Nonlinear aspects of Calderón-Zygmund theory

Giuseppe Mingione

Ancona, June 7 2011

Giuseppe Mingione Nonlinear aspects of Calderón-Zygmund theory

Overture: The standard CZ theory

• Consider the model case

$$\triangle u = f$$
 in \mathbb{R}^n

Overture: The standard CZ theory

• Consider the model case

$$\triangle u = f$$
 in \mathbb{R}^n

Then

$$f \in L^q$$
 implies $D^2 u \in L^q$ $1 < q < \infty$

with natural failure in the borderline cases $q=1,\infty$

Overture: The standard CZ theory

• Consider the model case

$$\triangle u = f$$
 in \mathbb{R}^n

Then

$$f \in L^q$$
 implies $D^2 u \in L^q$ $1 < q < \infty$

with natural failure in the borderline cases $q=1,\infty$

• As a consequence (Sobolev embedding)

$$Du \in L^{\frac{nq}{n-q}}$$
 $q < n$

• Representation via Green's function

$$u(x) \approx \int G(x,y)f(y)\,dy$$

with

$$G(x, y) = \begin{cases} |x - y|^{2-n} & \text{if } n > 2\\ -\log|x - y| & \text{if } n = 2 \end{cases}$$

• Differentiation yields

$$D^2 u(x) = \int K(x, y) f(y) \, dy$$

and K(x, y) is a singular integral kernel, and the conclusion follows

• Initial boundedness assumption

$$\|\hat{K}\|_{L^{\infty}} \leq B\,,$$

where \hat{K} denotes the Fourier transform of $K(\cdot)$

• Hörmander cancelation condition

$$\int_{|x|\geq 2|y|} |\mathcal{K}(x-y)-\mathcal{K}(x)| \, dx \leq B$$
 for every $y\in \mathbb{R}^n$

• Higher order right hand side

$$\triangle u = \operatorname{div} Du = \operatorname{div} F$$

Then

$$F \in L^q \Longrightarrow Du \in L^q \qquad q > 1$$

just "simplify" the divergence operator !!

Part 1: Gradient integrability theory

Theorem (Iwaniec, Studia Math. 83)

div
$$(|Du|^{p-2}Du) = \operatorname{div} (|F|^{p-2}F)$$
 in \mathbb{R}^n

Then it holds that

$$F \in L^q \Longrightarrow Du \in L^q \qquad p \le q < \infty$$

Theorem (Iwaniec, Studia Math. 83)

div
$$(|Du|^{p-2}Du) = \operatorname{div} (|F|^{p-2}F)$$
 in \mathbb{R}^n

Then it holds that

$$F \in L^q \Longrightarrow Du \in L^q \qquad p \le q < \infty$$

The local estimate

$$\left(\int_{B_R} |Du|^q \, dz\right)^{\frac{1}{q}} \le c \left(\int_{B_{2R}} |Du|^p \, dz\right)^{\frac{1}{p}} + c \left(\int_{B_{2R}} |F|^q \, dz\right)^{\frac{1}{q}}$$

• In the same way the non-linear result of Iwaniec extends to all elliptic equations in divergence form of the type

$$\operatorname{div} a(Du) = \operatorname{div} (|F|^{p-2}F)$$

where $a(\cdot)$ is *p*-monotone in the sense of the previous slides • and to all systems with special structure

$$\operatorname{div} (g(|Du|)Du) = \operatorname{div} (|F|^{p-2}F)$$

General systems - the elliptic case

• The previous result cannot hold for general systems

 $\operatorname{div} a(Du) = \operatorname{div} (|F|^{p-2}F)$

with $a(\cdot)$ being a general *p*-monotone in the sense of the previous slide. The failure of the result, which happens already in the case p = 2, can be seen as follows

• Consider the homogeneous case

div a(Du) = 0

The validity of the result would imply $Du \in L^q$ for every $q < \infty$, and, ultimately, that

$$u \in L^{\infty}$$

• But Sverák & Yan (Proc. Natl. Acad. Sci. USA 02) recently proved the existence of unbounded solutions, even when $a(\cdot)$ is non-degenerate and smooth

The up-to-a-certain-extent CZ theory

• For general elliptic systems it holds

Theorem (Kristensen & Min., ARMA 06)

div
$$a(Du) = \operatorname{div}(|F|^{p-2}F)$$
 in Ω

for a(Du) being a p-monotone vector field and

$$p \le q $n > 2$$$

Then it holds that

$$F \in L^q_{\mathsf{loc}} \Longrightarrow Du \in L^q_{\mathsf{loc}}$$

• Applications to singular sets estimates follow

The up-to-a-certain-extent CZ theory

• For general elliptic systems it holds

Theorem (Kristensen & Min., ARMA 06)

div
$$a(Du) = \operatorname{div}(|F|^{p-2}F)$$
 in Ω

for a(Du) being a p-monotone vector field and

$$p \le q $n > 2$$$

Then it holds that

$$F \in L^q_{\mathsf{loc}} \Longrightarrow Du \in L^q_{\mathsf{loc}}$$

Theorem (Kristensen & Min., ARMA 06)

Let

$$\begin{cases} -\operatorname{div} a(Du) = 0 \quad in \ \Omega\\ u = v \qquad on \ \partial\Omega \end{cases}$$

with Ω being suitably regular (say $C^{1,\alpha}$). Moreover, let

$$p \leq q $n > 2$.$$

Then it holds that

$$\int_{\Omega} |Du|^q \, dx \leq c \int_{\Omega} (|Dv|^q + 1) \, dx$$

There is some evidence that the assumed bound on q is sharp

Theorem (Acerbi & Min., Duke Math. J. 07) $u_t - \operatorname{div} (|Du|^{p-2}Du) = \operatorname{div} (|F|^{p-2}F) \quad in \ \Omega \times (0, T)$ for $p > \frac{2n}{n+2}$ Then it holds that $F \in L^q_{\operatorname{loc}} \Longrightarrow Du \in L^q_{\operatorname{loc}} \quad for \quad p \le q < \infty$ Theorem (Acerbi & Min., Duke Math. J. 07)

$$u_t - \operatorname{div} \left(|Du|^{p-2} Du \right) = \operatorname{div} \left(|F|^{p-2} F \right) \qquad \text{in } \Omega \times (0, T)$$

for

$$p > \frac{2n}{n+2}$$

Then it holds that

$$F \in L^q_{\mathsf{loc}} \Longrightarrow Du \in L^q_{\mathsf{loc}}$$
 for $p \le q < \infty$

The lower bound

$$p > \frac{2n}{n+2}$$

is optimal

- The elliptic approach via maximal operators only works in the case *p* = 2
- The result also works for systems, that is when $u(x, t) \in \mathbb{R}^N$, $N \ge 1$
- First Harmonic Analysis free approach to non-linear Calderón-Zygmund estimates

The parabolic case

- The result is new already in the case of equations i.e. N = 1, the difficulty being in the lack of homogenous scaling of parabolic problems with $p \neq 2$, and not being caused by the degeneracy of the problem, but rather by the polynomial growth.
- The result extends to all parabolic equations of the type

$$u_t - \operatorname{div} a(Du) = \operatorname{div} (|F|^{p-2}F)$$

with $a(\cdot)$ being a monotone operator with *p*-growth. More precisely we assume

$$\begin{cases} \nu(s^2+|z_1|^2+|z_2|^2)^{\frac{p-2}{2}}|z_2-z_1|^2 \leq \langle \mathsf{a}(z_2)-\mathsf{a}(z_1),z_2-z_1\rangle\\\\ |\mathsf{a}(z)| \leq \mathsf{L}(s^2+|z|^2)^{\frac{p-1}{2}} \ , \end{cases}$$

• The result also holds for systems with a special structure (sometimes called Uhlenbeck structure). This means

$$u_t - \operatorname{div} a(Du) = \operatorname{div} (|F|^{p-2}F)$$

with $a(\cdot)$ being *p*-monotone in the sense of the previous slide, and satisfying the structure assumption

$$a(Du) = g(|Du|)Du$$

• The *p*-Laplacean system is an instance of such a structure

Part 2: Pointwise estimates via nonlinear potentials

• Consider the model case

$$-\bigtriangleup u = \mu$$
 in \mathbb{R}^n

• Then, if we define

$$I_{\beta}(\mu)(x) := \int_{\mathbb{R}^n} \frac{d\mu(y)}{|x-y|^{n-\beta}}, \qquad \beta \in (0,n]$$

we have

 $|u(x)| \leq cl_2(|\mu|)(x)$, and $|Du(x)| \leq cl_1(|\mu|)(x)$

• In bounded domains one uses

$$\mathbf{I}^{\mu}_{\beta}(x,R) := \int_{0}^{R} \frac{\mu(B(x,\varrho))}{\varrho^{n-\beta}} \frac{d\varrho}{\varrho} \qquad \qquad \beta \in (0,n]$$

since

$$\begin{split} \mathbf{I}^{\mu}_{\beta}(x,R) \lesssim &\int_{B_{R}(x)} \frac{d\mu(y)}{|x-y|^{n-\beta}} \\ &= I_{\beta}(\mu \llcorner B(x,R))(x) \\ &\leq I_{\beta}(\mu)(x) \end{split}$$

for non-negative measures

• For instance for nonlinear equations with linear growth

$$-\mathsf{div} \; \mathit{a}(\mathit{Du}) = \mu$$

that is equations well posed in $W^{1,2}$ (*p*-growth and p = 2)

• And degenerate ones like

$$-\mathsf{div}\;(|Du|^{p-2}Du)=\mu$$

• We consider equations

$$-\mathsf{div} a(Du) = \mu$$

• under the assumptions

$$\begin{cases} |a(z)| + |a_z(z)|(|z|^2 + s^2)^{\frac{1}{2}} \le L(|z|^2 + s^2)^{\frac{p-1}{2}} \\ \nu^{-1}(|z|^2 + s^2)^{\frac{p-2}{2}} |\lambda|^2 \le \langle a_z(x,z)\lambda,\lambda \rangle \end{cases}$$

with

$$p \ge 2$$

this last bound is assumed in order to keep the exposition brief

Non-linear potentials

The nonlinear Wolff potential is defined by

$$\mathbf{W}^{\mu}_{\beta,p}(x,R) := \int_{0}^{R} \left(\frac{|\mu|(B(x,\varrho))}{\varrho^{n-\beta p}} \right)^{\frac{1}{p-1}} \frac{d\varrho}{\varrho} \qquad \qquad \beta \in (0,n/p]$$

which for p = 2 reduces to the usual Riesz potential

$$\mathbf{I}^{\mu}_{\beta}(x,R) := \int_{0}^{R} \frac{\mu(B(x,\varrho))}{\varrho^{n-\beta}} \frac{d\varrho}{\varrho} \qquad \qquad \beta \in (0,n]$$

• The nonlinear Wolff potential plays in nonlinear potential theory the same role the Riesz potential plays in the linear one

A fundamental estimate

For solutions to div $(|Du|^{p-2}Du) = \mu$ with $p \le n$ we have

For solutions to div $(|Du|^{p-2}Du) = \mu$ with $p \le n$ we have

Theorem (Kilpeläinen-Malý, Acta Math. 94)

$$|u(x)| \leq c \mathbf{W}^{\mu}_{1,p}(x,R) + c \left(\oint_{B(x,R)} |u|^{p-1} dy
ight)^{rac{1}{p-1}}$$

For solutions to div $(|Du|^{p-2}Du) = \mu$ with $p \leq n$ we have

Theorem (Kilpeläinen-Malý, Acta Math. 94)

$$|u(x)| \leq c \mathbf{W}^{\mu}_{1,p}(x,R) + c \left(\oint_{B(x,R)} |u|^{p-1} dy
ight)^{rac{1}{p-1}}$$

where

$$\mathbf{W}_{1,p}^{\mu}(x,R) := \int_{0}^{R} \left(\frac{|\mu|(B(x,\varrho))}{\varrho^{n-p}} \right)^{\frac{1}{p-1}} \frac{d\varrho}{\varrho}$$

For p=2 we have $\mathbf{W}_{1,p}^{\mu}=\mathbf{I}_{2}^{\mu}$

For solutions to div $(|Du|^{p-2}Du) = \mu$ with $p \leq n$ we have

Theorem (Kilpeläinen-Malý, Acta Math. 94)

$$|u(x)| \leq c \mathbf{W}_{1,p}^{\mu}(x,R) + c \left(\oint_{B(x,R)} |u|^{p-1} dy \right)^{rac{1}{p-1}}$$

where

$$\mathbf{W}_{1,p}^{\mu}(x,R) := \int_{0}^{R} \left(\frac{|\mu|(B(x,\varrho))}{\varrho^{n-\rho}} \right)^{\frac{1}{\rho-1}} \frac{d\varrho}{\varrho}$$

For p = 2 we have $W_{1,p}^{\mu} = I_2^{\mu}$ Another approach to this result has been given by Trudinger & Wang (Amer. J. Math. 02) • We have

$$\mu \in L^q \Longrightarrow \mathbf{W}^{\mu}_{eta, p} \in L^{rac{nq(p-1)}{n-qpeta}} \qquad q \in (1, n)$$

with related explicit estimates, also in Marcinkiewicz spaces

- Such a property allows to reduce the study of integrability of solutions to that of nonlinear potentials
- The key is the following inequality:

$$\int_0^\infty \left(\frac{|\mu|(B(x,\varrho))}{\varrho^{n-\beta p}}\right)^{\frac{1}{p-1}} \frac{d\varrho}{\varrho} \le c I_\beta \left\{ [I_\beta(|\mu|)]^{\frac{1}{p-1}} \right\} (x)$$

the last quantity is called Havin-Maz'ja potential

The potential gradient estimate for p = 2

Theorem (Min., JEMS 11)

$$|D_{\xi}u(x)| \leq c \mathbf{I}_1^{|\mu|}(x,R) + c \oint_{B(x,R)} |D_{\xi}u| \, dy$$

holds for almost every point x and $\xi \in \{1, \ldots, n\}$

Theorem (Duzaar & Min., Amer. J. Math. 201?)

$$|Du(x)| \le c \mathbf{W}^{\mu}_{1/p,p}(x,R) + c \int_{B(x,R)} (|Du| + s) \, dy$$

holds for almost every point x

Theorem (Duzaar & Min., Amer. J. Math. 201?)

$$|Du(x)| \le c \mathbf{W}^{\mu}_{1/p,p}(x,R) + c \int_{B(x,R)} (|Du| + s) \, dy$$

holds for almost every point x

This means

$$|Du(x)| \le c \int_0^R \left(\frac{|\mu|(B(x,\varrho))}{\varrho^{n-1}}\right)^{\frac{1}{p-1}} \frac{d\varrho}{\varrho} + c \int_{B(x,R)} (|Du| + s) dx$$

Integral estimates follow as a corollary

- For the model case equation div $(|Du|^{p-2}Du) = \mu$ the previous estimate implies for instance all those included in the papers
- Iwaniec, Studia Math. 83
- Di Benedetto & Manfredi, Amer. J. Math. 93
- Boccardo & Gallöuet, J. Funct. Anal. 87, Comm PDE 92
- Talenti, Ann. SNS Pisa 76
- Kilpelainen & Li, Diff. Int. Equ. 00
- Dolzmann & Hungerbühler & Müller, Crelle J. 00
- Alvino & Ferone & Trombetti, Ann. Mat. Pura Appl. 00
- Boccardo, Ann. Mat. Pura Appl. 08
- Moreover, the borderline cases which appeared as open problems in some of the above papers papers now follow as a corollary

• The two potential estimates are

$$|u(x)| \le c \mathbf{W}_{1,p}^{\mu}(x,R) + c \int_{B(x,R)} (|u| + Rs) \, dy$$

and

$$|Du(x)| \le c \mathbf{W}^{\mu}_{1/p,p}(x,R) + c \oint_{B(x,R)} (|Du| + s) \, dy$$

- They basically provide size estimates on *u* and *Du*
- The aim is now to provide estimates on the oscillations of solutions and/or alternatively, on intermediate derivatives

Calderón spaces of DeVore & Sharpley

- The following definition is due to DeVore & Sharpley (Mem. AMS, 1982)
- Let α ∈ (0, 1], q ≥ 1, and let Ω ⊂ ℝⁿ be a bounded open subset. A measurable function v, finite a.e. in Ω, belongs to the Calder´on space C^α_q(Ω) if and only if there exists a nonnegative function m ∈ L^q(Ω) such that

$$|v(x) - v(y)| \leq [m(x) + m(y)]|x - y|^{\alpha}$$

holds for almost every couple $(x, y) \in \Omega \times \Omega$.

Calderón spaces of DeVore & Sharpley

• In other words

$$m(x) \approx \partial^{lpha} v(x)$$

• Indeed DeVore & Sharpley take

$$M^{\alpha}_{\#}v(x) = \sup_{B(x,\varrho)} \varrho^{-\alpha} \oint_{B(x,\varrho)} |v(y) - (v)_{B(x,\varrho)}| \, dy$$

• For
$$lpha \in (0,1)$$
 and $q>1$ we have

$$W^{\alpha,q} \subset \mathcal{C}^{\alpha,q} \subset W^{\alpha-\varepsilon,q}$$

therefore such spaces, although not being of interpolation type, are just another way to say "fractional differentiability"

For equations as

$$\operatorname{div}\left(\gamma(x)|Du|^{p-2}Du\right)=0$$

we have

- If $\gamma(x)$ is measurable then $u \in C^{0,\alpha_m}$ for some $\alpha_m > 0$
- If $\gamma(x)$ is VMO then $u \in C^{0,\alpha}$ for every $\alpha < 1$
- If $\gamma(x)$ is Dini then $u \in C^{0,1}$
- If $\gamma(x)$ is Hölder the $Du \in C^{0,\alpha_M}$ for some $\alpha_M > 0$

• The previous and forthcoming results hold for general quasilinear equations

$$\operatorname{div} a(x, Du) = 0 \qquad -\operatorname{div} a(x, Du) = \mu$$

where

 $x \rightarrow a(x, \cdot)$ is just measurable/VMO/Dini

• The classical estimate

$$|u(x) - u(y)| \leq \int_{B_R} (|u| + Rs) d\xi \cdot \left(\frac{|x-y|}{R}\right)^{\alpha_m}$$

when coefficients are measurable

• The classical estimate

$$|u(x) - u(y)| \leq \int_{B_R} (|u| + Rs) d\xi \cdot \left(\frac{|x-y|}{R}\right)^{\alpha}$$

when coefficients are VMO-regular

• The classical estimate

$$|u(x) - u(y)| \leq \int_{B_R} (|u| + Rs) d\xi \cdot \left(\frac{|x - y|}{R}\right)^{lpha}$$

holds for $\alpha \in (0, \alpha_m], (0, 1), (0, 1]$ depending on the regularity of coefficients

Moreover

$$|Du(x) - Du(y)| \leq \int_{B_R} (|Du| + s) d\xi \cdot \left(\frac{|x-y|}{R}\right)^{lpha}$$

whenever $\alpha \leq \alpha_M$

The first universal potential estimate

• In the case of measurable coefficients we have

Theorem (Kuusi & Min.)

The estimate

$$|u(x) - u(y)| \le c \left[\mathbf{W}^{\mu}_{1 - \frac{\alpha(p-1)}{p}, p}(x, R) + \mathbf{W}^{\mu}_{1 - \frac{\alpha(p-1)}{p}, p}(y, R) \right] |x - y|^{\alpha} + c \int_{B_{R}} (|u| + Rs) d\xi \cdot \left(\frac{|x - y|}{R}\right)^{\alpha}$$

holds uniformly in every compact subset of $\alpha \in [0, \alpha_m),$ whenever $x, y \in B_{R/4}$

• The case $\alpha = 0$ gives back the known potential estimate of Kilpeläinen & Malý as endpoint case

The second universal potential estimate

• In the case of VMO coefficients we have

Theorem (Kuusi & Min.)

The estimate

$$|u(x) - u(y)| \le c \left[\mathbf{W}^{\mu}_{1 - \frac{\alpha(p-1)}{p}, p}(x, R) + \mathbf{W}^{\mu}_{1 - \frac{\alpha(p-1)}{p}, p}(y, R) \right] |x - y|^{\alpha} + c \int_{B_{R}} (|u| + Rs) d\xi \cdot \left(\frac{|x - y|}{R} \right)^{\alpha}$$

holds uniformly in every compact subset of $\alpha \in [0,1),$ whenever $x,y \in B_{R/4}$

The third universal potential estimate

• Finally, in the case of Dini coefficients we have

Theorem (Kuusi & Min.)

The estimate

$$|u(x) - u(y)| \le c \left[\mathbf{W}^{\mu}_{1 - \frac{\alpha(p-1)}{p}, p}(x, R) + \mathbf{W}^{\mu}_{1 - \frac{\alpha(p-1)}{p}, p}(y, R) \right] |x - y|^{\alpha} + c \int_{B_{R}} (|u| + Rs) d\xi \cdot \left(\frac{|x - y|}{R} \right)^{\alpha}$$

holds uniformly in $\alpha \in [0, 1]$, whenever $x, y \in B_{R/4}$

 The cases α = 0 and α = 1 give back the two known potential estimates as endpoint cases

The fourth universal potential estimate

• In the case coefficients are Hölder continuous we have

Theorem (Kuusi & Min.)

The estimate

$$\begin{aligned} |Du(x) - Du(y)| \\ &\leq c \left[\mathbf{W}^{\mu}_{1 - \frac{(1+\alpha)(p-1)}{p}, p}(x, R) + \mathbf{W}^{\mu}_{1 - \frac{(1+\alpha)(p-1)}{p}, p}(y, R) \right] |x - y|^{\alpha} \\ &\qquad + c \int_{\mathcal{B}_{R}} (|Du| + s) \, d\xi \cdot \left(\frac{|x - y|}{R} \right)^{\alpha} \end{aligned}$$

uniformly α belong to any compact subset of $[0, \alpha_M)$, whenever $x, y \in B_{R/4}$

• The case $\alpha = 0$ gives back the gradient potential estimate

• With the previous terminology we have

$$\partial^{lpha} u \leq c \mathbf{W}^{\mu}_{1 - rac{lpha(p-1)}{p}, p}$$

and

$$\partial^{\alpha} D u \leq c \mathbf{W}^{\mu}_{1 - rac{(1 + \alpha)(p - 1)}{p}, p}$$

 As a corollary we have optimal regularity criteria in oscillation spaces, such Hölder spaces, Fractional spaces, and so on, both for u and for the gradient Du

Part 3: A fully fractional approach

• We consider equations

$$-\mathsf{div} \ a(\mathsf{D}u) = \mu$$

• under the assumptions

$$\begin{cases} |a(z)| + |a_z(z)||z| \le L|z| \\ \nu^{-1}|\lambda|^2 \le \langle a_z(z)\lambda,\lambda \rangle \end{cases}$$

Theorem (Min., JEMS 11)

$$|D_{\xi}u(x)| \leq c \mathbf{I}_{1}^{|\mu|}(x,R) + c \int_{B(x,R)} |D_{\xi}u| \, dx$$

for every $\xi \in \{1, \ldots, n\}$, where

$$\mathsf{H}^{\mu}_{eta}(x,R) := \int_{0}^{R} rac{\mu(B(x,arrho))}{arrho^{n-1}} \, rac{darrho}{arrho}$$

Classical Gradient estimates

- Consider energy solutions to div a(Du) = 0 for p = 2
- First prove $Du \in W^{1,2}$
- Then use that $v = D_{\xi}u$ solves

$$\operatorname{div}(A(x)Dv) = 0 \qquad A(x) := a_z(Du(x))$$

- The boundedness of $D_{\xi}u$ follows by Standard DeGiorgi's theory
- This is a consequence of Caccioppoli's inequalities of the type

$$\int_{B_{R/2}} |D(D_{\xi}u-k)_{+}|^{2} \, dy \leq \frac{c}{R^{2}} \int_{B_{R}} |(D_{\xi}u-k)_{+}|^{2} \, dy$$

where

$$(D_{\xi}u-k)_+ := \max\{D_{\xi}u-k,0\}$$

• We have

$$\mathsf{v}\in \mathsf{W}^{\sigma,1}(\Omega')$$

iff
$$v \in L^1(\Omega')$$
 and

$$[v]_{\sigma,1;\Omega'} = \int_{\Omega'} \int_{\Omega'} \frac{|v(x) - v(y)|}{|x - y|^{n + \sigma}} \, dx \, dy < \infty$$

For solutions to

div
$$a(Du) = \mu$$
 in general $Du \notin W^{1,1}$

but nevertheless it holds

Theorem (Min., Ann. SNS Pisa 07)

 $Du \in W^{1-arepsilon,1}_{\mathsf{loc}}(\Omega,\mathbb{R}^n)$ for every $arepsilon\in(0,1)$

This means that

$$[Du]_{1-\varepsilon,1;\Omega'} = \int_{\Omega'} \int_{\Omega'} \frac{|Du(x) - Du(y)|}{|x - y|^{n+1-\varepsilon}} \, dx \, dy < \infty$$

holds for every $arepsilon \in (0,1)$, and every subdomain $\Omega' \Subset \Omega$

Theorem (Min., JEMS 11)

Let

$$w = D_{\xi} u \quad \textit{with} \quad - \operatorname{div} a(Du) = \mu$$

where $\xi \in \{1, \ldots, n\}$ then

$$[(|w|-k)_+]_{\sigma,1;B_{R/2}} \leq \frac{c}{R^{\sigma}} \int_{B_R} (|w|-k)_+ dy + \frac{cR|\mu|(B_R)}{R^{\sigma}}$$

holds for every $\sigma < 1/2$

Theorem (Min., JEMS 11)

Let

$$w = D_{\xi}u$$
 with $-\operatorname{div} a(Du) = \mu$

where $\xi \in \{1, \ldots, n\}$ then

$$[(|w|-k)_+]_{\sigma,1;B_{R/2}} \leq rac{c}{R^\sigma} \int_{B_R} (|w|-k)_+ \, dy + rac{cR|\mu|(B_R)}{R^\sigma}$$

holds for every $\sigma < 1/2$

Compare with the usual one for div a(Du) = 0, that is

$$[(w-k)_+]_{1,2;B_{R/2}}^2 \equiv \int_{B_{R/2}} |D(w-k)_+|^2 \, dy \leq \frac{c}{R^2} \int_{B_R} (w-k)_+^2 \, dy$$

Step 1: A non-local Caccioppoli inequality

- This approach reveal the robustness of energy inequalities, which hold below the natural growth exponent 2, and for fractional order of differentiability, although the equation has integer order
- Classical VS fractional

classical fractional

spaces
$$L^2 - L^2 \quad L^1 - L^1$$

differentiability $0 \longrightarrow 1 \quad 0 \longrightarrow \sigma$

Theorem (Min., JEMS 11)

Let w be an L^1 -function w satisfying the fractional Caccioppoli's inequality

$$[(|w|-k)_+]_{\sigma,1;B_{R/2}} \leq rac{L}{R^{\sigma}} \int_{B_R} (|w|-k)_+ \, dy + rac{LR|\mu|(B_R)}{R^{\sigma}}$$

for some $\sigma > 0$ and every $k \ge 0$. Then it holds that

$$|w(x)| \le c \mathbf{I}_1^{|\mu|}(x,R) + c \int_{B(x,R)} |w| \, dy$$

for every Lebesgue point x of w

Theorem (Min., JEMS 11)

Let w be an L^1 -function w satisfying the fractional Caccioppoli's inequality

$$[(|w|-k)_+]_{\sigma,1;B_{R/2}} \leq rac{L}{R^{\sigma}} \int_{B_R} (|w|-k)_+ \, dy + rac{LR|\mu|(B_R)}{R^{\sigma}}$$

for some $\sigma > 0$ and every $k \ge 0$. Then it holds that

$$|w(x)| \leq c \mathbf{I}_1^{|\mu|}(x,R) + c \oint_{B(x,R)} |w| \, dy$$

for every Lebesgue point x of w

Proof of the gradient potential estimate: apply the previous result to $w \equiv D_{\xi}u$