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Some remarks on the classical Ambrosetti-
Rabinowitz theorem are presented. In
particular, it 1is observed that the
geometry of the mountain pass, if the
function 1s bounded from below, 1is
equivalent to the existence of at least two
local minima, while, when the function is
unbounded from below, it is equivalent to
the existence of at least one local
minimum.
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So, the Ambrosetti-Rabinowitz theorem
actually ensures three or two distinct
critical points, according to the function is
bounded from below or not.
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HISTORICAL NOTES

Let X be a real Banach space, I : X — IR a continuously
Gateaur differentiable function which verifies (PS).
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THE AMBROSETTI-RABINOWITZ THEOREM

Assume that

(G) there are up,uy € X and r € IR, with
0 <r < ||[uy —ugl|, such that

inf  I(u) > max{/(up), I(uy)}.

lu—uo||=r |

Then, I admits a critical value ¢ characterized by

= 1t max [(~(t
¢ = Il max (v(1))

where

['={yeC(0,1].X) : v(0) = up: v(1) = uy }.
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[ THE PUCCI-SERRIN THEOREM

(G") there are ug,u; € X and r, R € IR, with
0 <r < R<||luy —up|l, such that

inf  I(u) > max{I(ug). I(uy)}.

r<||lu—up||<R :

Corollary. If I admits two local minima, then [

admits a third critical point.
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THE GHOUSSOUB-PREISS THEOREM

(MG) there are ug,uy € X and r € IR, with
0 <r < ||luy —ugl|, such that

inf  I(u) > max{/l(uy).I(uy)}.

lu—uol|=r |
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eorem. Let X be a real Banach space, I : X — IR a
continuously Gateaux differentiable function which verifies

(PS) and it 15 bounded from below. Then, the following

assertions are equivalent:

(MG) there are ug,uy € X and r € R,
with 0 < r < ||uy — ug||, such that

inf  [(u) > max{I(ugy). [(uy)};

lu—uo||=r |

(L) I admats at least two distinct local minima.
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So, the Ambrosetti-Rabinowitz theorem,
when the function 1s bounded from below
actually ensures three distinct -critical
points.

In fact, in this case the mountain pass
geometry implies the existence of two local
mimima and the Pucci-Serrin theorem
ensures the third critical point.
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In a similar way it is possible to see that,

when the function is unbounded from
below, the mountain pass geometry 1is

equivalent to the existence of at least one
local minimum.

In order to apply the Ambrosetti-
Rabinowitz theorem, it is important to
establish the existence of a local minimum
which 1s not a strict global minimum.
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THE TONELLI-WEIERSTRASS THEOREM

The existence of a global minimum can
be obtained owing to the -classical
theorem of direct methods in the
variational calculus where the key
assumptions are the sequential weak
lower semicontinuity and the coercivity.
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Here, the version for differentiable
functions 1s recalled.

Let X be a real Banach space, 1 - X — IR a

continuously Gateaux differentiable function

which verifies (PS) and it is bounded from

below. Then, it admits a global minimum.
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A LOCAL MINIMUM THEOREM

Our aim is to present a local minimum
theorem for functions of the type:

O-¥
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An existence theorem of a local
minimum for continuously Gateaux
differentiable = functions, possibly
unbounded from below, is presented.

The approach is based on Ekeland’s
Variational Principle applied to a non-
smooth variational framework by using
also a novel type of Palais-Smale
condition which is more general than
the classical one.
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PALAIS-SMALE CONDITION

Let X be a real Banach space, we say
that a Gateaux differentiable function

I:X—R

verifies the Palais-Smale condition (in
short (PS)-condition) if any sequence

{un} such that
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() {I(u,,)} is bounded,

(B) Lim || 1" (u,)|[x+ =0,

n—r+00
has a convergent subsequence.

Let X be a real Banach space and let
d: X—>R,V:X— Rtwo Gateaux
differentiable functions. PutI = ® - V.
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Fixri, r2 €[—o;+x], with r1 < rz, we say

that the function I verifies the Palais-

Smale condition cut off lower at r1 and

upper at rz (in short "(PS)2condition) if
any sequence {un} such that

() {I(u,,)} is bounded,

(3) lim || (un)|

n—r+00

X* — O:
() < O(u,) <1y Vn € N,
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has a convergent subsequence.

Clearly, if r1 = —» and r2 = + it coincides
with the classical (PS)-condition.
Moreover, if r1 = —x and r2 € R we denote
it by (PS)l ) while ifr1 ERandrz = +
we denote it by "(PS).
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In particular,

If | = ® — U satisfies (PS)-condition,
then it satisfies ["!/(PS)["2l-condition
for all ri,ry € [—00, +00] With | < ro.
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Proposition. Let X be a reflexive real Banach space; ¢ : X — R
be o sequentially weakly lower semicontinuous, coercive and
continuously Gateaur differentiable function whose Gateaua
derivative admits a continuous inverse on X*, V: X — R be

o continuously Gateauz differentiable function whose Gateauz
deriative 1s compact.

Then, for all 11,9 € |~00, +00|, with ry <19, the functional

O - satisfies the [‘"1]! PS)2.-condition.
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To prove the local minimum theorem we
use the theory for Ilocally Lipschitz
functionals investigated by K.C. Chang,
which i1s based on the Nonsmooth Analysis
by F.H. Clarke, and generalizes the study

on the variational inequalities as given by
A, Szulkin .
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Here, by using the nonsmooth theory we
| obtain results for smooth functions.

Arguing in a classical way of the smooth

analysis (as, for instance, Ghossoub),

but using the definitions and properties of

the non-smooth analysis (as, for

instance, Motreanu-Radulescu, the following

consequence of the Ekeland variational
Principle can be obtained.
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A CONSEQUENCE OF
THE EKELAND VARIATIONAL PRINCIPLE
IN THE NONSMOOTH ANALYSIS FRAMEWORK

Lemma. Let X be a real Banach space and [ - X — R a

locally Lipschitz function bounded from below. Then, for
all minimizing sequence of I, {u, }nen C X, there exists a
minimizing sequence of I, {v, }nen € X, such that

[(v,) < I(u,) Yn €N,
[°(vp:h) = —c,||h|| YVhe X, VneN, where s, — 0T,
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A LOCAL MINIMUM THEOREM

Let X be a real Banach space and ®, W : X — IR two
continuously Gateaux differentiable functions. Put

[ =9 —
and assume that there are ro € X and ri.r9 € IR, with
r1 < ®(xg) < 1o, such that

Sup U(u) <rg— P(xg) + VU(xp), ‘H’

ued1(]r1,r2)

sup U(u) <ry— D(xg) + U(xp). ‘E’

ued—1(]—o0,r1])
Moreover, assume that I satisfies ' (PS\["2)_condition

Then, there is ug € @~ Y(]ry.ra]) such that I(ug) < I(u)
for all u € ®~Y(|ry.1m9]) and I'(ug) = 0.
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Proof. Put
M =1y — ®(x9) + W(xg),

) W) i () < M
Wy (u) = { M it U(u) > M,

r (I)(’H-) if (b(’li-) =~ T

1 R

b (’U!-) — { 1 if (D(’U!.) < 7.
J p— (I)Tl — \I‘ﬂf

Clearly, J is locally Lipschitz and bounded
from below. Hence, Lemma and a suitable
computation ensure the conclusion.
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| TWO SPECIAL CASES

Let X be a real Banach space and &,V : X — IR two
continuously Gateaux differentiable functions with

O bounded from below. Put

and assume that there are rg € X and r € IR
with v > ®(xg) such that

sup U(u) < r—D(zy) + U(x,). AW

UE(I’_l(]_DO:TD

Moreover, assume that I qat’eﬁqﬁeq (PSS condition.
Then, there is ug € ®~ (] — oo, r[) such that

(’ug)<I’u ) for all u € ®~ 1!|—oo r|) and I'(up) = 0.
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et X be a real Banach space and &, W : X — IR two
continuously Gateaux differentiable functions. Put

[ =0 -
and assume that Jus bounded from helow and there are

r1 € X and r € IR, with r < ®(x1), such that

sup U(u) <r— &(xy) +¥(z;). AW

UE(I’_l(] _DO:T])

Moreover, assume that I satisfies ["’}| PS)-condition

Then, there is uy € ®~(]r. +o0|) such that
I(uy) < I(u) for all w € & (|r. +o0|) and I'(uy) = 0.
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A THREE CRITICAL POINTS THEOREM

From the preceding two variants
of the local minimum theorem, a
three critical points theorem 1is
obtained. Here a special case 1s
pointed out.
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A THREE CRITICAL POINTS THEOREM

Let X be a real Banach space and &,V : X — IR two
continuously Gateaux differentiable functionals with

O bounded from below. Assume that $(0) = P (0) = 0
and there are r > 0 and T € X, with r < ®(¥), such that

sup W ()

ued=1(]—o0.r]) PR YCI 3)

r (7))
Further assume that, for each
D (T) r
Ae A= .
< ] U(T) sup W(w) ["

ued—1(]—oo,r])
the functional Iy = & — AV s bounded from below and
satisfies (PS)-condition.

Then, for each A\ € A the functional I\ admaits at least
three critical points.
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NONLINEAR DIFFERENTIAL PROBLEMS

A TWO-POINT BOUNDARY VALUE PROBLEM

Consider the following two point boundary
value problem

—u" = Af(u) in 0,1]
(D)) { u(0) =u(l) =0,

where f : R — R is a continuous function
and 1s A a positive real parameter.
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Moreover, put

for all £ € R and assume, for clarity, that f
1S nonnegative.
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Theorem. Assume that

there are two positive constants ¢ and d, with ¢ < d.,
such that
(1) F(c) _ lF(d)
2 4 d?
and there are two positive constants a and s, with s < 2,
such that

@ FO<al+le) Vel

> -2
Then, for each \ € Sm: 2[;(6)

admits at least three (nonneqative) classical solutions.

, problem (D))
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TWO-POINT BOUNDARY VALUE PROBLEMS

(D,) { —(pu")" +qu = Af(x,u) in |a,b|
u(a) = u(b) =0

there exist two positive constants c,d, with c < d, such that
K00 o
[P maxgc. F(r, &)dr Jardpoa) £'@ d)dx

< K ‘
2 d?

_ 6p0
12(|p]loc + (b — a)?||q|| s

i
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Fix p>1.

— (| P72 = Nf(x,u) in Ja,b
(D) { ’u((al) |: u(b)) = 0, b

there exist two positive constants c,d, with c < d, such that

b b—%(b—a)
max F'(x,§)dx / 1 F(x,d)dr
a |{|<e Y a+z(b—a)

cP P
there exist two positive constants a,s, with s < p, such that

F(z, ) <a(l+[£]") V(&) €la,b] x R.
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NEUMANN BOUNDARY VALUE PROBLEMS

N —(pu") 4+ qu = Af(z,u) in |a,b|
(N3) { u"(i) = ’u."EZb) = 0,

MIXED BOUNDARY VALUE PROBLEMS

—(pu”) +qu = \f(x,u) in |a,b|

(M) { u(a) =u'(b) =0,
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STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS

D, () + sP,(u) = ANf(zr,u) x€la,b
(512) { mEp( )(— )3)’11( ) = El) f‘;ru’(g)) +){m(b) :[ B:]

where p > 1, ,(u) = [u[P~u, p, s € L([a,b]), with essinfy,; p > 0
and c*snnf[ﬁ?b] s>0,ABeR. a,p,v,0>0, f: [a.._b] x R — R 1s

an L'—Carathéodory function and \ is a positive real parameter.

HAMILTONIAN SYSTEMS

—u"+At)u=1b(t)VG(u) ae.inf0,T],
u(T) = u(0) =u'(T) —u'(0) = 0.
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FOURTH-ORDER ELASTIC BEAM EQUATIONS

u'V + Au" + Bu= ) f(t,u) in][0, 1],
u(0)=u(l) =0,
u"(0)=u"(1)=0,

BOUNDARY VALUE PROBLEMS ON THE HALF_LINE

—y" +m*y = \f(t,y)

y(0) =0
flim y(t) =0,
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NONLINEAR DIFFERENCE PROBLEMS

~A(y(Au(k = 1)) = Af(k, u(k)), ke[l T],
u(0) =u(T+1) =0,
where T 1s a fixed positive integer, [1,T] 1s the discrete interval {1,....T}, A 15 a positive real parameter, Au(k) =

u(k + 1) = u(k) s the forward difference operator, y(s) = sP%5 1 < p < +o0andf : [1,T) x R — Risa continuous
function.

ELLIPTIC DIRICHLET PROBLEMS
INVOLVING THE P-LAPLACIAN WITH P>N

Apu~+ Af(x,u)=0 1in Q,

u=20 on 0€2
@ - RY (N =1) is a nonempty bounded open set with
a boundary @ of class C', p>N, A>0and /:Q x R — R 1s a Carathéodory
function. 4 pu = div(|Vu|#P—*Vu)
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ELLIPTIC NEUMANN PROBLEMS
INVOLVING THE P-LAPLACIAN WITH P>N

{—&pu +a(x)|ulP?u = L (x,u) in

g—ﬁ =0 on d<2
ELLIPTIC SYSTEMS
—Ap Uy + @ ()| Py = AR, (X Uy, L Uy iD£2,
—Ap Uz + Q20| uy = AR, (X, Uy, ... Up) D22,
— Ap Ui + Gy (X)) U ™= Uy = ARy (XU, ..., lUm) in£2,

Uilag =0 (1 =<i==m),
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ELLIPTIC PROBLEMS INVOLVING THE p-LAPLACIAN WITH p<N

—Au=Af(x,u) 1in 2,
Ulgo =0,

(hq) there exist two non-negative constants ay, az and g 11, 2N /(N — 2)[ such that

|Fix.0)| < a1 +a2]t|7 1,
for every (x,t) e £2 = B
there exist two positive constants ) and 3, with 8 = x such that

infy-r Fix., & K :
1n IEELI;E (X ) T:r-ﬂj?j—k'ﬂiﬁz};q_if ‘E’

where a1, az are given in (hy) and k, K, K7 are given by

1/2
K= DV2 ( T(+N/2) ) C2y2c12N - 1)
2NAL pN _ I[ﬂﬂ}” Kq:= D3

282N — 1)
=

E;g:
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ELLIPTIC PROBLEMS INVOLVING THE p(x)-LAPLACIAN

NONLINEAR EIGENVALUE PROBLEMS
IN ORLICS-SOBOLEV SPACES

NONLINEAR ELLIPTIC PROBLEMS
ON THE SIERPI NSKI GASKET

GENERALIZED YAMABE EQUATIONS
ON RIEMANNIAN MANIFOLDS
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FURTHER APPLICATIONS OF THE
LOCAL MINIMUM THEOREM

A VARIANT OF THREE CRITICAL POINT
THEOREM FOR FUNCTIONS
UNBOUNDED FROM BELOW

If we apply two times the first special case of
the local minimum theorem and owing to a
novel version of the mountain pass theorem
where the (PS) cut off upper at r is assumed
we can give a variant of the three critical
theorem. In the applications it became
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Theorem. Assume that there are three positive constants
2
c1, d and co, with ¢ < d < gcg, such that

F(cq) _ 1 F(d) T (1) )

c% G d?
and
F(cy) 1 F(d) P (2)
2 T2 2
d? C% C%
Then. for each A\ € |12 . 1111 {2 ' ., ' [
I F(d) F(cy) F(ea)

problem (D)) admaits at least three (nonnegative) classical
solutions u;, 1 = 1.2.3, such that

111[?]3% |w; ()| < ca, 1= 1,2 3.
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INFINITELY MANY CRITICAL POINTS THEOREM

If we apply iteratively the first special
case of the local minimum theorem in a
suitable way, we obtain an infinitely
many critical points theorem. As an
example of application, here, we present
the following result.
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Theorem. Assume that

(1) lim 1nf FE) < 1lim sup F)

§—r+0o0 62 4 E—+o0 &2

3 2
lim sup F(§ ) lim inf F(§ )
&E——+o00 6 §—r+o0 ‘f

the problem (Dy) admits a sequence of pairwise
distinct positive classical solutions.

Then, for each \ € ]
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PERTURBED PROBLEMS

Previous results can be applied to perturbed problems,
obtaining for instance, results of the following type.

Theorem. Assume that there exist three positive
constants cy,co. d , with ¢ < d < F such that

f(&) >0 for each & € |0, csl;

F(c) _ F(d)
c? 6d?
F(cy)  F(d)
2 < 27
5 12d
2 2c7
Then, for every X € A :—]}:(‘;) min{ 7 oy F(C )}[ and
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for every positive continuous function g : 0,1 x R — IR,
there exists o3 , > 0 given by

2 2 )
51 = min { 23,1 /\F(Ll): (.,12 VAY }
| [y G(x,cr)dx [y G(x, co)dx

such that, for each p €]0,05% |, the problem

4

—u" = ANf(u) + pg(r,uw) in |0, 1]

u(0) =u(l) =0,

has at least three classical solutions u;. 1 = 1,2,3 such that

0 <uj(r) <co Vel i =1,2,3.

-
’
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VARIATIONAL-HEMIVARIATIONAL INEQUALITIES

In a natural way the previous results have been also
obtained in the framework of the non-smooth Analysis.
As example, here, the following problem is considered.

Let £2 be a non-empty, bounded, open subset of the Euchdian space RY N
with C'-boundary 99, let p €]N, +oc|, and let ¢ € L*°(Q) satisfy essinf,cq q(z)

Problem: Find u € K such that, for all v € K,

V@ P2 Vu(e) - ¥ (0(@) — u()dz + [ a@)lut)P2ul) o) = u()ds

+ L Aa(z)F°(u(z);v(z) — u(x))dr + o pB(x)G® (yu(z); yv(r) — yu(z))do = 0,

where K is a closed convex subset of W1P(Q)) containing the constant functions,
and a € LY(Q), B € LY(09Q), with a(z) > 0 for aa. 2 € Q, a £ 0, B(z) > 0
for a.a. = € 09, and A\, pu are real parameters, with A > 0 and u > 0. Here,
F° and GG° stand for Clarke’s generalized directional derivatives of locally Lipschitz
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_ ‘ . o

functions F,G : IR — R given by F(£) = f F(6)dt, G(€) = f g(t)dt, £ € R, with
0 0

f,g : R — IR locally essentially bounded functions, and v : W'?(Q) — LP(09)

denotes the trace operator.

A prototype of the previous problem for K = W'?(Q) is the following boundary
value problem with nonsmooth potential and nonhomogeneous, nonsmooth Neumann
boundary condition

)
|Vu|3’_9—3 € —ufB(x)0G (yu) on Of).

{ Ayu —q(z)|[uP2u € Aa(x)0F (u) in €,
7]
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Theorem. Let f : IR — IR be a non-negative, locally essentially bounded
3

function and set F(£) = / f(t) dt for all £ € R. Assume that
0
F(¢) F(¢)

‘E’ lim inf =0 and lmsu = +00.
§—+o0 52 f—}-l-:x:up {;'2
Then, for each non-negative, continuous function g : IR — IR such that
, t
o = llm M < 400,
t— o0 ;

there is a sequence of pairwise distinct functions {u,} C W22(]0, 1)

such that for all n € IN one has
—ul' () + un(x) € [ (un(x)), fT(uy(x))) for a.a. = €0, 1]
u,(0) = pg(un (0))
! (1) = —pg(un(1)

where f~(t) = lim essinf f(z) and f7(t) = Lim esssup f(z) for all t € RR.

d—0T1 |[t—z|<d d—0+ lt—z|<d
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A DIRECT APPLICATION OF THE LOCAL MINIMUM THEOREM

The local minimum theorem can be

directly applied to obtain the existence of
at least one solution.

{ —u" = Aa(x) f(u) rel0,1]
u(0) = u(l) = 0.
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Theorem. Assume that [ is nonnegative and there exist two
positive constants ¢, d, with \/2d < ¢, such that

Fl) _ /fgf alz)dz GG (1)
& \ 2| d

4 d? 2 2
Tt P Toll P
(Dy) admits at least one positive weak solution i such that

|u(x)| < ¢ for all x € [0, 1].

Then, for each X\ € , the problem

Gabriele Bonanno, University of Messina, Some remarks on the variational methods 53/60



Ancona, June 6-8, 2011

Theorem Assume that

lim %ﬂ = 400, L (1’)

t—0+

fix 6 > 0 such that f(t) > 0 for all t €]0, [, and put
9
A= —

sup

levll1 cejo,or F(c)
Then, for each X\ € |0, \*|, the problem (D, ) admits

at least one positive weak solution u such that

lu(z)| < & for all z € [0, 1].

Consider the following problem

—Ayu = Af(u) 1in 2
uw =10 on oS,

Gabriele Bonanno, University of Messina, Some remarks on the variational methods 54/60



Ancona, June 6-8, 2011

Theorem. Assume that

. F(1)
lim sup " — 400. @

t—0+

P

Then, for each A € |0, \o|, where \g = kg sup
c€]0,400[ F(C)

and

N5 (p — N)pl
k‘U — P 1 3
P [?n.(fl)r(l + %)} AP
the problem (D)) admits at least one positive weak solution.

Further, assume that f(0) # 0 and

0 < pF(t) <tf(t) m

for all |t| > r, for some r > 0 and for some 1 > p.
Then, for each A € |0, \o|, the problem (D)) admits at least
two positive weak solutions.
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