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Spectral optimization

=

How to design
your favourite drum
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We deal with the optimization problem

min
{
F (Ω) : Ω ∈ A(D)

}
where D is a given bounded domain of Rd

and A(D) is a class of admissible choices
made of subsets of D.

Typical examples are:

F (Ω) = Φ
(
λ(Ω)

)
where λ(Ω) is the spec-

trum of the Dirichlet Laplacian in Ω and
Φ : RN → [0,+∞] is a given function; for
instance

F (Ω) = λk(Ω).
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F (Ω) =
∫
D
j(x, uΩ) dx where j is a given in-

tegrand and uΩ is the solution in H1
0(Ω) of

−∆u = f ; for instance

j(x, u) = −a(x)up.

In both cases a very natural choice for ad-

missible domains is

A(D) =
{

Ω ⊂ D, Ω quasi-open, |Ω| ≤ m
}

.

Some good sources for results and problems...
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The study of shape optimization problems encompasses a wide spectrum of
academic research with numerous applications to the real world. In this
work these problems are treated from both the classical and modern
perspectives and target a broad audience of graduate students in pure and
applied mathematics, as well as engineers requiring a solid mathematical
basis for the solution of practical problems.

Key topics and features:

• Presents foundational introduction to shape optimization theory

• Studies certain classical problems: the isoperimetric problem and the  
Newton problem involving the best aerodynamical shape, and              
optimization problems over classes of convex domains

• Treats optimal control problems under a general scheme, giving a     
topological framework, a survey of γ-convergence, and problems          
governed by ODE

• Examines shape optimization problems with Dirichlet and Neumann 
conditions on the free boundary, along with the existence of classical 
solutions

• Studies optimization problems for obstacles and eigenvalues of elliptic 
operators

• Poses several open problems for further research

• Substantial bibliography and index

Driven by good examples and illustrations and requiring only a standard
knowledge in the calculus of variations, differential equations, and
functional analysis, the book can serve as a text for a graduate course in
computational methods of optimal design and optimization, as well as an
excellent reference for applied mathematicians addressing functional shape
optimization problems.
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One issue we intend to develop is the study
of gradient flow evolutions for shape opti-
mization problems, via minimizing movements.

The framework is a metric space (space of
shapes) and a functional F : X → [0,+∞];
via the Euler scheme of time step ε and
initial condition u0 ∈ X we may construct
a step function uε(t) = w([t/ε]) by setting
w(0) = u0 and

w(n+ 1) ∈ argmin
{
F(v) +

d2
(
v, w(n)

)
2ε

}
.

The gradient flow u(t) is then a limit of a
sequence uεn with εn → 0.
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In spectral optimization we take a suitable
distance on the space of shapes and

F(Ω) = Φ
(
λ(Ω)

)
.

The goal is to study existence and properties
of spectral flows Ω(t). At this stage the only
available results are obtained for debonding
problems, where mushy regions may appear
during the evolution.

D.Bucur, G.Buttazzo: J. Convex Anal. 2008
D.Bucur, G.Buttazzo, A.Lux: Arch. Ratio-
nal Mech. Anal. 2008.

From now on we restrict to static shape op-
timization problems.
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In general one cannot expect the existence

of a solution; for instance, the problem

min
{ ∫

D
|u− c|2 dx : −∆u = 1 in H1

0(Ω)
}

has no solution if c is small, and one has

to deal with relaxed solutions that in this

case are capacitary mesures µ, i.e. Borel

countably additive set functions with values

in [0,+∞] and such that

µ(E) = 0 whenever cap(E) = 0.
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On the other hand, adding some geomet-
rical constraint to the admissible domains,
gives extra compactness that provides the
existence of a solution in a very large num-
ber of situation. For instance:
• The class Aconvex of convex sets contained
in D.
• The class Aunif cone of domains satisfying
a uniform exterior cone property.
• The class Aunif flat cone of domains satis-
fying a uniform flat cone condition, i.e., as
above, but with the weaker requirement that
the cone may be flat, that is of dimension
d− 1.
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• The class Acap density of domains satisfying

a uniform capacity density condition.

• The class Aunif Wiener of domains satisfy-

ing a uniform Wiener condition.

Aconvex ⊂ Aunif cone ⊂ Aunif flat cone
⊂ Acap density ⊂ Aunif Wiener

• Another interesting class, which is only

of topological type and is not contained in

any of the previous ones, is (for d = 2) the

class of domains for which the number of

connected components of D \Ω is uniformly

bounded (Sverák 1993).
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A powerful result which applies in the sit-

uations when no geometric constraints are

imposed(Buttazzo-Dal Maso 1993):

Theorem Assume that

1. F is decreasing for the set inclusion;

2. F is l.s.c. for the γ-convergence.

Then the minimum problem

min
{
F (Ω) : |Ω| ≤ m, Ω ⊂ D quasi open

}
admits at least a solution Ωopt.
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Example 1. Take F (Ω) = Φ
(
λ(Ω)

)
with Φ

l.s.c. and increasing in each of its variables;

then the assumptions are verified. For in-

stance we may take F (Ω) = λk(Ω).

For k = 1 (and large D) the best domain is

a ball of volume m (Faber-Krahn 1923);

For k = 2 (and large D) the best domain is

the union of two disjoint balls of volume m/2

(Pólya-Szegö 1955).
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Here is a numerical computation of optimal
shapes for k = 3− 10 (Oudet)

k best array of balls best shape

12/03/09 12:20Eigenvalues

Page 1 of 1http://www.lama.univ-savoie.fr/~oudet/index.php?page=Galerie/../Eigenvalues/eigenvalues&lang=fr

Minimisation des modes propres

d'une membrane par rapport au

domaine
 

Le tableau ci-dessous présente les formes obtenues numériquement par une
méthode mixte de type level set/ relaxation lors de la minimisation des premiers
modes propres (k=3 à 10) d'une membrane à bord fixe (condition au bord de  type
Dirichlet) d'aire fixée (pour plus de détails voir  Numerical minimization of
eigenmodes of a membrane with respect to the domain ainsi que Minimizing the
second eigenvalue of the Laplace operator with Dirichlet boundary conditions).
On compare ces résultats  aux valeurs obtenues par Wolf et Keller en se
restreignant à des réunions de disques dans l'article :

Wolf, Sven Andreas(1-STF); Keller, Joseph B.(1-STF) 
Range of the first two eigenvalues of the Laplacian. (English. English summary) 
Proc. Roy. Soc. London Ser. A 447 (1994), no. 1930, 397--412. 
35P15 (58G25)
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Very little is known on regularity of optimal
domains; apart the case of λ1 the proof that
they are actually open sets is still missing.

For spectral optimization problems that do
not fulfill the decreasing property of theorem
above, the case of

min
{

Φ(λ1, λ2) : |Ω| ≤ m, Ω ⊂ D
}

is interesting. Indeed, if D is large enough, it
is possible to prove (Bucur-Buttazzo-Figueiredo
1999) that the existence of an optimal do-
main always occur, i.e. for every (continu-
ous) function Φ.
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Here is the plot of the set E of points of R2

that are of the form
(
λ1(Ω), λ2(Ω)

)
for some

Ω ⊂ D with |Ω| ≤ m (Keller-Wolf 1994).
6.4 The first two eigenvalues 155

Figure 6.1. The set E for N = 2 and c = 1.

Theorem 6.4.1 The set E is closed in R2.

The proof of the theorem above is based on the following lemma.

Lemma 6.4.2 If the set E is convex on the vertical and horizontal directions, then
E is closed in R2.

Proof Consider (x, y) ∈ Ē . There exists a sequence of sets (An)n∈N ⊆ Ac(B)

such that s(An) → (x, y). From the weak γ -compactness of the set Ac(B), for a
subsequence still denoted by the same indices we can write An → A in the weak
γ -sense. Then A ∈ Ac(B) and since the eigenvalues of the Laplacian are weakly
γ -lower semicontinuous we get

λ1(A) ≤ liminf
n→∞

λ1(An) = x and λ2(A) ≤ liminf
n→∞

λ2(An) = y.

From the vertical convexity of E , the vertical segment joining s(A) with the half
line {ts(B1) : t ≥ 1} is contained in E . If y < λ2(B1) we can find the point
(λ1(A), y) on this segment and using now the horizontal convexity, the segment
joining (λ1(A), y) to {ts(B2) : t ≥ 1} is in E . But this segment contains the point
(x, y) since λ1(A) ≤ x .

If y ≥ λ2(B1), then the horizontal convexity gives directly (x, y) ∈ E .

Following Lemma 6.4.2 it suffices to prove the convexity of E on vertical and
horizontal directions. For this purpose, we split the proof in two steps:
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Optimal partitions

We look for a partition Ω1, . . . ,ΩN of Ω which
minimizes a cost of the form

F (Ω1, . . . ,ΩN)

among all partitions of Ω (volume constraints
|Ωi| = mi can be added). The cost F could
be very general, for instance

F (Ω1, . . . ,ΩN) = Φ
(
λk1

(Ω1), . . . , λkN(ΩN)
)
.

General existence theorem
Bucur-B.-Henrot Adv. Math. Sci. Appl. ’98
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Relaxation
B., Timofte Adv. Math. Sci. Appl. ’02

Regularity for λ1(Ω1) + · · ·+ λ1(ΩN)
Caffarelli, Lin J. Sci. Comp. ’06

Other variants (manifolds, nonlinear, . . . )
Conti, Terracini, Verzini JFA ’03, Calc.Var ’05
Helffer, Hoffmann-Ostenhof Preprint

Conjecture: dim=2, optimal partitions for
λ1(Ω1) + · · ·+ λ1(ΩN) approach as N → ∞
a regular exagonal tiling.
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Replacing the volume constraint |Ω| ≤ m by

a perimeter constraint Per(Ω) ≤ L provides

interesting variants to the spectral optimiza-

tion problem (Bucur-B.-Henrot ’09, Van den

Berg-Iversen ’09). Note that spectral func-

tional are in general not l.s.c. for the L1

convergence.

Theorem Assume that F is as above (de-

creasing and γ-l.s.c.). Then the minimum

problem

min
{
F (Ω) : Per(Ω) ≤ L, Ω ⊂ D

}
.

admits at least a solution Ωopt.
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For F (Ω) = λ2(Ω) and D = Rd we have:

• in the case d = 2 Ωopt is convex, of class

C∞, its boundary does not contain any seg-

ment, does not contain any arc of circle,

contains exactly two points where the cur-

vature vanishes.

• In the case d ≥ 3 Ωopt is not convex, is

connected, regularity of Ωopt is not known

(even not if it is an open set).
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• A similar problem has been studied by Athana-

sopoulos, Caffarelli, Kenig, Salsa (CPAM 2001):

min
{
E(Ω) + Per(Ω) : Ω ⊂ D

}
where E(Ω) is the Dirichlet energy

E(Ω) = min
{ ∫

D
|Dv|2 dx :

v = 0 on D \Ω
v = g on ∂D

}
.

• numerical plot of Ωopt for d = 2 (courtesy

of E. Oudet).
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We consider now Cheeger-like rescaled shape

optimization problems

min
{
M(Ω)J(Ω) : Ω ⊂ D

}
where M(Ω) is a scaling factor and J(Ω) a

shape functional. The coercivity condition

lim
M(Ω)→0

M(Ω)J(Ω) = +∞

is assumed, which means that the scaling is

“above” the scaling invariance, as it happens

in the Cheeger problem where

M(Ω) = Per(Ω), J(Ω) = |Ω|−α, α > 1−1/d.
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Theorem (B.-Wagner) If M and J are non-
negative, fulfill the coercivity condition above
and
• J is γ-l.s.c. and decreasing for inclusion;
• M is wγ-l.s.c..
the minimum problem above has a solution.

Examples
• |Ω|αλk(Ω), α < 2/d

• |Ω|α
(
C(Ω)

)−1
, α < 1 + 2

d
where C(Ω) is the compliance functional

∫
Ω fuΩ dx

•
(

Per(Ω)
)α
λk(Ω), α < 2/(d− 1);

•
(

Per(Ω)
)α(

C(Ω)
)−1

, α < 1 + 2
d−1.
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Note that Per(Ω) is not a wγ-l.s.c. and the

existence proof requires some extra devices.

Necessary conditions of optimality can be

found; for instance in the case of |Ω|α
(
C(Ω)

)−1

if Ω is an optimal domain in D and u is the

corresponding solution:

|∇u|2 = αC(Ω)
|Ω| on ∂Ω ∩D (free boundary);

|∇u|2 ≥ αC(Ω)
|Ω| on ∂Ω∩∂D (common bound.).

For instance if D has a corner the optimal

domain Ω cannot fill the entire D.
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To finish, a challenging open question. Con-
sider the problem

min
{
C(Ω)λαk(Ω) : Ω ⊂ D

}
where α is above the scaling invariance 1 +
d/2. Thanks to a result of Kohler-Jobin the

minimum of C(Ω)λ
1+d/2
1 (Ω) is reached by a

ball, and so when α > 1 + d/2 the coercivity
condition

lim
M(Ω)→0

M(Ω)J(Ω) = +∞

is fulfilled, taking

M(Ω) = C(Ω) and J(Ω) = λαk(Ω).
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However, the other conditions are not ful-

filled; in particular C(Ω) is not wγ-l.s.c. and,

even if strongly expected, the existence of an

optimal domain is still missing.

Once the existence of an optimal domain is

established, the subsequent step would be

the regularity of the free boundary and the

necessary conditions of optimality.
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