Continuity of Solutions for a problem in the Calculus of Variations

Pierre Bousquet

June 2011, Ancona

A basic problem in the Calculus of Variations

$$
\begin{aligned}
\text { To minimize } & u \mapsto \int_{\Omega} L(\nabla u(x)) d x \\
& u_{\mid \partial \Omega}=\varphi
\end{aligned}
$$

Standing Assumptions

- $\Omega \subset \mathbb{R}^{n}$ bounded open set
- $\varphi: \partial \Omega \rightarrow \mathbb{R}$ continuous
- $L: \mathbb{R}^{n} \rightarrow \mathbb{R}$ strictly convex and superlinear

The regularity problem

- Is the solution smooth in Ω ?
- Is the solution continuous on $\bar{\Omega}$?

A basic example

$$
\text { To minimize } \begin{aligned}
& \longmapsto \int_{\Omega}|\nabla u(x)|^{2} d x \\
u_{\mid \partial \Omega} & =\varphi
\end{aligned}
$$

Regularity properties

- u is analytic on Ω
- u is continuous at any regular point
$\gamma \in \partial \Omega$

De Giorgi’s Theorem

Theorem

Assume

- $L \in C^{2}, \nabla^{2} L>0$
- the solution u is locally Lipschitz in Ω

Then u is locally $C^{1, \alpha}$ in Ω
The partial derivatives of u satisfy an elliptic equation of the form

$$
\operatorname{div}(A(x) \nabla v)=0 \quad A(x)=\nabla L(\nabla u(x))
$$

By Schauder's Theory

- L smooth $\Longrightarrow u$ smooth

By Bernstein's Theorem

- L analytic $\Longrightarrow u$ analytic

A counterexample (Giaquinta, Marcellini)

A nice Lagrangian...

$$
L(\xi)=\xi_{1}^{2}+\cdots+\xi_{n-1}^{2}+\frac{1}{2} \xi_{n}^{4}
$$

...a singular minimum

$$
u\left(x_{1}, \ldots, x_{n}\right)=c_{n} \frac{x_{n}^{2}}{\sqrt{\sum_{i=1}^{n-1} x_{i}^{2}}}
$$

Two open problems

- u locally bounded $\Longrightarrow u$ continuous ?
$-\varphi$ continuous $\Longrightarrow u$ continuous ?

Lipschitz regularity on uniformly convex sets

Theorem (Miranda)

Assume

- Ω uniformly convex ($=$ enclosing sphere condition)
- φ is C^{2}

Then $u \in W^{1, \infty}(\Omega)$

Theorem (Clarke)

Assume

- Ω uniformly convex
- φ is semiconvex

Then $u \in W_{l o c}^{1, \infty}(\Omega) \cap C^{0}(\bar{\Omega})$
Counterexample to global Lipschitzness

$$
\Omega=B(0,1) \subset \mathbb{R}^{2} \quad, \quad L(\xi)=|\xi|^{2} \quad, \quad \varphi(x, y)=|y|
$$

The bounded slope condition

Lipschitz regularity on convex sets

```
Theorem (Miranda)
Assume
- \(\Omega\) convex
- \(\varphi\) bounded slope condition
Then \(u \in W^{1, \infty}(\Omega)\)
```


Theorem (Clarke)

Assume

- Ω convex
- φ lower bounded slope condition

Then $u \in W_{\text {loc }}^{1, \infty}(\Omega)$

A Lipschitz continuity result on a non convex domain

```
Theorem (Cellina)
Assume
    - \Omega exterior sphere condition
    - L(\xi)=l(|\xi|)
    - \varphi constant on each connected components of }\partial
Then }u\in\mp@subsup{W}{}{1,\infty}(\Omega
```


Continuity up to the boundary

Theorem (B.)

Assume that φ is continuous and one of the following

- Ω convex
- Ω smooth and $L(\xi)=l(|\xi|)$

Then u is continuous

Theorem (Mariconda-Treu)

Assume

- Ω convex
- φ Lipschitz continuous
- L coercive of order $p>1$

Then u is Hölder continuous (of order $\frac{p-1}{n+p-1}$)

A maximum principle: the Rado-Haar Lemma

Let $x, y \in \Omega$ and $\tau:=x-y$. Compare the minimum u with

$$
\tau=x-y
$$

An estimate on the modulus of continuity

$$
|u(x)-u(y)| \leq \sup _{\substack{x^{\prime} \in \Omega, y^{\prime} \in \partial \Omega \\\left|x^{\prime}-y^{\prime}\right| \leq|x-y|}}\left|u\left(x^{\prime}\right)-\varphi\left(y^{\prime}\right)\right|
$$

Lower and upper barriers

```
Definition
\(v: \Omega \rightarrow \mathbb{R}\) is an upper barrier at \(\gamma \in \partial \Omega\) if
- \(v \in W^{1,1}(\Omega) \cap C^{0}(\bar{\Omega})\)
- \(v(\gamma)=\varphi(\gamma)\)
- \(v \geq u\) a.e. on \(\Omega\)
```

Example: concave functions

Rado Haar Lemma + barriers \Longrightarrow continuity on $\bar{\Omega}$

Implicit barriers and continuity I

Lemma

Assume

- Ω convex
- φ Lipschitz continuous

Then u continuous

Proof: Let u be the solution of the original problem and $\gamma \in \partial \Omega$.
$1^{\text {st }}$ step prove that u is continuous at γ when Ω is a cube
$2^{\text {nd }}$ step an auxiliary variational problem
$\left(P_{0}\right) \quad$ To minimize $\quad v \mapsto \int_{\Omega_{0}} L(\nabla v), v_{\mid \partial \Omega_{0}}=\varphi_{0}$

Implicit barriers and continuity II

$$
\varphi_{0}(x)=\varphi(\gamma)+K_{\varphi}|x-\gamma| \geq \varphi(x)
$$

- φ_{0} convex $\Longrightarrow \varphi_{0}$ lower barrier for $\left(P_{0}\right)$
- the solution u_{0} for $\left(P_{0}\right) \geq \varphi_{0} \geq \varphi$
- u_{0} is an implicit upper barrier at $\gamma: u_{0} \geq u$ on Ω

More general Lagrangians

To minimize

$$
\begin{aligned}
& u \mapsto \int_{\Omega}(L(\nabla u(x))+G(x, u(x))) d x \\
& u_{\mid \partial \Omega}=\varphi
\end{aligned}
$$

Standing Assumptions

- L uniformly convex: $\exists \alpha>0$ s.t. $\forall \theta \in(0,1), \quad \xi, \xi^{\prime} \in \mathbb{R}^{n}$

$$
\theta L(\xi)+(1-\theta) L\left(\xi^{\prime}\right)-L\left(\theta \xi+(1-\theta) \xi^{\prime}\right) \geq \alpha\left|\xi-\xi^{\prime}\right|^{2}
$$

- G measurable in x and locally Lipschitz in u

Lipschitz continuity results

Theorem (Stampacchia, B.-Clarke)

Assume that Ω is convex and u is bounded. Then

- φ satisfies the bounded slope condition $\quad \Longrightarrow \quad u \in W^{1, \infty}(\Omega)$
- φ satisfies the lower bounded slope condition \Longrightarrow $u \in W_{\text {loc }}^{1, \infty}(\Omega) \cap C^{0}(\bar{\Omega})$

Continuity results

Theorem (B.)

Assume that Ω is smooth, $L(\xi)=l(|\xi|)$ and u is bounded. Then

- φ continuous $\Longrightarrow \quad u \in C^{0}(\bar{\Omega})$
- φ Lipschitz continuous $\Longrightarrow u \in C^{0, \frac{1}{n+1}}(\bar{\Omega})$

A final counterexample

(Esposito-Leonetti-Mingione,
 Fonseca-Malý-Mingione)

To minimize

$$
\begin{aligned}
& \text { minimize } \left.\quad u \mapsto \int_{\Omega}|\nabla u(x)|^{p}+a(x)|\nabla u(x)|^{q}\right) d x \\
& \qquad 1<p<n<n+1<q<+\infty \\
& \Omega=\text { a cube }, \quad a \in C^{1}, \quad a \geq 0, \quad \varphi \text { linear }
\end{aligned}
$$

The set of non-Lebesgue points of the solution has (almost) dimension $N-p$!

A final open problem : What about autonomous Lagrangians?

