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Spectral optimization

How to design
your favourite drum



We deal with the optimization problem
min{F(Q) L Q eA(D)}

where D is a given bounded domain of R¢
and A(D) is a class of admissible choices
made of subsets of D.

Typical examples are:

F(Q2) = CD()\(Q)) where A(£2) is the spec-
trum of the Dirichlet Laplacian in €2 and
® : RN — [0,400] is a given function; for
instance

F(2) = A\ ().



F(Q) = /Dj(CU,’U,Q) dx where j is a given in-

tegrand and ug is the solution in H}(Q2) of
—Au = f; for instance
j(z,u) = —a(z)uP.

In both cases a very natural choice for ad-
missible domains is
A(D) = {Q C D, Q2 quasi-open, |2] < m}.

Some good sources for results and problems...
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One issue we intend to develop is the study
of gradient flow evolutions for shape opti-
mization problems, via minimizing movements.

The framework is a metric space (space of
shapes) and a functional F : X — [0, 4o];
via the Euler scheme of time step ¢ and
initial condition ug € X we may construct
a step function us(t) = w([t/e]) by setting
w(0) = ug and

2 UV, w(Nn
w(n + 1) € argmin {.7—"(1))—|—d ( 725( ))}

The gradient flow u(t) is then a limit of a
sequence wug, wWith ¢, — 0.



In spectral optimization we take a suitable
distance on the space of shapes and

F(Q) = CD()\(Q)).

The goal is to study existence and properties
of spectral flows Q2(¢). At this stage the only
available results are obtained for debonding
problems, where mushy regions may appear
during the evolution.

D.Bucur, G.Buttazzo: J. Convex Anal. 2008
D.Bucur, G.Buttazzo, A.Lux: Arch. Ratio-
nal Mech. Anal. 2008.

From now on we restrict to static shape op-
timization problems.



In general one cannot expect the existence
of a solution; for instance, the problem

min{/D|u—c|2d:c . —Au=11n H&(Q)}

has no solution if ¢ is small, and one has
to deal with relaxed solutions that in this
case are capacitary mesures u, i.e. Borel
countably additive set functions with values
in [0, 4+o00] and such that

w(E) = 0 whenever cap(F) = 0.



On the other hand, adding some geomet-
rical constraint to the admissible domains,
gives extra compactness that provides the
existence of a solution in a very large num-
ber of situation. For instance:

e T he class Aconver Of COnvex sets contained
in D.

e The class Ay,ifcone Of domains satisfying
a uniform exterior cone property.

e The class Ay, fiat cone OF domains satis-
fying a uniform flat cone condition, i.e., as
above, but with the weaker requirement that
the cone may be flat, that is of dimension
d— 1.



e The class A,y gensity OF domains satisfying
a uniform capacity density condition.

e The class A, fWwiener Of dOomains satisfy-
ing a uniform Wiener condition.

Aconvex C Aunz f cone C Aunz f flat cone
C Acap density C -Aunz f Wiener
e Another interesting class, which is only
of topological type and is not contained in
any of the previous ones, is (for d = 2) the
class of domains for which the number of
connected components of D\ €2 is uniformly
bounded (Sverak 1993).
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A powerful result which applies in the sit-
uations when no geometric constraints are
imposed(Buttazzo-Dal Maso 1993):

Theorem Assume that

1. F'is decreasing for the set inclusion;

2. Fis l.s.c. for the v-convergence.

Then the minimum problem

min {F(Q) 2] <m, 2 C D quasi open}
admits at least a solution £2,,;.
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Example 1. Take F(Q) = q>(,\(s2)) with &
|.s.c. and increasing in each of its variables;
then the assumptions are verified. For in-
stance we may take F(2) = \.(€2).

For Kk = 1 (and large D) the best domain is
a ball of volume m (Faber-Krahn 1923);

For k = 2 (and large D) the best domain is
the union of two disjoint balls of volume m/2
(Polya-Szego 1955).
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Here is a numerical computation of optimal
shapes for k =3 — 10 (Oudet)

k best array of balls best shape

3 O 46.125 O 46.125
4 O O 64.293 O O 64.293
5 O OO 82.462 C:j 78.47
6 OO 92.250 ® 88.96
7 O OO 110.42 OQ 107.47
8 O 127.88 Q 119.9
9 OOO 138.37 {:3 133.52
10 O 154.62 Q 143.45
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Very little is known on regularity of optimal
domains; apart the case of Ay the proof that
they are actually open sets is still missing.

For spectral optimization problems that do
not fulfill the decreasing property of theorem
above, the case of

min {CD(Al,)\Q) Q< m, QC D}

IS interesting. Indeed, if D is large enough, it

is possible to prove (Bucur-Buttazzo-Figueiredo
1999) that the existence of an optimal do-
main always occur, i.e. for every (continu-
ous) function &.
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Here is the plot of the set E of points of R?
that are of the form (Al(Q), /\Q(Q)) for some
Q C D with |2] < m (Keller-Wolf 1994).

A A \
s(By)
By~
|
Ag(Bg) |~ ——:—— s(B3)
- I
| [
[
! [
| I
1 [
| [
| I
: [
0 M(B1)  M(By) = A2(By) Al

15



Optimal partitions

We look for a partition €21, ..., of £2 which
Minimizes a cost of the form
F(21,...,92nN)

among all partitions of 2 (volume constraints
|€2;] = m; can be added). The cost F could
be very general, for instance

F(Q1,...,Qn) = ¢(Ak1(91),...,AkN(QN)).

General existence theorem
Bucur-B.-Henrot Adv. Math. Sci. Appl. '98
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Relaxation
B., Timofte Adv. Math. Sci. Appl. '02

Regularity for A\1(21) + --- + X1(2xy)
Caffarelli, Lin J. Sci. Comp. '06

Other variants (manifolds, nonlinear, ...)
Conti, Terracini, Verzini JFA '03, Calc.VVar '05
Helffer, Hoffmann-Ostenhof Preprint

Conjecture: dim=2, optimal partitions for
A(27) 4+ -+ X1(2)) approach as N — oo

a regular exagonal tiling.
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Replacing the volume constraint |Q2] < m by
a perimeter constraint Per(2) < L provides
interesting variants to the spectral optimiza-
tion problem (Bucur-B.-Henrot '09, Van den
Berg-Iversen '09). Note that spectral func-
tional are in general not l.s.c. for the L1
convergence.

Theorem Assume that F is as above (de-
creasing and ~-l.s.c.). Then the minimum
problem

min {F(Q)  Per(Q) <L, QC D}.
admits at least a solution £2,,;.
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For F(2) = M () and D = R4 we have:

e in the case d = 2 (2, is convex, of class
C°°, its boundary does not contain any seg-
ment, does not contain any arc of circle,
contains exactly two points where the cur-
vature vanishes.

e In the case d > 3 (24, IS not convex, is
connected, regularity of £2,, is not known
(even not if it is an open set).
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e A similar problem has been studied by Athana-
sopoulos, Caffarelli, Kenig, Salsa (CPAM 2001):

min {E(Q) + Per(Q2) : QC D}
where E(£2) is the Dirichlet energy

v =0 on D\Q}

— mi 2 .
E(Q)_mln{/D|Dv| dr : v =g on dD

e numerical plot of ., for d = 2 (courtesy
of E. Oudet).
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We consider now Cheeger-like rescaled shape
optimization problems

min {M(Q)J(Q) . QC D}
where M (L2) is a scaling factor and J(£2) a
shape functional. The coercivity condition

M(Ig|2r§1_>o M(Q)J(Q) = oo

IS assumed, which means that the scaling is

“above” the scaling invariance, as it happens
in the Cheeger problem where

M() =Per(2), J(Q)=|Q"% a>1-1/d
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Theorem (B.-Wagner) If M and J are non-
negative, fulfill the coercivity condition above
and

e J is v-lI.s.c. and decreasing for inclusion;

e M is wvy-l.s.cC..

the minimum problem above has a solution.

Examples
o QN (), a<?2/d

—1
o [Q(C() T, a<1+2
where C(L2) i%the compliance functional [ fuq dz
o (Per() M(Q), a<2/(d-1);

° (Per(Q))a<C(Q))_l, a <14+ 2
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Note that Per(2) is not a w~-l.s.c. and the
existence proof requires some extra devices.

Necessary conditions of optimality can be
found; for instance in the case of \Q\“(C(Q))_l
if €2 is an optimal domain in D and u is the
corresponding solution:

Vul? = O‘C|(Q§|2) on 92 N D (free boundary);

C()
€2

Vul? > « on 9Q2NAD (common bound.).

For instance if D has a corner the optimal
domain €2 cannot fill the entire D.
24



To finish, a challenging open question. Con-
sider the problem

min {C(Q)A%(Q) . QC D}
where o is above the scaling invariance 1 +
d/2. Thanks to a result of Kohler-Jobin the

minimum of C(2)AITY2(Q) is reached by a
ball, and so when a > 14 d/2 the coercivity
condition

ylim M@)I(9) = oo

is fulfilled, taking
M(Q2) =C(2) and J(2) = A, (€2).
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However, the other conditions are not ful-
filled; in particular C'(£2) is not w~-l.s.c. and,
even if strongly expected, the existence of an
optimal domain is still missing.

Once the existence of an optimal domain is
established, the subsequent step would be
the regularity of the free boundary and the
necessary conditions of optimality.
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