Corsi di Laurea in Scienze Biologiche Prova scritta di Informatica e Statistica Generale (A). 01/07/2008

COGNOME	NOME	
MATRICOLA		
	polazione statistica relativa ad una variabile adicato con \bar{X} il valore medio di X , con $p_{\bar{X}}$	
a) Se $p_1 > 1/2$ allora X_1 é un v	ralore modale.	V F
b) la varianza può essere espres	sa nella forma $\sigma_X^2 = \frac{1}{n} \sum_{i=1}^k p_i (X_i - \bar{X})^2$.	V F
c) $\sum_{i=1}^{n} x_i = n\bar{X}$.		V
	$\{x_i, y_n\} \subset \mathbb{R}$ popolazioni statistiche relative i valori medi e le deviazioni standard di X	
a) Se $\sigma_Y = 0$ allora $y_i = \bar{Y}$ per	ogni $i \in \{1, \dots, n\}$.	V F
b) Se $\sigma_Y = 1$ allora	$\sigma_X \geq \sigma_{X,Y}$ $\sigma_X < \sigma_{X,Y}$ nessuna de	lle precedenti
c) Se $\sigma_Y = 1$ allora $\bar{Y} > 0$.		V
3.) La rappresentazione in virgola mo	obile	
a) é usata per la codifica binari	a dei numeri razionali	V F
h) La Mantissa è un numero int	tero	V \overline{F}

c) L'esponente e' un numero intero

4.) In complemento a 1 su due byte il numero 1000101010000000

a) vale:

 $-(757F)_{16}$

 $-(757E)_{16}$

 $-(757D)_{16}$

altro

b) vale:

 $-(72578)_8$

 $-(72577)_8$

 $-(72570)_8$

altro

c) vale:

 $-(30080)_{10}$

 $-(30079)_{10}$

 $-(30078)_{10}$

altro

5.) a) Il numero 111111 rappresenta in complemento a 1 su 6 bit

-0 -31 altro

b) Per rappresentare il numero 63 in base 2 è necessario un numero di bit pari

4 5 6 7

c) Per rappresentare il numero -16 in complemento a 2 è necessario un numero di bit pari a

6.) Considerata la seguente mappa di Karnaugh relativa alla funzione F = F(A, B, C, D):

AB	00	01	11	10
CD				
00	1	1	1	1
01	1	0	0	1
11	0	0	0	0
10	1	1	1	1

a) F é sempre vera quando A é vera

V F

b)
$$F = \bar{B}\bar{C} + \bar{D}$$

$$V$$
 F

c)
$$\bar{F} = CD + BD$$

VF

- 7.) a) Si ha che $A + B = B + A\bar{B}$
 b) Si ha che $A \cdot (A + B) = A$
 c) Si ha che $\overline{A} + \overline{B} = A + B$ $\boxed{V} \boxed{F}$
- 8.) Definite due variabili intere N, D e considerata la seguente parte di codice:

- a) se si inseriscono i valori $N=10,\,D=3,\,$ all'uscita dell'if i valori attuali di D e N sono $N=2,\,D=2$ $N=3,\,D=1$ altro
- b) se si introduce il valore D=0 e N=1 all'uscita dell'if risulta ancora D< N . $\boxed{\mathbf{V}}$
- c) se si introducono dei valori di N e D positivi e tali che N < D all'uscita dell'if risulta sempre $\boxed{N < D \ [N > D] \ [\text{altro}]}$
- 9.) Considerata la distribuzione di probabilità $f(x) = \begin{cases} 1/4 & -1 < x < 3 \\ 0 & x \le -1 \text{ o } x \ge 3 \end{cases}$
 - a) la corrispondente speranza matematica vale

- 1 2 3 altro
- b) La corrispondente funzione di ripartizione è sempre nulla.

- V
- c) La corrispondente funzione di ripartizione ha derivata nulla per -1 < x < 3 V

- 10.) Sia X una variabile aleatoria normalmente distribuita con speranza matematica μ e deviazione standard σ .
 - a) La funzione densità di probabilità ha la forma $f(x) = \frac{1}{\sigma\sqrt{2\pi}} \mathrm{e}^{-\frac{(x-\mu)^2}{2\sigma^2}} \; .$ V
 - b) Se $\mu = 0$ e $\sigma = 1$ la relativa funzione di distribuzione, denotata con ϕ^* , assume la forma $\phi^*(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{\frac{-s^2}{2}} ds$ V F
 - c) La probabilità che X assuma valore minore o uguale a μ è uguale a 1/2. $\boxed{\mathbf{V}}$ F

Corsi di Laurea in Scienze Biologiche Prova scritta di Informatica e Statistica Generale (B). 01/07/2008

COGNOME	NOM	E			
MATRICOLA					
1.) Sia $\{x_1, x_2, \dots, x_n\} \subset \mathbb{R}$ una popolazi modalità $\{X_1, X_2, \dots, X_k\}$. Indicate c					
a) Se $p_1 > 1/2$ allora X_1 é il valore	mediano.			V	F
b) La media aritmetica può essere e	espressa nella :	forma $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$	$\sum_{i=1}^{k} p_i X_i.$	V	F
c) $\sum_{i=1}^{k} p_i = 1$.				V	F
2.) Siano $\{x_1, x_2, \dots, x_n\}$, $\{y_1, y_2, \dots, y_n\}$ X, Y . Indicate con \bar{X} , \bar{Y} , σ_X , σ_Y i value covarianza, allora	$C \subset \mathbb{R}$ popolori medi e le	azioni statisti deviazioni star	che relative al ndard di X e Y	le vari ´, con o	abili $\sigma_{X,Y}$
a) Se $y_i = \bar{Y}$ per ogni $i \in \{1, \dots, n\}$	- allora $\sigma_Y = 0$).		V	F
b) Se $\sigma_Y = 2$ allora	$\sigma_X \ge \frac{1}{2}\sigma_{X,Y}$	$\sigma_X < \frac{1}{2}\sigma_{X,Y}$	nessuna delle	preced	enti
c) Se $\bar{Y} > 0$ allora $\sigma_Y = 1$.				V	F
3.) La rappresentazione in virgola mobile					
a) usa la notazione $Scientifica: M >$	$< 2^E$			V	F
b) La mantissa (o parte frazionaria)) ha modulo se	empre minore	di uno	V	F
c) L'esponente e' solitamente rappr	esentato in co	mplemento a o	due	V	F

4.) In complemento a 1 su due byte il numero 1010101010000010

a) vale:

 $-(557F)_{16}$ $-(557E)_{16}$

 $-(557D)_{16}$

altro

b) vale:

 $-(52575)_{8}$

 $-(52576)_{8}$

 $-(52577)_{8}$

altro

c) vale:

 $-(21884)_{10}$

 $-(21885)_{10}$

 $-(21886)_{10}$

altro

5.) a) Il numero 100000 rappresenta in complemento a 2 su 6 bit

-31 -0 altro

b) Per rappresentare il numero 32 in base 2 è necessario un numero di bit pari a $\boxed{4 \, \lceil 5 \rceil \, \lceil 6 \rceil \, \lceil 7}$

c) Per rappresentare il numero -32 in complemento a 2 è necessario un numero di bit pari

6.) Considerata la seguente mappa di Karnaugh relativa alla funzione F = F(A, B, C, D):

AB	00	01	11	10
CD				
00	1	1	0	1
01	1	0	0	1
11	1	0	0	1
10	1	1	0	1

a) F é sempre vera quando B é vera

V F

b)
$$F = \bar{A}\bar{D} + \bar{B}$$

c)
$$\bar{F} = AB + DB$$

$$V$$
 F

- 7.) a) Si ha che $A + B = A + \overline{A}B$
 - b) Si ha che A + AB = A $V \mid F$
 - c) Si ha che $\overline{A}\overline{B} = AB$
- 8.) Definite due variabili intere N, D e considerata la seguente parte di codice:

- a) se si inseriscono i valori $N=1,\,D=3,\,$ all'uscita dell'if i valori attuali di D e N sono $N=3,\,D=2$ $N=3,\,D=1$ altro
- b) se si introducono i valori D=N=0 all'uscita dell'if risulta ancora D=N=0 . \fbox{V}
- c) se si introducono dei valori di N e D negativi e tali che N < D all'uscita dell'if risulta sempre $\boxed{N < D \ [N > D] \ [\text{altro}]}$
- 9.) Considerata la distribuzione di probabilità $f(x) = \begin{cases} 1/4 & 5 < x < 9 \\ 0 & x \le 5 \text{ o } x \ge 9 \end{cases}$
 - a) la corrispondente speranza matematica vale

6 7 8 altro

b) La varianza può essere calcolata tramite la formula $\sigma^2 = \int_5^9 x^2 \frac{1}{4} \, dx - 49.$

V F

 $|\mathbf{F}|$

c) La corrispondente funzione di ripartizione ha derivata nulla per -1 < x < 3 $\boxed{\mathrm{V}}$

- 10.) Sia X una variabile aleatoria normalmente distribuita con speranza matematica μ e deviazione standard σ .
 - a) Se $\mu=0$ e $\sigma=1$ la relativa funzione di distribuzione, denotata con ϕ^* , assume la forma $\phi^*(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^x \mathrm{e}^{\frac{-s^2}{2}}\,ds$ \textbf{V} \textbf{F}
 - b) Nota ϕ^* , nel caso generale $\mu \in \mathbb{R}$ e $\sigma > 0$, è possibile determinare la funzione di distribuzione $\phi_{\mu,\sigma}$ dalla formula $\phi_{\mu,\sigma}(x) = \phi^*(\frac{x-\mu}{\sigma})$ \boxed{V} \boxed{F}
 - c) La funzione densità di probabilità ha la forma

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$
 [V]