Continuity of Solutions for a problem in the Calculus of Variations

Pierre Bousquet

June 2011, Ancona

A basic problem in the Calculus of Variations

To minimize
$$u \mapsto \int_{\Omega} L(\nabla u(x)) \, dx$$

 $u_{|\partial\Omega} = \varphi$

Standing Assumptions

- $\blacktriangleright \ \Omega \subset \mathbb{R}^n$ bounded open set
- $\blacktriangleright \varphi: \partial \Omega \to \mathbb{R} \text{ continuous}$
- $L: \mathbb{R}^n \to \mathbb{R}$ strictly convex and superlinear

The regularity problem

- Is the solution smooth in Ω ?
- Is the solution continuous on $\overline{\Omega}$?

To minimize $u \mapsto \int_{\Omega} |\nabla u(x)|^2 dx$

 $u_{|\partial\Omega}=\varphi$

Regularity properties

- u is analytic on Ω
- u is continuous at any regular point $\gamma \in \partial \Omega$

Theorem

Assume

 $\blacktriangleright \ L \in C^2, \ \nabla^2 L > 0$

• the solution u is locally Lipschitz in Ω Then u is locally $C^{1,\alpha}$ in Ω

The partial derivatives of u satisfy an elliptic equation of the form

div
$$(A(x)\nabla v) = 0$$
 $A(x) = \nabla L(\nabla u(x))$

By Schauder's Theory

- $\blacktriangleright L \text{ smooth } \implies u \text{ smooth}$
- By Bernstein's Theorem
 - L analytic $\implies u$ analytic

A counterexample (Giaquinta, Marcellini)

A nice Lagrangian...

$$L(\xi) = \xi_1^2 + \dots + \xi_{n-1}^2 + \frac{1}{2}\xi_n^4$$

...a singular minimum

$$u(x_1,...,x_n) = c_n \frac{x_n^2}{\sqrt{\sum_{i=1}^{n-1} x_i^2}}$$

Two open problems

- u locally bounded $\implies u$ continuous ?
- $\blacktriangleright \varphi$ continuous $\implies u$ continuous ?

Lipschitz regularity on uniformly convex sets

Theorem (Miranda)

Assume

- Ω uniformly convex (= enclosing sphere condition)
- $\blacktriangleright \varphi$ is C^2

Then $u \in W^{1,\infty}(\Omega)$

Theorem (Clarke)

Assume

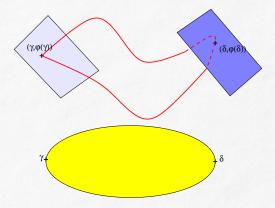
- $\blacktriangleright \Omega$ uniformly convex
- $\blacktriangleright \varphi$ is semiconvex

Then $u \in W^{1,\infty}_{loc}(\Omega) \cap C^0(\overline{\Omega})$

Counterexample to global Lipschitzness

$$\Omega = B(0,1) \subset \mathbb{R}^2 \quad , \quad L(\xi) = |\xi|^2 \quad , \quad \varphi(x,y) = |y|$$

The bounded slope condition



Lipschitz regularity on convex sets

Theorem (Miranda)

Assume

- $\blacktriangleright \Omega$ convex
- φ bounded slope condition Then $u \in W^{1,\infty}(\Omega)$

Theorem (Clarke)

Assume

 $\blacktriangleright \ \Omega \ convex$

• φ lower bounded slope condition Then $u \in W^{1,\infty}_{loc}(\Omega)$

A Lipschitz continuity result on a non convex domain

Theorem (Cellina)

Assume

- $\blacktriangleright \ \Omega \ exterior \ sphere \ condition$
- $\blacktriangleright \ L(\xi) = l(|\xi|)$

 $\blacktriangleright \varphi$ constant on each connected components of $\partial \Omega$

Then $u \in W^{1,\infty}(\Omega)$

Theorem (B.)

Assume that φ is continuous and one of the following

- $\blacktriangleright \Omega$ convex
- Ω smooth and $L(\xi) = l(|\xi|)$

Then u is continuous

Theorem (Mariconda-Treu)

Assume

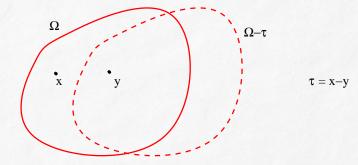
- $\blacktriangleright \Omega$ convex
- $\blacktriangleright \varphi$ Lipschitz continuous
- L coercive of order p > 1

Then u is Hölder continuous (of order $\frac{p-1}{n+p-1}$)

A maximum principle: the Rado-Haar Lemma

Let $x, y \in \Omega$ and $\tau := x - y$. Compare the minimum u with

 $u_{\tau}(x) := u(x+\tau)$



An estimate on the modulus of continuity

$$|u(x) - u(y)| \le \sup_{\substack{x' \in \Omega, y' \in \partial \Omega \\ |x' - y'| \le |x - y|}} |u(x') - \varphi(y')|$$

Definition

 $v:\Omega \to \mathbb{R}$ is an upper barrier at $\gamma \in \partial \Omega$ if

- $\blacktriangleright v \in W^{1,1}(\Omega) \cap C^0(\overline{\Omega})$
- $\blacktriangleright \ v(\gamma) = \varphi(\gamma)$
- $\blacktriangleright \ v \geq u \ a.e. \ on \ \Omega$

Example: concave functions

Rado Haar Lemma + barriers \implies continuity on $\overline{\Omega}$

Implicit barriers and continuity I

Lemma

Assume

- $\blacktriangleright \Omega$ convex
- $\blacktriangleright \varphi$ Lipschitz continuous

 $Then \ u \ continuous$

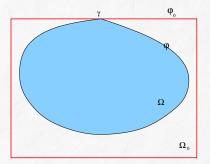
Proof: Let u be the solution of the original problem and $\gamma \in \partial \Omega$.

1st step prove that u is continuous at γ when Ω is a cube

 2^{nd} step an auxiliary variational problem

$$(P_0)$$
 To minimize $v \mapsto \int_{\Omega_0} L(\nabla v) , v_{|\partial\Omega_0} = \varphi_0$

Implicit barriers and continuity II



 $\varphi_0(x) = \varphi(\gamma) + K_{\varphi}|x - \gamma| \ge \varphi(x)$

- φ_0 convex $\implies \varphi_0$ lower barrier for (P_0)
- the solution u_0 for $(P_0) \ge \varphi_0 \ge \varphi$
- u_0 is an implicit upper barrier at $\gamma: u_0 \ge u$ on Ω

To minimize
$$u \mapsto \int_{\Omega} \left(L(\nabla u(x)) + G(x, u(x)) \right) dx$$

 $u_{|\partial\Omega} = \varphi$

Standing Assumptions

► L uniformly convex: $\exists \alpha > 0$ s.t. $\forall \ \theta \in (0,1), \quad \xi, \ \xi' \in \mathbb{R}^n$

 $\theta L(\xi) + (1-\theta)L(\xi') - L(\theta\xi + (1-\theta)\xi') \ge \alpha |\xi - \xi'|^2$

• G measurable in x and locally Lipschitz in u

Theorem (Stampacchia, B.-Clarke)

Assume that Ω is convex and u is bounded. Then

 $\blacktriangleright \ \varphi \ satisfies \ the \ bounded \ slope \ condition \quad \Longrightarrow \quad$

$$u \in W^{1,\infty}(\Omega)$$

• φ satisfies the lower bounded slope condition $u \in W^{1,\infty}_{loc}(\Omega) \cap C^0(\overline{\Omega})$

Theorem (B.)

Assume that Ω is smooth, $L(\xi) = l(|\xi|)$ and u is bounded. Then

- $\blacktriangleright \ \varphi \ continuous \quad \Longrightarrow \quad u \in C^0(\overline{\Omega})$
- φ Lipschitz continuous $\implies u \in C^{0, \frac{1}{n+1}}(\overline{\Omega})$

A final counterexample (Esposito-Leonetti-Mingione, Fonseca-Malý-Mingione)

To minimize $u \mapsto \int_{\Omega} |\nabla u(x)|^p + a(x) |\nabla u(x)|^q dx$ 1 $<math>\Omega = a$ cube, $a \in C^1$, $a \ge 0$, φ linear

The set of non-Lebesgue points of the solution has (almost) dimension $N-p\,!$

A final open problem : What about autonomous Lagrangians?