Regularity results for optimal patterns in the branched transportation problem

Alessio Brancolini Joint works with Prof. Solimini

Politecnico di Bari

Optimization Days, Ancona, June 6-8th, 2011

Alessio Brancolini Regularity results in the branched transportation problem

Branched transportation problems

- Many natural systems show a distinctive tree-shaped structure: plants, trees, drainage networks, root systems, bronchial and cardiovascular systems.
- These systems could be described in terms of mass transportation, but Monge-Kantorovich theory turns out to be the wrong mathematical model since the mass is carried from the initial to the final point on a straight line.

Branched transportation problems

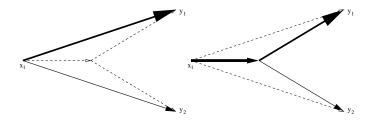
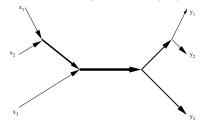


Figure: V-shaped versus Y-shaped transport.

The functional (discrete case)

- $\Omega \subset \mathbb{R}^N$ compact, convex;
- μ⁺ = Σ^m_{i=1} a_iδ_{x_i}, μ⁻ = Σⁿ_{j=1} b_jδ_{y_j} convex combinations of Dirac masses;
- *G* weighted directed graph; spt μ^+ , spt $\mu^- \subseteq V(G)$;
- the mass flows from the initial measure μ⁺ to the final measure μ⁻ "inside" the edges of the graph *G*.



The functional (discrete case)

• The point is now to provide to each transport path *G* a suitable cost that makes keeping the mass together cheaper. The right cost function is

$$J_{\alpha}(G) := \sum_{e \in E(G)} [m(e)]^{\alpha} l(e),$$

l(e) length of edge e, $0 \le \alpha < 1$ fixed;

 this cost takes advantage of the subadditivity of the function t → t^α in order to make the tree-shaped graphs cheaper.

The functional (continuous case)

• *e* (oriented edge) $\mapsto \mu_e = (\mathcal{H}^1_{|_e})\hat{e}$ (vector measure);

•
$$G \mapsto T_G = \sum_{e \in E(G)} m(e) \mu_e;$$

- div $T_G = \mu^+ \mu^-$ sums up all conditions;
- a general irrigation pattern is defined by density and the cost as a lower semicontinuous envelope:

$$J_{\alpha}(T) = \inf_{T_{G_i} \to T} \liminf_{i \to +\infty} J_{\alpha}(T_{G_i}).$$

The Irrigation Problem

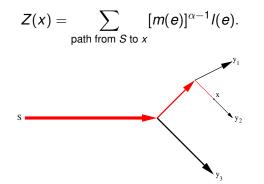
Problem (Irrigation problem)

- μ^+ , μ^- probability measures on \mathbb{R}^N ;
- minimize J_α(G) among irrigation patterns G such that div G = μ⁺ − μ[−].

A pattern minimizing J_{α} is the best branched structure between the source μ^+ and the irrigated measure μ^- .

The landscape function

 $\mu^+ = \delta_{\mathcal{S}}.$ For optimal graphs the landscape function Z is given by

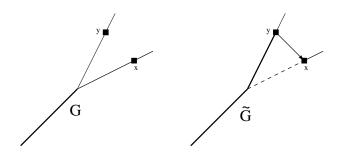


The landscape function can be defined also in the continuous setting.

Why to consider the landscape function?

- In a discrete form, the landscape function was already introduced in geophysics and is related to the problem of erosion and landscape equilibrium;
- the landscape function is related to first order variations of the functional *J*_α;
- the Hölder regularity of landscape function is related to the decay of the mass on the paths of the graph.

First order variations

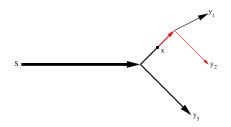


Theorem (First order gain formula)

The pattern G satisfies

$$J_{lpha}(ilde{G}) - J_{lpha}(G) \leq lpha \textit{m}(\textit{Z}(\textit{y}) - \textit{Z}(\textit{x})) + \textit{m}^{lpha}|\textit{x} - \textit{y}|.$$

Mass decay on the graph



Theorem (Mass decay)

Suppose that G is optimal. If Z is Hölder continuous of exponent β , then the mass decay is exponent is $(1 - \beta)/(1 - \alpha)$:

$$m(x)\gtrsim l(x)^{\frac{1-\beta}{1-\alpha}},$$

and vice versa.

Hölder continuity when the irrigated measure is LAR

Definition

A measure μ is lower Ahlfors regular in dimension *h* if there exist $r_0 > 0$ and $c_A > 0$ such that:

 $\mu(B_r(x)) \ge c_A r^h$ for all $x \in \operatorname{spt} \mu$ and $0 < r < r_0$.

Theorem

Suppose that the irrigated measure is LAR in dimension h. Then, the landscape function Z is Hölder with exponent $\beta = 1 + h(\alpha - 1)$.

Some example shows that the landscape regularity may be better and may depend on the source of irrigation.

Best estimate on the Hölder exponent

Definition

A measure μ is upper Ahlfors regular in dimension *h* if there exists $C_A > 0$ such that:

$$\mu(B_r(x)) \leq C_A r^h$$
 for all $r > 0$.

Theorem

Suppose that the irrigated measure is UAR above in dimension h and the landscape function Z is Hölder with exponent β . Then, $\beta \leq 1 + h(\alpha - 1)$.

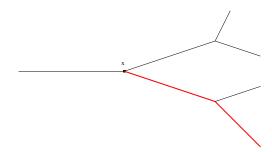
If the irrigated measure is Ahlfors regular in dimension *h* (both LAR and UAR), the best Hölder exponent is $1 + h(\alpha - 1)$.

Main branches from a point

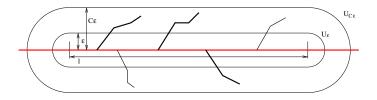
In the next the irrigated measure will always be *Ahlfors regular* in dimension *h*.

Definition (Main branches from a point *x*)

A main branch starting from a point x is the branch maximizing the residual length.

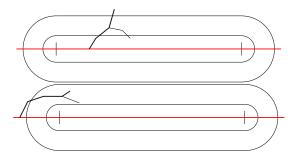


Fractal regularity



- N = number of branches bifurcating of residual length between ε and Cε.
- mass carried by one of such branches $\gtrsim \varepsilon^h$,
- mass of the tubolar neighbourhood of radius $C\varepsilon \sim I\varepsilon^{h-1}$,
- mass balance: $\varepsilon^h N \lesssim I \varepsilon^{h-1}$,
- $N \lesssim \frac{1}{\varepsilon}$.

Fractal regularity



It can be proved that for small ε and a suitable choice of *C* the measure irrigated by "long branches" and by "far away branches" is a fraction of the measure of $U_{C\varepsilon} \setminus U_{\varepsilon}$. Then, we also have

$$N \gtrsim \frac{I}{\varepsilon}$$

Bibliography

A. Brancolini, S. Solimini. On the Hölder regularity of the landscape function. To appear on IFBj.

A. Brancolini, S. Solimini.
Fractal regularity results on optimal patterns.
In preparation.

F. Santambrogio.

Optimal channel networks, landscape function and branched transport.

IFBj (9), 2007.