
Aubry-Mather Theory for Geometric PDEs

Abstract: Aubry-Mather theory studies minimal orbits of convex Hamilto-
nian systems. It can be considered a very weak version of KAM theory that
has the advantage of being valid also for arbitrarily large perturbations of
an integrable system. The results of Aubry-Mather theory are particularly
strong if the configuration space is two-dimensional, see e.g. [1] and [2].
Aubry-Mather theory is closely related to geometric measure theory, cf. [3],
and to the mass transportation problem, cf. [4] and [5].

The lectures will start with an introduction to the basics of Aubry-Mather
theory which will be explained for the case of geodesics of arbitrary Rie-
mannian metrics on the 2-torus and on compact orientable surfaces of genus
greater than one, cf. [6].

In 1986 Jürgen Moser laid the ground for a PDE version of Aubry-Mather
theory. In [7] he treated the problem of minimizing a Z

n+1-periodic varia-
tional integral for graphs of functions u : Rn

→ R. This led to a continuing
lively research activity with important contributions by P. Rabinowitz and
E. Stredulinsky, R. de la Llave and E. Valdinoci, U. Bessi and many others.

Here, I will present a variant of this theory valid for minimal hypersurfaces
in compact, orientable Riemannian manifolds, and its relations to geometric
measure theory, cf. the announcement [8].

In 1994 Jürgen Moser proved a KAM-type result for foliations of an almost
complex (2n)-torus by holomorphic lines, and asked if, in this situation,
there are also global (i.e. non-pertubative) results in the spirit of Aubry-
Mather theory. This turns out to be a hard problem, and I will explain the
little that is known on this question. Note that holomorphic curves in an
almost complex manifold are not characterized by a variational principle,
but rather as solutions of a first order elliptic system of Cauchy-Riemann
type.

Finally, I will address some recent rigidity results which will bring us back to
geodesics on surfaces. In general, a rigidity result characterizes a standard
variational problem within a class of variational problems by properties of
its solutions. In our case, the prototypical result is E. Hopf’s famous the-
orem that a Riemannian 2-torus is flat if all of its geodesics are minimal,
cf. [10]. This was generalized to tori of arbitrary dimensions by D. Burago
and S. Ivanov [11]. Analogous results in the world of PDEs seem to be hard
to find, see the work by M. Bialy and R.S. McKay [12]. Here, I will present
a recent rigidity theorem for complete Riemannian cylinders S1

× R all of
whose geodesics are minimal, cf. [13].
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