are contained in

Three weak solutions for elliptic Dirichlet problems, J. Math. Anal. Appl., in press.
and

Three non-zero solutions for elliptic Neumann problems, Analysis and Applications, 2010, 1-9.

Three solutions for Elliptic problems

We just mention that similar results for elliptic problems on bounded domains of the Euclidean space are contained in
G. Bonanno, --

Three weak solutions for elliptic Dirichlet problems, J. Math. Anal. Appl., in press.
and

> Three non-zero solutions for elliptic Neumann problems, Analysis and Applications, 2010, 1-9.

Three solutions for Elliptic problems

We just mention that similar results for elliptic problems on bounded domains of the Euclidean space are contained in
G. Bonanno, --

Three weak solutions for elliptic Dirichlet problems, J. Math. Anal. Appl., in press.
and
G. D’Agui, --

Three non-zero solutions for elliptic Neumann problems, Analysis and Applications, 2010, 1-9.

Infinitely many weak solutions for Elliptic problems

Let X be a reflexive real Banach space, let $\Phi, \Psi: X \rightarrow \mathbf{R}$ be two Gâteaux differentiable functionals such that Φ is strongly continuous, sequentially weakly lower semicontinuous and coercive and Ψ is sequentially weakly upper semicontinuous. For every $r>\inf _{X} \Phi$, put

$$
\varphi(r):=\inf _{u \in \Phi^{-1}(]-\infty, r[)} \frac{\left(\sup _{v \in \Phi^{-1}(]-\infty, r[)} \Psi(v)\right)-\Psi(u)}{r-\Phi(u)}
$$

and

$$
\gamma:=\liminf _{r \rightarrow+\infty} \varphi(r), \quad \delta:=\liminf _{r \rightarrow\left(\inf _{X} \Phi\right)^{+}} \varphi(r) .
$$

Then, one has

Let X be a reflexive real Banach space, let $\Phi, \Psi: X \rightarrow \mathbf{R}$ be two Gâteaux differentiable functionals such that Φ is strongly continuous, sequentially weakly lower semicontinuous and coercive and Ψ is sequentially weakly upper semicontinuous. For every $r>\inf _{X} \Phi$, put

$$
\varphi(r):=\inf _{u \in \Phi^{-1}(]-\infty, r[)} \frac{\left(\sup _{v \in \Phi^{-1}(]-\infty, r[)} \Psi(v)\right)-\Psi(u)}{r-\Phi(u)}
$$

and

$$
\gamma:=\liminf _{r \rightarrow+\infty} \varphi(r), \quad \delta:=\liminf _{r \rightarrow\left(\inf _{X} \Phi\right)^{+}} \varphi(r)
$$

Then, one has

Theorem (G. Bonanno,--; Bound. Value Probl. 2009)

(a) For every $r>\inf _{X} \Phi$ and every $\left.\lambda \in\right] 0, \frac{1}{\varphi(r)}$, the restriction of the functional $I_{\lambda}:=\Phi-\lambda \Psi$ to $\Phi^{-1}(]-\infty, r[)$ admits a global minimum, which is a critical point (local minimum) of I_{λ} in X.
(b) If $\gamma<+\infty$ then, for each $\lambda \in] 0, \frac{1}{\gamma}[$, the following alternative holds: either
$\left(b_{1}\right) I_{\lambda}$ possesses a global minimum,
or
$\left(b_{2}\right)$ there is a sequence $\left\{u_{n}\right\}$ of critical points (local minima) of I_{λ} such that $\lim _{n \rightarrow+\infty} \Phi\left(u_{n}\right)=+\infty$.
(c) If $\delta<+\infty$ then, for each $\lambda \in] 0, \frac{1}{\delta}[$, the following alternative holds: either
$\left(c_{1}\right)$ there is a global minimum of Φ which is a local minimum of I_{λ}, or
$\left(c_{2}\right)$ there is a sequence $\left\{u_{n}\right\}$ of pairwise distinct critical points (local minima) of I_{λ} which weakly converges to a global minimum of Φ, with $\lim _{n \rightarrow+\infty} \Phi\left(u_{n}\right)=\inf _{X} \Phi$.

Theorem (G. Bonanno,--; Bound. Value Probl. 2009)
(a) For every $r>\inf _{X} \Phi$ and every $\left.\lambda \in\right] 0, \frac{1}{\varphi(r)}$, the restriction of the functional $I_{\lambda}:=\Phi-\lambda \Psi$ to $\Phi^{-1}(]-\infty, r[)$ admits a global minimum, which is a critical point (local minimum) of I_{λ} in X.
(b) If $\gamma<+\infty$ then, for each $\lambda \in] 0, \frac{1}{\gamma}[$, the following alternative holds: either
$\left(b_{1}\right) I_{\lambda}$ possesses a global minimum,
or
(b_{2}) there is a sequence $\left\{u_{n}\right\}$ of critical points (local minima) of I_{λ} such that $\lim _{n \rightarrow+\infty} \Phi\left(u_{n}\right)=+\infty$.
(c) If $\delta<+\infty$ then, for each $\lambda \in] 0, \frac{1}{\delta}[$, the following alternative holds: either
$\left(c_{1}\right)$ there is a global minimum of Φ which is a local minimum of I_{λ}, or
$\left(c_{2}\right)$ there is a sequence $\left\{u_{n}\right\}$ of pairwise distinct critical points (local minima) of I_{λ} which weakly converges to a global minimum of Φ, with $\lim _{n \rightarrow+\infty} \Phi\left(u_{n}\right)=\inf _{X} \Phi$.

We point out that this result is a refinement of Theorem 2.5 in

A general variational principle and some of its applications, J. Comput. Appl. Math. 113, 401-410

We point out that this result is a refinement of Theorem 2.5 in
B. Ricceri (2000)

A general variational principle and some of its applications, J.
Comput. Appl. Math. 113, 401-410

Theorem (G. Bonanno,-; Proc. Roy. Soc. Edinburgh, A 2009)
Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a continuous non-negative function and $p>N$. Put

$$
\begin{gathered}
\sigma(N, p):=\inf _{\mu \in] 0,1[} \frac{1-\mu^{N}}{\mu^{N}(1-\mu)^{p}}, \quad \tau:=\sup _{x \in \Omega} \operatorname{dist}(x, \partial \Omega), \\
m:=\frac{N^{-\frac{1}{p}}}{\sqrt{\pi}}\left[\Gamma\left(1+\frac{N}{2}\right)\right]^{\frac{1}{N}}\left(\frac{p-1}{p-N}\right)^{1-\frac{1}{p}}|\Omega|^{\frac{1}{N}-\frac{1}{p}},
\end{gathered}
$$

and $\kappa:=\frac{\tau^{p}}{m^{p}|\Omega| \sigma(N, p)}$. Assume that

$$
\begin{equation*}
\liminf _{\xi \rightarrow+\infty} \frac{F(\xi)}{\xi^{p}}<\kappa \limsup _{\xi \rightarrow+\infty} \frac{F(\xi)}{\xi^{p}} . \tag{g}
\end{equation*}
$$

Then, for each $\lambda \in] \frac{\sigma(N, p)}{p \tau^{p} \limsup _{\xi \rightarrow+\infty} \frac{F(\xi)}{\xi^{p}}}, \frac{1}{m^{p} p|\Omega| \liminf _{\xi \rightarrow+\infty} \frac{F(\xi)}{\xi^{p}}}[$, the problem
$\left(D_{\lambda}^{f}\right)$ admits a sequence of positive weak solutions which is unbounded in $W_{0}^{1, p}(\Omega)$.

Theorem (G. Bonanno,--; Proc. Roy. Soc. Edinburgh, A 2009) Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a continuous non-negative function and $p>N$. Put

$$
\begin{gathered}
\sigma(N, p):=\inf _{\mu \in] 0,1[} \frac{1-\mu^{N}}{\mu^{N}(1-\mu)^{p}}, \quad \tau:=\sup _{x \in \Omega} \operatorname{dist}(x, \partial \Omega), \\
m:=\frac{N^{-\frac{1}{p}}}{\sqrt{\pi}}\left[\Gamma\left(1+\frac{N}{2}\right)\right]^{\frac{1}{N}}\left(\frac{p-1}{p-N}\right)^{1-\frac{1}{p}}|\Omega|^{\frac{1}{N}-\frac{1}{p}}
\end{gathered}
$$

and $\kappa:=\frac{\tau^{p}}{m^{p}|\Omega| \sigma(N, p)}$. Assume that

$$
\begin{equation*}
\liminf _{\xi \rightarrow+\infty} \frac{F(\xi)}{\xi^{p}}<\kappa \limsup _{\xi \rightarrow+\infty} \frac{F(\xi)}{\xi^{p}} \tag{g}
\end{equation*}
$$

Then, for each $\lambda \in] \frac{\sigma(N, p)}{p \tau^{p} \limsup _{\xi \rightarrow+\infty} \frac{F(\xi)}{\xi^{p}}}, \frac{1}{m^{p} p|\Omega| \liminf _{\xi \rightarrow+\infty} \frac{F(\xi)}{\xi^{p}}}[$, the problem
(D_{λ}^{f}) admits a sequence of positive weak solutions which is unbounded in $W_{0}^{1, p}(\Omega)$.

Assumption (g) could be replaced by

(g') There exist two sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ such that

$$
0 \leq a_{n}<\frac{1}{m \bar{\mu}^{N / p} \frac{\sigma^{1 / p}(N, p)}{\tau} \omega_{\tau}^{1 / p}} b_{n}
$$

for every $n \in \mathbf{N}$ and $\lim _{n \rightarrow+\infty} b_{n}=+\infty$ such that

$$
\lim _{n \rightarrow+\infty} \frac{|\Omega| F\left(b_{n}\right)-\bar{\mu}^{N} \omega_{\tau} F\left(a_{n}\right)}{b_{n}^{p}-m^{p} a_{n}^{p} \omega_{\tau} \frac{\sigma(N, p)}{\tau^{p}} \bar{\mu}^{N}}<\kappa|\Omega| \limsup _{\xi \rightarrow+\infty} \frac{F(\xi)}{\xi^{p}},
$$

where

$$
\omega_{\tau}:=\tau^{N} \frac{\pi^{N / 2}}{\Gamma\left(1+\frac{N}{2}\right)}
$$

Assumption (g) could be replaced by
(g^{\prime}) There exist two sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ such that

$$
0 \leq a_{n}<\frac{1}{m \bar{\mu}^{N / p} \frac{\sigma^{1 / p}(N, p)}{\tau} \omega_{\tau}^{1 / p}} b_{n}
$$

for every $n \in \mathbf{N}$ and $\lim _{n \rightarrow+\infty} b_{n}=+\infty$ such that

$$
\lim _{n \rightarrow+\infty} \frac{|\Omega| F\left(b_{n}\right)-\bar{\mu}^{N} \omega_{\tau} F\left(a_{n}\right)}{b_{n}^{p}-m^{p} a_{n}^{p} \omega_{\tau} \frac{\sigma(N, p)}{\tau^{p}} \bar{\mu}^{N}}<\kappa|\Omega| \limsup _{\xi \rightarrow+\infty} \frac{F(\xi)}{\xi^{p}},
$$

where

$$
\omega_{\tau}:=\tau^{N} \frac{\pi^{N / 2}}{\Gamma\left(1+\frac{N}{2}\right)} .
$$

Abstract result

Infinitely many positive weak solutions for Elliptic problems Elliptic problems and Orlicz-Sobolev spaces

We point out that the results contained in

Infinitely many solutions for the Dirichlet problem involving the p-Laplacian, Nonlinear Anal. 61 (2005) 41-49
are direct consequences of main Theorem by using condition $\left(\mathrm{g}^{\prime}\right)$.

We point out that the results contained in
F. Cammaroto, A. Chinnì and B. Di Bella (2005)

Infinitely many solutions for the Dirichlet problem involving the p-Laplacian, Nonlinear Anal. 61 (2005) 41-49
are direct consequences of main Theorem by using condition $\left(\mathrm{g}^{\prime}\right)$.

Example

Assume that $p \in \mathbf{N}$ and $1 \leq N<p$. Put

$$
a_{n}:=\frac{2 n!(n+2)!-1}{4(n+1)!}, \quad b_{n}:=\frac{2 n!(n+2)!+1}{4(n+1)!}
$$

for every $n \in \mathbf{N}$.
Let $\left\{g_{n}\right\}$ be a sequence of non-negative functions such that:
$\left.g_{1}\right) g_{n} \in C^{0}\left(\left[a_{n}, b_{n}\right]\right)$ such that $g_{n}\left(a_{n}\right)=g_{n}\left(b_{n}\right)=0$ for every $n \in \mathbb{N}$;
$\left.g_{2}\right) \int_{a_{n}}^{b_{n}} g_{n}(t) d t \neq 0$ for every $n \in \mathbf{N}$.
For instance, we can choose the sequence $\left\{g_{n}\right\}$ as follows

$$
g_{n}(\xi):=\sqrt{\frac{1}{16(n+1)!^{2}}-\left(\xi-\frac{n!(n+2)}{2}\right)^{2}}, \quad \forall n \in \mathbf{N} .
$$

Example

Assume that $p \in \mathbf{N}$ and $1 \leq N<p$. Put

$$
a_{n}:=\frac{2 n!(n+2)!-1}{4(n+1)!}, \quad b_{n}:=\frac{2 n!(n+2)!+1}{4(n+1)!}
$$

for every $n \in \mathbf{N}$.
Let $\left\{g_{n}\right\}$ be a sequence of non-negative functions such that:
$\left.g_{1}\right) g_{n} \in C^{0}\left(\left[a_{n}, b_{n}\right]\right)$ such that $g_{n}\left(a_{n}\right)=g_{n}\left(b_{n}\right)=0$ for every $n \in \mathbf{N}$;
$\left.g_{2}\right) \int_{a_{n}}^{b_{n}} g_{n}(t) d t \neq 0$ for every $n \in \mathbf{N}$.
For instance, we can choose the sequence $\left\{g_{n}\right\}$ as follows

$$
g_{n}(\xi):=\sqrt{\frac{1}{16(n+1)!^{2}}-\left(\xi-\frac{n!(n+2)}{2}\right)^{2}}, \quad \forall n \in \mathbf{N} .
$$

Example

Define the function $f: \mathbf{R} \rightarrow \mathbf{R}$ as follows

$$
f(\xi):= \begin{cases}{\left[(n+1)!^{p}-n!^{!p}\right] \frac{g_{n}(\xi)}{\int_{a_{n}}^{b_{n}} g_{n}(t) d t}} & \text { if } \xi \in \bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right] \\ 0 & \text { otherwise. }\end{cases}
$$

From our result, for each $\lambda>\frac{\sigma(N, p)}{p 2^{p} \tau^{p}}$ the problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=\lambda f(u) \tag{f}\\
\left.u\right|_{\partial \Omega}=0,
\end{array}\right.
$$

possesses a sequence of weak solutions which is unbounded in $W_{0}^{1, p}(\Omega)$.

Example

Define the function $f: \mathbf{R} \rightarrow \mathbf{R}$ as follows

$$
f(\xi):= \begin{cases}{\left[(n+1)!^{p}-n!^{p}\right] \frac{g_{n}(\xi)}{\int_{a_{n}}^{b_{n}} g_{n}(t) d t}} & \text { if } \xi \in \bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right] \\ 0 & \text { otherwise. }\end{cases}
$$

From our result, for each $\lambda>\frac{\sigma(N, p)}{p 2^{p} \tau^{p}}$ the problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=\lambda f(u) \quad \text { in } \quad \Omega \tag{f}\\
\left.u\right|_{\partial \Omega}=0,
\end{array}\right.
$$

possesses a sequence of weak solutions which is unbounded in $W_{0}^{1, p}(\Omega)$.

We observe that in the very interesting paper

Infinitely many solutions of a quasilinear elliptic problem with an oscillatory potential, Commun. Partial Differential Equations 21 (5-6)
the authors, assuming that $f(0) \geq 0$ and that

$$
\liminf _{\xi \rightarrow+\infty} \frac{F(\xi)}{\xi^{p}}=0 \quad \text { and } \quad \limsup _{\xi \rightarrow+\infty} \frac{F(\xi)}{\xi^{p}}=+\infty
$$

proved problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=f(u) \quad \text { in } \quad \Omega \\
u \mid \partial \Omega=0
\end{array}\right.
$$

admits a sequence of non-negative solutions which is unbounded in $C^{0}(\bar{\Omega})$.

We observe that in the very interesting paper
P. Omari and F. Zanolin (1996)

Infinitely many solutions of a quasilinear elliptic problem with an oscillatory potential, Commun. Partial Differential Equations 21 (5-6)
the authors, assuming that $f(0) \geq 0$ and that

$$
\liminf _{\xi \rightarrow+\infty} \frac{F(\xi)}{\xi^{p}}=0 \quad \text { and } \quad \limsup _{\xi \rightarrow+\infty} \frac{F(\xi)}{\xi^{p}}=+\infty
$$

proved problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=f(u) \quad \text { in } \quad \Omega, \\
\left.u\right|_{\partial \Omega}=0 .
\end{array}\right.
$$

admits a sequence of non-negative solutions which is unbounded in $C^{0}(\bar{\Omega})$.

Infinitely many positive weak solutions for quasilinear elliptic systems involving the (p, q)-Laplacian

Theorem (G. Bonanno,--, D. O'Regan; Math. Comput. Modelling 2010)

Let $\Omega \subset \mathbf{R}^{2}$ be a non-empty bounded open set with boundary of class C^{1}. Let $f, g: \mathbf{R}^{2} \rightarrow \mathbf{R}$ be two positive $C^{0}\left(\mathbf{R}^{2}\right)$-functions such that the differential 1-form $\omega:=f(\xi, \eta) d \xi+g(\xi, \eta) d \eta$ is integrable and let F be a primitive of ω such that $F(0,0)=0$. Fix $p, q>2$, with $p \leq q$, and assume that

$$
\liminf _{y \rightarrow+\infty} \frac{F(y, y)}{y^{p}}=0 ; \quad \limsup _{y \rightarrow+\infty} \frac{F(y, y)}{y^{q}}=+\infty
$$

Then, the problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=f(u, v) \quad \text { in } \quad \Omega, \\
-\Delta_{q} v=g(u, v) \quad \text { in } \Omega, \\
\left.u\right|_{\partial \Omega}=0, \\
\left.v\right|_{\partial \Omega}=0,
\end{array}\right.
$$

admits a sequence $\left\{\left(u_{n}, v_{n}\right)\right\}$ of weak solutions which is unbounded in $W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega)$ and such that $u_{n}(x)>0, v_{n}(x)>0$ for all $x \in \Omega$ and for all $n \in \mathbf{N}$.

Theorem (G. Bonanno,--, D. O'Regan; Math. Comput. Modelling 2010)

Let $\Omega \subset \mathbf{R}^{2}$ be a non-empty bounded open set with boundary of class C^{1}. Let $f, g: \mathbf{R}^{2} \rightarrow \mathbf{R}$ be two positive $C^{0}\left(\mathbf{R}^{2}\right)$-functions such that the differential 1-form $\omega:=f(\xi, \eta) d \xi+g(\xi, \eta) d \eta$ is integrable and let F be a primitive of ω such that $F(0,0)=0$. Fix $p, q>2$, with $p \leq q$, and assume that

$$
\liminf _{y \rightarrow+\infty} \frac{F(y, y)}{y^{p}}=0 ; \quad \limsup _{y \rightarrow+\infty} \frac{F(y, y)}{y^{q}}=+\infty .
$$

Then, the problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=f(u, v) \quad \text { in } \quad \Omega, \\
-\Delta_{q} v=g(u, v) \quad \text { in } \Omega, \\
\left.u\right|_{\partial \Omega}=0, \\
\left.v\right|_{\partial \Omega}=0,
\end{array}\right.
$$

admits a sequence $\left\{\left(u_{n}, v_{n}\right)\right\}$ of weak solutions which is unbounded in $W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega)$ and such that $u_{n}(x)>0, v_{n}(x)>0$ for all $x \in \Omega$ and for all $n \in \mathbf{N}$.

Elliptic problems and Orlicz-Sobolev spaces

The problem

In this framework we have studied the non-homogeneous problem (under either Neumann or Dirichlet boundary conditions)

$$
-\operatorname{div}(\alpha(|\nabla u|) \nabla u)=\lambda f(x, u) \quad \text { in } \quad \Omega
$$

where, Ω is a bounded domain in $\mathbb{R}^{N}(N \geq 3)$ with smooth boundary $\partial \Omega$, while $f: \bar{\Omega} \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function, λ is a positive parameter and $\alpha:(0, \infty) \rightarrow \mathbb{R}$ is such that the mapping $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
\varphi(t)= \begin{cases}\alpha(|t|) t, & \text { for } \quad t \neq 0 \\ 0, & \text { for } \quad t=0\end{cases}
$$

is an odd, strictly increasing homeomorphism from \mathbb{R} onto \mathbb{R}.

The problem

In this framework we have studied the non-homogeneous problem (under either Neumann or Dirichlet boundary conditions)

$$
-\operatorname{div}(\alpha(|\nabla u|) \nabla u)=\lambda f(x, u) \quad \text { in } \quad \Omega,
$$

where, Ω is a bounded domain in $\mathbb{R}^{N}(N \geq 3)$ with smooth boundary $\partial \Omega$, while $f: \bar{\Omega} \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function, λ is a positive parameter and $\alpha:(0, \infty) \rightarrow \mathbb{R}$ is such that the mapping $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
\varphi(t)= \begin{cases}\alpha(|t|) t, & \text { for } \quad t \neq 0 \\ 0, & \text { for } \quad t=0\end{cases}
$$

is an odd, strictly increasing homeomorphism from \mathbb{R} onto \mathbb{R}.

Some results

Infinitely many solutions for a class of nonlinear eigenvalue problems in Orlicz-Sobolev spaces, C. R. Acad. Sci. Paris, Ser. I 349 (2011) 263-268.

> Arbitrarily small weak solutions for a nonlinear eigenvalue problem in Orlicz-Sobolev spaces, Monatsh Math. (2011), 1-14.

Existence of three solutions for a non-homogeneous Neumann problem through Orlicz-Sobolev spaces, Nonlinear Anal. (in press).

Some results

G. Bonanno,--, V. Rădulescu

Infinitely many solutions for a class of nonlinear eigenvalue problems in Orlicz-Sobolev spaces, C. R. Acad. Sci. Paris, Ser. I 349 (2011) 263-268.
G. Bonanno,--, V. Rădulescu

Arbitrarily small weak solutions for a nonlinear eigenvalue problem in Orlicz-Sobolev spaces, Monatsh Math. (2011), 1-14.
G. Bonanno,--, V. Rădulescu

Existence of three solutions for a non-homogeneous Neumann problem through Orlicz-Sobolev spaces, Nonlinear Anal. (in press).

Some results

G. Bonanno,--, V. Rădulescu

Infinitely many solutions for a class of nonlinear eigenvalue problems in Orlicz-Sobolev spaces, C. R. Acad. Sci. Paris, Ser. I 349 (2011) 263-268.
G. Bonanno,--, V. Rădulescu

Arbitrarily small weak solutions for a nonlinear eigenvalue problem in Orlicz-Sobolev spaces, Monatsh Math. (2011), 1-14.
> G. Bonanno,--, V. Rădulescu

> Existence of three solutions for a non-homogeneous Neumann problem through Orlicz-Sobolev spaces, Nonlinear Anal. (in press).

Some results

G. Bonanno,--, V. Rădulescu

Infinitely many solutions for a class of nonlinear eigenvalue problems in Orlicz-Sobolev spaces, C. R. Acad. Sci. Paris, Ser. I 349 (2011) 263-268.
G. Bonanno,--, V. Rădulescu

Arbitrarily small weak solutions for a nonlinear eigenvalue problem in Orlicz-Sobolev spaces, Monatsh Math. (2011), 1-14.
G. Bonanno,--, V. Rădulescu

Existence of three solutions for a non-homogeneous Neumann problem through Orlicz-Sobolev spaces, Nonlinear Anal. (in press).

Infinitely many weak solutions for the Sierpiński fractal

The problem

We study the following Dirichlet problem

$$
\left\{\begin{array}{l}
\Delta u(x)+a(x) u(x)=\lambda g(x) f(u(x)) \quad x \in V \backslash V_{0}, \tag{f,g}\\
\left.u\right|_{V_{0}}=0,
\end{array}\right.
$$

where V stands for the Sierpiński gasket, V_{0} is its intrinsic boundary, Δ denotes the weak Laplacian on V and λ is a positive real parameter. We assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function and that the variable potentials $a, g: V \rightarrow \mathbb{R}$ satisfy the following conditions:
(h_{1}) $a \in L^{1}(V, \mu)$ and $a \leq 0$ almost everywhere in V;
$\left(h_{2}\right) g \in C(V)$ with $g \leq 0$ and such that the restriction of g to every open subset of V is not identically zero.

The problem

We study the following Dirichlet problem

$$
\left\{\begin{array}{l}
\Delta u(x)+a(x) u(x)=\lambda g(x) f(u(x)) \quad x \in V \backslash V_{0}, \\
\left.u\right|_{V_{0}}=0,
\end{array}\right.
$$

where V stands for the Sierpiński gasket, V_{0} is its intrinsic boundary, Δ denotes the weak Laplacian on V and λ is a positive real parameter. We assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function and that the variable potentials $a, g: V \rightarrow \mathbb{R}$ satisfy the following conditions:
$\left(\mathrm{h}_{1}\right) a \in L^{1}(V, \mu)$ and $a \leq 0$ almost everywhere in V;
$\left(\mathrm{h}_{2}\right) g \in C(V)$ with $g \leq 0$ and such that the restriction of g to every open subset of V is not identically zero.

The problem

The Sierpiński gasket has the origin in a paper by Sierpiński. In a very simple manner, this fractal domain can be described as a subset of the plane obtained from an equilateral triangle by removing the open middle inscribed equilateral triangle of $1 / 4$ of the area, removing the corresponding open triangle from each of the three constituent triangles and continuing in this way. This fractal can also be obtained as the closure of the set of vertices arising in this construction.

The problem

The Sierpiński gasket has the origin in a paper by Sierpiński. In a very simple manner, this fractal domain can be described as a subset of the plane obtained from an equilateral triangle by removing the open middle inscribed equilateral triangle of $1 / 4$ of the area, removing the corresponding open triangle from each of the three constituent triangles and continuing in this way. This fractal can also be obtained as the closure of the set of vertices arising in this construction.

The problem

Over the years, the Sierpiński gasket showed both to be extremely useful in representing roughness in nature and man's works. This geometrical object is one of the most familiar examples of fractal domains and it gives insight into the turbulence of fluids. According to Kigami this notion was introduced by Mandelbrot in 1977 to design a class of mathematical objects which are not collections of smooth components. We refer to Strichartz for an elementary introduction to this subject and to Strichartz for important applications to differential equations on fractals.

The problem

Over the years, the Sierpiński gasket showed both to be extremely useful in representing roughness in nature and man's works. This geometrical object is one of the most familiar examples of fractal domains and it gives insight into the turbulence of fluids. According to Kigami this notion was introduced by Mandelbrot in 1977 to design a class of mathematical objects which are not collections of smooth components. We refer to Strichartz for an elementary introduction to this subject and to Strichartz for important applications to differential equations on fractals.

The problem

The study of the Laplacian on fractals was originated in physics literature, where so-called spectral decimation method was developed in Alexander and Rammal et al.. The Laplacian on the Sierpiński gasket was first constructed as the generator of a diffusion process by Kusuoka and Goldstein.

The problem

The study of the Laplacian on fractals was originated in physics literature, where so-called spectral decimation method was developed in Alexander and Rammal et al.. The Laplacian on the Sierpiński gasket was first constructed as the generator of a diffusion process by Kusuoka and Goldstein.

The problem

Finally, we recall that Breckner, Rădulescu and Varga in

Infinitely many solutions for the Dirichlet problem on the Sierpiniski gasket, Analysis and Applications, in press.
proved the existence of infinitely many solutions of problem $\left(S_{a, \lambda}^{f, g}\right)$ under the key assumption, among others, that the non-linearity f is non-positive in a sequence of positive intervals. We point out that our results are mutually independent compared to those achieved in the above mentioned manuscript.

The problem

Finally, we recall that Breckner, Rădulescu and Varga in
B.E. Breckner, V. Rădulescu and Cs. Varga

Infinitely many solutions for the Dirichlet problem on the Sierpinski gasket, Analysis and Applications, in press.
proved the existence of infinitely many solutions of problem $\left(S_{a, \lambda}^{f, g}\right)$ under the key assumption, among others, that the non-linearity f is non-positive in a sequence of positive intervals. We point out that our results are mutually independent compared to those achieved in the above mentioned manuscript.

Further References

Variational analysis on fractals: a nonlinear Dirichlet problem on the Sierpiński gasket, submitted.

On the existence of three solutions for the Dirichlet problem on the Sierpiński gasket, Nonlinear Anal. 73 (2010), 2980-2990.

Further References

M. Mihăilescu and V. Rădulescu

Variational analysis on fractals: a nonlinear Dirichlet problem on the Sierpiński gasket, submitted.
B.E. Breckner, D. Repouš and Cs. Varga

On the existence of three solutions for the Dirichlet problem on the Sierpiński gasket, Nonlinear Anal. 73 (2010), 2980-2990.

Further References

M. Mihăilescu and V. Rădulescu

Variational analysis on fractals: a nonlinear Dirichlet problem on the Sierpiński gasket, submitted.
B.E. Breckner, D. Repovš and Cs. Varga

On the existence of three solutions for the Dirichlet problem on the Sierpiński gasket, Nonlinear Anal. 73 (2010), 2980-2990.

Abstract setting

Denote by $C(V)$ the space of real-valued continuous functions on V and by

$$
C_{0}(V):=\left\{u \in C(V)|u|_{V_{0}}=0\right\} .
$$

The spaces $C(V)$ and $C_{0}(V)$ are endowed with the usual supremum norm $\|\cdot\|_{\infty}$. For a function $u: V \rightarrow \mathbb{R}$ and for $m \in \mathbb{N}$ let

$$
\begin{equation*}
W_{m}(u)=\left(\frac{N+2}{N}\right)^{m} \sum_{\substack{x, y \in V_{m} \\|x-y|=2^{-m}}}(u(x)-u(y))^{2} . \tag{7}
\end{equation*}
$$

We have $W_{m}(u) \leq W_{m+1}(u)$ for very natural m, so we can put

$$
\begin{equation*}
W(u)=\lim _{m \rightarrow \infty} W_{m}(u) . \tag{8}
\end{equation*}
$$

Abstract setting

Denote by $C(V)$ the space of real-valued continuous functions on V and by

$$
C_{0}(V):=\left\{u \in C(V)|u|_{V_{0}}=0\right\} .
$$

The spaces $C(V)$ and $C_{0}(V)$ are endowed with the usual supremum norm $\|\cdot\|_{\infty}$. For a function $u: V \rightarrow \mathbb{R}$ and for $m \in \mathbb{N}$ let

$$
\begin{equation*}
W_{m}(u)=\left(\frac{N+2}{N}\right)^{m} \sum_{\substack{x, y \in V_{m} \\|x-y|=2-m}}(u(x)-u(y))^{2} . \tag{7}
\end{equation*}
$$

We have $W_{m}(u) \leq W_{m+1}(u)$ for very natural m, so we can put

$$
\begin{equation*}
W(u)=\lim _{m \rightarrow \infty} W_{m}(u) . \tag{8}
\end{equation*}
$$

Abstract setting

Define

$$
H_{0}^{1}(V):=\left\{u \in C_{0}(V) \mid W(u)<\infty\right\} .
$$

It turns out that $H_{0}^{1}(V)$ is a dense linear subset of $L^{2}(V, \mu)$ equipped with the $\|\cdot\|_{2}$ norm. We now endow $H_{0}^{1}(V)$ with the norm

$$
\|u\|=\sqrt{W(u)} .
$$

In fact, there is an inner product defining this norm: for $u, v \in H_{0}^{1}(V)$ and $m \in \mathbb{N}$ let

$$
\mathcal{W}_{m}(u, v)=\left(\frac{N+2}{N}\right)^{m} \sum_{\substack{x, y \in V_{m} \\|x-y|=2^{-m}}}(u(x)-u(y))(v(x)-v(y)) .
$$

Abstract setting

Define

$$
H_{0}^{1}(V):=\left\{u \in C_{0}(V) \mid W(u)<\infty\right\} .
$$

It turns out that $H_{0}^{1}(V)$ is a dense linear subset of $L^{2}(V, \mu)$ equipped with the $\|\cdot\|_{2}$ norm. We now endow $H_{0}^{1}(V)$ with the norm

$$
\|u\|=\sqrt{W(u)} .
$$

In fact, there is an inner product defining this norm: for $u, v \in H_{0}^{1}(V)$ and $m \in \mathbb{N}$ let

$$
\mathcal{W}_{m}(u, v)=\left(\frac{N+2}{N}\right)^{m} \sum_{\substack{x, y \in V_{m} \\|x-y|=2^{-m}}}(u(x)-u(y))(v(x)-v(y))
$$

Abstract setting

Put

$$
\mathcal{W}(u, v)=\lim _{m \rightarrow \infty} \mathcal{W}_{m}(u, v) .
$$

Then $\mathcal{W}(u, v) \in \mathbb{R}$ and the space $H_{0}^{1}(V)$, equipped with the inner product \mathcal{W}, which induces the norm $\|\cdot\|$, becomes a real Hilbert space.
Moreover,

$$
\begin{equation*}
\|u\|_{\infty} \leq(2 N+3)\|u\|_{,} \text {for every } u \in H_{0}^{1}(V), \tag{9}
\end{equation*}
$$

and the embedding

$$
\begin{equation*}
\left(H_{0}^{1}(V),\|\cdot\|\right) \hookrightarrow\left(C_{0}(V),\|\cdot\|_{\infty}\right) \tag{10}
\end{equation*}
$$

is compact. We refer to Fukushima and Shima for further details.

Abstract setting

Put

$$
\mathcal{W}(u, v)=\lim _{m \rightarrow \infty} \mathcal{W}_{m}(u, v) .
$$

Then $\mathcal{W}(u, v) \in \mathbb{R}$ and the space $H_{0}^{1}(V)$, equipped with the inner product \mathcal{W}, which induces the norm $\|\cdot\|$, becomes a real Hilbert space.
Moreover,

$$
\begin{equation*}
\|u\|_{\infty} \leq(2 N+3)\|u\|, \text { for every } u \in H_{0}^{1}(V), \tag{9}
\end{equation*}
$$

and the embedding

$$
\begin{equation*}
\left(H_{0}^{1}(V),\|\cdot\|\right) \hookrightarrow\left(C_{0}(V),\|\cdot\|_{\infty}\right) \tag{10}
\end{equation*}
$$

is compact. We refer to Fukushima and Shima for further details.

Main result

Theorem (G. Bonanno,--, V. Rădulescu; preprint 2011)

Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a non-negative continuous function. Assume that

$$
\begin{equation*}
\liminf _{\xi \rightarrow 0^{+}} \frac{F(\xi)}{\xi^{2}}<+\infty \quad \text { and } \quad \limsup _{\xi \rightarrow 0^{+}} \frac{F(\xi)}{\xi^{2}}=+\infty \tag{0}
\end{equation*}
$$

Then, for every

$$
\lambda \in] 0,-\frac{1}{2(2 N+3)^{2}\left(\int_{V} g(x) d \mu\right) \liminf _{\xi \rightarrow 0^{+}} \frac{F(\xi)}{\xi^{2}}}[
$$

there exists a sequence $\left\{v_{n}\right\}$ of pairwise distinct weak solutions of problem $\left(S_{a, \lambda}^{f, g}\right)$ such that $\lim _{n \rightarrow \infty}\left\|v_{n}\right\|=\lim _{n \rightarrow \infty}\left\|v_{n}\right\|_{\infty}=0$.

Main result

Theorem (G. Bonanno,--, V. Rădulescu; preprint 2011)
Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a non-negative continuous function. Assume that

$$
\begin{equation*}
\liminf _{\xi \rightarrow 0^{+}} \frac{F(\xi)}{\xi^{2}}<+\infty \quad \text { and } \quad \limsup _{\xi \rightarrow 0^{+}} \frac{F(\xi)}{\xi^{2}}=+\infty \tag{0}
\end{equation*}
$$

Then, for every

$$
\lambda \in] 0,-\frac{1}{2(2 N+3)^{2}\left(\int_{V} g(x) d \mu\right) \liminf _{\xi \rightarrow 0^{+}} \frac{F(\xi)}{\xi^{2}}}[
$$

there exists a sequence $\left\{v_{n}\right\}$ of pairwise distinct weak solutions of problem ($S_{a, \lambda}^{f, g}$) such that $\lim _{n \rightarrow \infty}\left\|v_{n}\right\|=\lim _{n \rightarrow \infty}\left\|v_{n}\right\|_{\infty}=0$.

Remark

We explicitly observe that our result also holds for sign-changing functions $f: \mathbf{R} \rightarrow \mathbb{R}$ just requiring that

$$
-\infty<\liminf _{\xi \rightarrow 0^{+}} \frac{F(\xi)}{\xi^{2}}, \quad \liminf _{\xi \rightarrow 0^{+}} \frac{\max _{t \in[-\xi, \xi]} F(t)}{\xi^{2}}<+\infty
$$

and

$$
\limsup _{\xi \rightarrow 0^{+}} \frac{F(\xi)}{\xi^{2}}=+\infty
$$

instead of condition $\left(h_{0}\right)$.

Remark

We explicitly observe that our result also holds for sign-changing functions $f: \mathbf{R} \rightarrow \mathbb{R}$ just requiring that

$$
-\infty<\liminf _{\xi \rightarrow 0^{+}} \frac{F(\xi)}{\xi^{2}}, \quad \liminf _{\xi \rightarrow 0^{+}} \frac{\max _{t \in[-\xi, \xi]} F(t)}{\xi^{2}}<+\infty
$$

and

$$
\limsup _{\xi \rightarrow 0^{+}} \frac{F(\xi)}{\xi^{2}}=+\infty
$$

instead of condition $\left(h_{0}\right)$.

Remark

In this setting, for every

$$
\lambda \in] 0,-\frac{1}{2(2 N+3)^{2}\left(\int_{V} g(x) d \mu\right) \liminf _{\xi \rightarrow 0^{+}} \frac{\max _{t \in[-\xi, \xi]} F(t)}{\xi^{2}}}[
$$

there exists a sequence $\left\{v_{n}\right\}$ of pairwise distinct weak solutions of problem $\left(S_{a, \lambda}^{f, g}\right)$ such that $\lim _{n \rightarrow \infty}\left\|v_{n}\right\|=\lim _{n \rightarrow \infty}\left\|v_{n}\right\|_{\infty}=0$.

Remark

In this setting, for every

$$
\lambda \in] 0,-\frac{1}{2(2 N+3)^{2}\left(\int_{V} g(x) d \mu\right) \liminf _{\xi \rightarrow 0^{+}} \frac{\max _{t \in[-\xi, \xi]} F(t)}{\xi^{2}}}[
$$

there exists a sequence $\left\{v_{n}\right\}$ of pairwise distinct weak solutions of problem $\left(S_{a, \lambda}^{f, g}\right)$ such that $\lim _{n \rightarrow \infty}\left\|v_{n}\right\|=\lim _{n \rightarrow \infty}\left\|v_{n}\right\|_{\infty}=0$.

Remark

An analogous conclusion can be achieved if the potential F has the same behaviour at infinity instead of at zero obtaining, in this case, the existence of a sequence of weak solutions which is unbounded in $H_{0}^{1}(V)$

Remark

An analogous conclusion can be achieved if the potential F has the same behaviour at infinity instead of at zero obtaining, in this case, the existence of a sequence of weak solutions which is unbounded in $H_{0}^{1}(V)$

Remark

In conclusion, for every

$$
\lambda \in] 0,-\frac{1}{2(2 N+3)^{2}\left(\int_{V} g(x) d \mu\right) \liminf _{\xi \rightarrow+\infty} \frac{\max _{t \in[-\xi, \xi]} F(t)}{\xi^{2}}}[
$$

there exists a sequence $\left\{v_{n}\right\}$ of weak solutions of problem $\left(S_{a, \lambda}^{f, g}\right)$ which is unbounded in $H_{0}^{1}(V)$.

Remark

In conclusion, for every

$$
\lambda \in] 0,-\frac{1}{2(2 N+3)^{2}\left(\int_{V} g(x) d \mu\right) \liminf _{\xi \rightarrow+\infty} \frac{\max _{t \in[-\xi, \xi]} F(t)}{\xi^{2}}}[
$$

there exists a sequence $\left\{v_{n}\right\}$ of weak solutions of problem $\left(S_{a, \lambda}^{f, g}\right)$ which is unbounded in $H_{0}^{1}(V)$.

Example

Set

$$
a_{1}:=2, \quad a_{n+1}:=\left(a_{n}\right)^{\frac{3}{2}},
$$

for every $n \in \mathbf{N}$ and $\left.S:=\bigcup_{n>0}\right] a_{n+1}-1, a_{n+1}+1[$. Define the continuous function $h: \mathbf{R} \rightarrow \overline{\mathbf{R}}$ as follows

$$
h(t):= \begin{cases}e^{\frac{1}{\left(t-\left(a_{n+1}-1\right)\right)\left(t-\left(a_{n+1}+1\right)\right)^{2}}+1} \frac{2\left(a_{n+1}-t\right)\left(a_{n+1}\right)^{3}}{\left(t-\left(a_{n+1}-1\right)\right)^{2}\left(t-\left(a_{n+1}+1\right)\right)^{2}} & \text { if } t \in S \\ 0 & \text { otherwise. }\end{cases}
$$

Example

Set

$$
a_{1}:=2, \quad a_{n+1}:=\left(a_{n}\right)^{\frac{3}{2}},
$$

for every $n \in \mathbf{N}$ and $\left.S:=\bigcup_{n>0}\right] a_{n+1}-1, a_{n+1}+1[$. Define the continuous function $h: \mathbf{R} \rightarrow \mathbf{R}$ as follows

$$
h(t):= \begin{cases}e^{\frac{1}{\left(t-\left(a_{n+1}-1\right)\right)\left(t-\left(a_{n+1}+1\right)\right)^{1}}+1} \frac{2\left(a_{n+1}-t\right)\left(a_{n+1}\right)^{3}}{\left(t-\left(a_{n+1}-1\right)\right)^{2}\left(t-\left(a_{n+1}+1\right)\right)^{2}} & \text { if } t \in S \\ 0 & \text { otherwise. }\end{cases}
$$

Example

Then

$$
H(\xi)=\int_{0}^{\xi} h(t) d t= \begin{cases}\left(a_{n+1}\right)^{3} e^{\frac{1}{\left(\xi-\left(a_{n+1}-1\right)\right)\left(\xi-\left(a_{n+1}+1\right)\right)}+1} & \text { if } \xi \in S \\ 0 & \text { otherwise }\end{cases}
$$

and $H\left(a_{n+1}\right)=\left(a_{n+1}\right)^{3}$ for every $n \in \mathbf{N}$.
Hence, one has

$$
\limsup _{\xi \rightarrow+\infty} \frac{H(\xi)}{\xi^{2}}=+\infty
$$

Example

Then

$$
H(\xi)=\int_{0}^{\xi} h(t) d t= \begin{cases}\left(a_{n+1}\right)^{3} e^{\frac{1}{\left(\xi-\left(a_{n+1}-1\right)\right)\left(\xi-\left(a_{n+1}+1\right)\right)}+1} & \text { if } \xi \in S \\ 0 & \text { otherwise },\end{cases}
$$

and $H\left(a_{n+1}\right)=\left(a_{n+1}\right)^{3}$ for every $n \in \mathbf{N}$.
Hence, one has

$$
\limsup _{\xi \rightarrow+\infty} \frac{H(\xi)}{\xi^{2}}=+\infty
$$

Example

On the other hand, by choosing $x_{n}=a_{n+1}-1$ for every $n \in \mathbf{N}$, one has $\max _{\xi \in\left[-x_{n}, x_{n}\right]} H(\xi)=\left(a_{n}\right)^{3}$ for every $n \in \mathbf{N}$. Moreover

$$
\lim _{n \rightarrow \infty} \frac{\max _{\xi \in\left[-x_{n}, x_{n}\right]} H(\xi)}{x_{n}^{2}}=1
$$

and, by a direct computation, it follows that

$$
\liminf _{\xi \rightarrow+\infty} \frac{\max _{t \in[-\xi, \xi]} H(t)}{\xi^{2}}=1
$$

Hence,

$$
0 \leq \liminf _{\xi \rightarrow+\infty} \frac{H(\xi)}{\xi^{2}} \leq \liminf _{\xi \rightarrow+\infty} \frac{\max _{t \in[-\xi, \xi]} H(t)}{\xi^{2}}=1, \quad \limsup _{\xi \rightarrow+\infty} \frac{H(\xi)}{\xi^{2}}=+\infty .
$$

Example

On the other hand, by choosing $x_{n}=a_{n+1}-1$ for every $n \in \mathbf{N}$, one has $\max _{\xi \in\left[-x_{n}, x_{n}\right]} H(\xi)=\left(a_{n}\right)^{3}$ for every $n \in \mathbf{N}$. Moreover

$$
\lim _{n \rightarrow \infty} \frac{\max _{\xi \in\left[-x_{n}, x_{n}\right]} H(\xi)}{x_{n}^{2}}=1
$$

and, by a direct computation, it follows that

$$
\liminf _{\xi \rightarrow+\infty} \frac{\max _{t \in[-\xi, \xi]} H(t)}{\xi^{2}}=1 .
$$

Hence,
$0 \leq \liminf _{\xi \rightarrow+\infty} \frac{H(\xi)}{\xi^{2}} \leq \liminf _{\xi \rightarrow+\infty} \frac{\max _{t \in[-\xi, \xi]} H(t)}{\xi^{2}}=1, \quad \limsup _{\xi \rightarrow+\infty} \frac{H(\xi)}{\xi^{2}}=+\infty$.

Example

For each parameter λ belonging to

$$
] 0, \frac{1}{2(2 N+3)^{2}}[
$$

the following problem

$$
\left\{\begin{array}{l}
\Delta u(x)+\lambda h(u(x))=u(x) \quad x \in V \backslash V_{0} \tag{h}\\
\left.u\right|_{V_{0}}=0
\end{array}\right.
$$

possesses an unbounded sequence of strong solutions.

Example

For each parameter λ belonging to

$$
] 0, \frac{1}{2(2 N+3)^{2}}[,
$$

the following problem

$$
\left\{\begin{array}{l}
\Delta u(x)+\lambda h(u(x))=u(x) \quad x \in V \backslash V_{0}, \tag{h}\\
\left.u\right|_{V_{0}}=0,
\end{array}\right.
$$

possesses an unbounded sequence of strong solutions.

Further perspectives

- To study the existence of multiple solutions for non-homogeneous Neumann problem on Riemannian manifolds with boundary;
- To find existence results for Dirichlet problems on Orlicz-Sobolev spaces;
- To check existence results for Dirichlet problems on more general fractal domains.

Further perspectives

- To study the existence of multiple solutions for non-homogeneous Neumann problem on Riemannian manifolds with boundary;
- To find existence results for Dirichlet problems on Orlicz-Sobolev spaces;
- To check existence results for Dirichlet problems on more general fractal domains.

Further perspectives

- To study the existence of multiple solutions for non-homogeneous Neumann problem on Riemannian manifolds with boundary;
- To find existence results for Dirichlet problems on Orlicz-Sobolev spaces;
- To check existence results for Dirichlet problems on more general fractal domains.

References

E G. Bonanno, G. Molica Bisci and V. Rădulescu, Multiple solutions of generalized Yamabe equations on Riemannian manifolds and applications to Emden-Fowler problems, Nonlinear Analysis: Real World Applications 12 (2011) 2656-2665.
G. Bonanno, G. Molica Bisci and V. Rădulescu, Variational analysis for a nonlinear elliptic problem on the Sierpiniski gasket, submitted (2011).

