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Laplace operator

∆u = ux1x1 + . . .+ uxnxn = uνν + uν div(ν)

where ν(x) = − ∇u(x)
|∇u(x)| is direction of steepest descent. In fact,

div(ν) = − ∆u

|∇u| +
uxi uxj uxixj

|∇u|3 = − ∆u

|∇u| +
uνν
|∇u|

so that ∆u = uνν − |∇u| div(ν) = uνν + uν div(ν) or

∆u = uνν + uν (n − 1)H

with H denoting mean curvature of a level set of u.

For radial u recall ∆u = urr + n−1
r ur .

Bernd Kawohl

Variations on the p–Laplacian



p-harmonic functions −∆pu = 1 overdetermined problems open problems

For p ∈ (1,∞) one can write the p-Laplace operator as

∆pu = div
(
|∇u|p−2∇u

)
= |∇u|p−2[∆u + (p − 2)uνν ]

= |∇u|p−2[(p − 1)uνν + (n − 1)Huν ]

and the normalized or game-theoretic p-Laplace operator as

∆N
p u = 1

p |∇u|2−pdiv
(
|∇u|p−2∇u

)

= p−1
p uνν + 1

p (n − 1)Huν = p−1
p ∆N

∞u + 1
p ∆N

1 u .

Observe ∆N
∞u = uνν , ∆N

2 u = 1
2 ∆u and ∆N

1 u = |∇u|div( ∇u
|∇u|).
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p-harmonic functions
Given Ω ⊂ Rn bounded, ∂Ω of class C 2,α and g(x) ∈W 1,p(Ω)

−∆pu = 0 in Ω, (1)

u(x) = g(x) on ∂Ω. (2)

u can be charactzerized as the unique (weak) solution of the
strictly convex variational problem

Minimize Ip(v) = ||∇v ||Lp(Ω) on g(x) + W 1,p
0 (Ω), (3)

so that
∫

Ω
|∇u|p−2∇u∇φ dx = 0 for every φ ∈W 1,p

0 (Ω). (4)

It is well known, that weak solutions are locally of class C 1,α. They
are even of class C∞ wherever their gradient does not vanish.
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One can show (Juutinen, Lindqvist, Manfredi 2001) that weak
solutions are also viscosity solutions of the associated Euler
equation

Fp(Du,D2u) = −|Du|p−4
(
|Du|2traceD2u + 〈D2uDu,Du〉

)
= 0

Incidentally, only for p ∈ (1, 2) does this imply that they are also
viscosity solutions of the normalized equation

FN
p (Du,D2u) = −1

p
traceD2u − p − 2

p

〈D2uDu,Du〉
|Du|2 = 0
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What happens as p →∞? For g ∈W 1,∞(Ω) the family up is
uniformly bounded in W 1,p because Ip(up) ≤ Ip(g) ≤ ||∇g ||∞|Ω|.
Wolog |Ω| := 1. For q > n fixed and p > q one finds

||∇up||q ≤ ||∇up||p |Ω|(p−q)/pq ≤ ||∇g ||∞|Ω|1+1/q+1 as p →∞ ,

so up → u∞ in some Cα.

By the stability theorem for viscosity solutions u∞ should be
viscosity solution to a limit equation F∞(Du,D2u) = 0.

What is this equation? Let us check the condition for subsolutions.
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Let ϕ be a C 2 testfunction s.th. ϕ− u∞ has a min at x∞ and
∇ϕ(x∞) 6= 0. Then wolog ϕ− up has a min at xp near x∞ and
xp → x∞ as p →∞. Since up is viscosity subsolution

−|Dϕ|p−4
[
|Dϕ|2∆ϕ+ (p − 2)〈D2ϕDϕ,Dϕ〉

]
(xp) ≤ 0,

or

−p − 2

p
〈D2ϕDϕ,Dϕ〉(xp) ≤ 1

p
|Dϕ|2∆ϕ(xp).

p →∞ gives 〈D2ϕDϕ,Dϕ〉(x∞) := −∆∞ϕ ≤ 0.

. . . Thus u∞ is (unique) viscosity solution of −∆∞u = 0 in Ω,
u = g on ∂Ω.
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It is worth noting that the variational problem

Minimize I∞(v) = ||∇v ||L∞(Ω) on g(x) + W 1,∞
0 (Ω), (5)

can have many solutions,

e.g. the minimum of two cones (not C 1) or u∞ ∈ C 1,α (Savin).

Kawohl, Shagholian 2005
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What happens to p-harmonic functions as p → 1? I. g. no uniform
convergence, but Juutinen (2005) found sufficient conditions:

If g ∈ C (Ω) and Ω convex, then up → u1 uniformly as p → 1.
Moreover, u1 is unique minimizer of

E1(v) = sup

{∫

Ω
u divσdx ; σ ∈ C∞0 (Ω,Rn), |σ(x)| ≤ 1 in Ω

}

on {v ∈ BV (Ω) ∩ C (Ω), v = g on ∂Ω}.

Here the limiting variational problem has a unique solution, while
the limiting Euler equation can have many viscosity solutions.
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Heuristic reason for uniqueness of minimizer of the TV-functional:

If there are two minimizers u and v (for simplicity in W 1,1(Ω)) of
E1, then any convex combination w = tu + (1− t)v would also be
minimizer,
hence level lines of u are also level lines of v , ∇u||∇v , v = f (u).

Dirichlet cond. implies f (g) = g , so that f = Id on range∂Ω(g).

But since min∂Ω g ≤ u, v ≤ max∂Ω g in Ω we find f (u) = u in Ω.
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Nonuniqueness of viscosity solutions to the Dirichlet problem

−∆1u = 0 in Ω, u = g on ∂Ω.

Sternberg, Ziemer (1994) gave counterexample: Ω = B(0, 1) ∈ R2,
g(x1, x2) = cos(2ϕ) has a whole family uλ of viscosity solutions,
λ ∈ [−1, 1], but only u0 minimizes E1. In fact,

uλ(x1, x2) =





2x2
1 − 1 left and right of rectangle

λ in the rectangle generated by cos(2ϕ) = λ

1− 2x2
2 on top and bottom

is viscosity sol. of both −∆1u = 0 and −∆N
1 u = κ|∇u| = 0 in Ω.
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Prof. Dr. B. Kawohl SS 2009
J. Horák, PhD

Entartete partielle Differentialgleichungen

1. Übung

23. April 2009

Aufgabe 1:
Sei B die Einheitskreisscheibe. Für λ ∈ [−1, 1] wird eine Funktion uλ : B → R mit
folgenden Eigenschaften definiert:

(a) Auf dem Rand ∂B gilt

uλ(1, ϕ) = cos 2ϕ =: ψ(ϕ) für ϕ ∈ [0, 2π) ,

wobei hier uλ(r, ϕ) die Darstellung der Funktion uλ in Polarkoordinaten ist.

(b) Die Niveaulinien von uλ sehen entsprechend der linken Abbildung aus.

−1

−1

11

λ

ϕλ

uλ

Diese Funktion löst formell das Randwertproblem

∆1u = 0 in B,

u = ψ auf ∂B.

Geben Sie uλ explizit an und berechnen Sie

f(λ) :=

∫

B

|∇uλ| dx.

1

(level) plot of uλ

Bernd Kawohl

Variations on the p–Laplacian



p-harmonic functions −∆pu = 1 overdetermined problems open problems

definition of viscosity solutions for discontinuous F

u is a viscosity solution of F (Du,D2u) = 0, iff sub- and supersol.

u is subsol. if for every x ∈ Ω and ϕ ∈ C 2 s.th. ϕ− u has min at
x the ineq. F∗(Dϕ,D

2ϕ) ≤ 0 holds. Here F∗ = lsc hull of F .

u is supersol. if for every x ∈ Ω and ϕ ∈ C 2 s.th. ϕ− u has max
at x the ineq. F ∗(Dϕ,D2ϕ) ≥ 0 holds. Here F ∗ = usc hull of F .

FN
p (q,X ) =

{
− 1

p

(
δij + (p − 1)

qiqj

|q|2

)
Xij if q 6= 0

? if q = 0
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Symm. matrix X has eigenvalues λ1(X ) ≤ λ2(X ) ≤ . . . ≤ λn(X )

FN
p ∗(0,X ) =

{
− 1

p

∑n−1
i=1 λi − p−1

p λn if p ∈ [2,∞]

− 1
p

∑n
i=2 λi − p−1

p λ1 if p ∈ [1, 2]

FN
p
∗
(0,X ) =

{
− 1

p

∑n
i=2 λi − p−1

p λ1 if p ∈ [2,∞]

− 1
p

∑n−1
i=1 λi − p−1

p λn if p ∈ [1, 2]

In particular, for n = 2, FN
1 ∗(0,X ) = −λ2 and FN

1
∗
(0,X ) = −λ1,

so that we require −λ2(D2ϕ) ≤ 0 for subsols. if ∇ϕ(x) = 0
and −λ1(D2ϕ) ≥ 0 for supersols. if ∇ϕ(x) = 0
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−∆pu = 1

The Dirichlet problem −∆pup = 1 in Ω, up = 0 on ∂Ω can be
treated in a similar way. Again surprises as p →∞ or 1.

lim
p→∞

up(x) = d(x , ∂Ω) (Kawohl 1990)

and the limiting deq and bvp is |Du| = 1 in Ω, u = 0 on ∂Ω
(Bhattacharya, DiBenedetto, Manfredi 1991)

It has a unique viscosity solution, but many distributional solutions.

lim
p→1

up(x) =





0 if Ω is small

discontinuous if Ω is inbetween

+∞ if Ω is large
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Why this strange behaviour as p → 1?

The limiting equation −∆1u = 1 reads (n − 1)H = 1 or H = 1
n−1

in intrinsic coordinates.

Level surfaces satisfying this curvature condition in Ω are
boundaries of so-called Cheeger sets.

A set CΩ is a Cheeger set of Ω if it infimizes |∂D|/|D| among all
smooth subsets of Ω, . . . this would be an extra talk.
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−∆N
p u = 1

What about −∆N
p up = 1 in Ω, up = 0 on ∂Ω?

For p ∈ (1,∞] there exists a unique viscosity solution (Lu Wang
2008), details in the published version of this talk.

For p =∞ the equation reads −uνν = 1 in Ω,
and for p = 1 it is |∇u|(n − 1)H = 1 in Ω.

They are degenerate elliptic in the sense of viscosity solutions.
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Serrin and Weinberger

proved in 1971 that the following overdet. bvp cannot have a
solution in a smooth simply connected domain unless Ω is a ball.

−∆u = 1 in Ω,

u = 0 and − ∂u

∂ν
= a = const. on ∂Ω.

Physical interpretation: Laminar flow in a noncircular pipe cannot
have constant shear stress on the wall of the pipe.
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Serrin’s proof uses the moving plane method and applies to positive
classical solutions of autonomous strongly elliptic equations

−
n∑

i ,j=1

aij(u, |∇u|)uxixj = f (u, |∇u|),

while Weinberger’s proof is given only for −∆u = 1 and uses both
variational methods and (other) maximum principles.

Does the proof at least extend to −∆pu = 1?

Yes (Farina Kawohl 2008)

Bernd Kawohl

Variations on the p–Laplacian



p-harmonic functions −∆pu = 1 overdetermined problems open problems

Serrin’s proof uses the moving plane method and applies to positive
classical solutions of autonomous strongly elliptic equations

−
n∑

i ,j=1

aij(u, |∇u|)uxixj = f (u, |∇u|),

while Weinberger’s proof is given only for −∆u = 1 and uses both
variational methods and (other) maximum principles.

Does the proof at least extend to −∆pu = 1?
Yes (Farina Kawohl 2008)

Bernd Kawohl

Variations on the p–Laplacian



p-harmonic functions −∆pu = 1 overdetermined problems open problems

1) P(x) := 2(p−1)
p |∇u(x)|p + 2

nu(x) attains max. over Ω on ∂Ω,

and thus P(x) ≤ 2(p−1)
p ap =: c in Ω.

2) Show that
∫

Ω P(x)dx = c |Ω|, then P(x) ≡ c on Ω.

3) Show that P ≡ c in Ω implies radial symmetry.

Caution with 1) and 2):

1) u 6∈ C 3, so −∆P + . . . ≤ 0 is problematic. Regularize

2) u 6∈ C 2, so classical Pohožaev identities need adjustments
to C 1-functions by Degiovanni, Musesti, Squassina (2003).
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Proof that P ≡ c in Ω:

Testing −∆pu = 1 with u gives
∫

Ω |∇u|pdx =
∫

Ω udx (1)

test with (x ,∇u): −
∫

Ω ∆pu(x ,∇u) =
∫

Ω(x ,∇u) = −n
∫

Ω u (2)

lhs of (2)=
∫

Ω |∇u|p−2∇u∇(x ,∇u)−
∫
∂Ω ap−2uν(x ,∇u)

=
∫

Ω |∇u|p−2
[
|∇u|2 + (x ,∇( |∇u|2

2 ))
]
−
∫
∂Ω ap(x , ν)

=
∫

Ω |∇u|p + (x ,∇( |∇u|p
p ))dx − ap n |Ω|

=
∫

Ω |∇u|p − n |∇u|p
p dx +

∫
∂Ω

ap

p (x , ν)ds − ap n |Ω|
=
∫

Ω n
[

1
n |∇u|p − |∇u|p

p

]
dx − p−1

p ap n |Ω|

now 2
n (2) =

∫
Ω

2
n |∇u|p − 2

p |∇u|pdx − c |Ω| = −2
∫

Ω u

so by (1):
∫

Ω
2
nu + 2(p−1)

p |∇u|pdx = c |Ω| (=
∫

Ω P(x)dx)
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P ≡ c in Ω implies symmetry:

a) If ∂Ω ∈ C 2,α, thenPν = 0 on ∂Ω implies H = 1
na1−p, because

Pν = 2(p−1)|uν |p−2uνuνν+
2

n
uν =

[
(p − 1)|uν |p−2uνν +

1

n

]
2uν = 0

and ∆pu = −1 = (p − 1)|uν |p−2uνν + (n − 1)H|uν |p−2uν imply
H = 1

na1−p on ∂Ω. Done.

b) If ∂Ω is not smooth, consider Γ = {x | u(x) = ε}.
u ∈ C 1,β(Ω) & uν = −a on ∂Ω imply ∇u 6= 0 and u ∈ C 2,β near
Γ.

Thus Γ ∈ C 2,α and Pν = 0 on Γ, i.e.
[
(p − 1)|uν |p−2uνν + 1

n

]
= 0

Now we get −1− (n − 1)H|uν |p−1 + 1
n = 0 or H = h(|uν |) on Γ.

But since P ≡ c , |∇u| = g(u) and H = h(g(ε)) = const. on Γ.
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There is also an anisotropic version of the Serrin/Weinberger result

Theorem (A. Cianchi & P. Salani, Dec 2008) Suppose that H is a
norm with a strictly convex unit ball and that u is a minimizer of

∫

Ω

(
1
2H(∇v)2 − v

)
dx in W 1,2

0 (Ω), and H(∇u) = a on ∂Ω.

Then Ω is a ball in the dual norm H0 to H of suitable radius r and

u(x) =
r2 − H0(x)2

2n
.

The proof of Cianchi and Salani uses entirely different methods.
Independently, in May 2009 Guofang Wang and Chao Xia gave
another proof that follows our method.
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What about −∆N
p up = 1 in Ω, up = 0 AND |∇u| = a on ∂Ω?

For p = 1 we look at

|∇u|(n − 1)H = 1 in Ω, |∇u| = a and u = 0 on ∂Ω.

So a C 2 solution on a smooth domain satisfies H ≡ 1/(a(n − 1))
on ∂Ω. Apply Alexandrov to see that Ω = ball of radius (n − 1)a.

For p =∞ the overdetermined bvp.

−uνν = 1 in Ω, |∇u| = a and u = 0 on ∂Ω

can have C 1 viscosity solutions on special (non-ball) domains, e.g.
stadium domains. Buttazzo Kawohl 2011
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open problems

For fixed p ∈ (1,∞) consider the second eigenfunction

∆pu2 + λ2|u2|p−2u2 = 0 in Ω, u = 0 on ∂Ω.

It changes sign, it has two nodal domains,
it can be characterized as a mountain pass going from u1 to −u1.
(Cuesta, de Figuereido, Gossez 1999)
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For p ∈ (1,∞) and Ω ⊂ R2 the eigenfunction u2 has a nodal line.

Conjectures:

a) For Ω a disk, the nodal line is a diameter.

b) For Ω a square the nodal line is diagonal if p ∈ (2,∞)
and horizontal or vertical if p ∈ (1, 2).

Conjectures a) and b) hold for p = 1 (Enea Parini 2009), p = 2,
and p =∞ (Juutinen & Lindqvist 2005). Moreover, they are
supported for general p by numerical evidence of Jǐŕı Horák (2009).
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Ω a disk, p = 1.1, courtesy of J. Horák
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Ω a square, p = 5, courtesy of J. Horák
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Ω a square, p = 1.1, courtesy of J. Horák
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