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Abstract. We investigate the persistence of front propagation for functional reaction-diffusion equa-

tions

vτ = vxx + F (v)

where F is a given operator. By combining the upper and lower solution method with fixed point

techniques, we prove a general existence theorem for traveling waves. Our result applies to reaction-

diffusion equation with delayed or non-local reaction term.
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1. Introduction

The study of the existence and qualitative properties of traveling fronts for reaction-diffusion equations
is a widely investigated field of research, due to several applications in various biological phenomena (see
e.g. [11]).

The usual Fisher-KPP equation modeling a reaction-diffusion process is

vτ = vxx + f(v), τ ≥ 0, x ∈ R

where f ∈ C1[0, 1] satisfies f(0) = f(1) = 0, f(v) > 0 in (0, 1). The study of traveling wave solutions
(t.w.s.) connecting the stationary states 0 and 1 has a great relevance in the investigation of the asymp-
totic behavior (for τ large) of a generic solution of the associated initial value problem since it is known
that in certain cases the solution evolves (in some sense) towards the t.w.s. having minimal speed (see
[7]). More in detail, a t.w.s. is a solution of the equation having a constant profile: v(τ, x) = u(x − cτ)
for some function u ∈ C2(R) (the wave profile) and constant c (the wave speed). It is well-known that
there exists a threshold value c∗ such that there exist fronts having speed c∗ if and only if c ≥ c∗ and the
stable t.w.s. corresponds to the minimal speed c∗. This value is unknown in general, but the following
estimate holds:

2
√
f ′(0) ≤ c∗ ≤ 2

√
sup

u∈(0,1]

f(u)
u

.

Of course, when f is concave, the inequalities in the previous formula are actually equalities and c∗ =
2
√
f ′(0). The research in this field has been carried out also for equations having non-constant diffusivity

or in the presence of a convective term. We refer to the monographs [11], [13], [2], [3] and references
therein contained.
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Recently, some models of non-local reaction-diffusion equations have been proposed by S.A. Gourley
(see [4]), in which the reaction term contains a convolution integral

vτ = vxx + v(τ, x)
(

1−
∫ +∞

−∞
Φ(x− y)v(τ, y) dy

)
where the kernel Φ is even, non-negative, summable in R with unitary integral (normalized). The classical
local Fisher equation (with f(v) = v(1 − v)) can be considered as a particular case, arising when the
kernel Φ is the Dirac delta function.

In this setting the non-local term has the meaning of a weighted average of the density u and models
interactions between individuals competing not only with those localized at their own point, but also
with individuals in other points of the domain. A prototype kernel is the so-called Laplace exponential
distribution

Φ(ξ) :=
b

2
e−b|ξ|, b > 0

naturally arising from the model of the consumption of resources. Note that for large values of b the
interaction is strong with close points, so the value 1

b can be considered as a measure of the non-locality
(see [4]).

To the best of our knowledge, no rigorous analysis is available for such equations. Actually, in [4] an
approximate model has been investigated from a qualitative point of view.

Another field having an increasing interest, is that of reaction-diffusion equations or systems with
time-delay, in which the reaction term also depends on v(τ − T, x). In this area several results have been
obtained, but mainly for specific forms of the reaction term (see, e.g., [1], [5], [6] and [14]). Moreover,
some of the most recent ones present some problematic aspect (see Remark 4.2).

The aim of the present paper is to propose a general unifying approach for dealing with functional
reaction-diffusion equations, including both the non-local equations and the delayed ones, and to enlarge
the class of reaction terms to which one can apply the general existence result. More precisely, we consider
the following general boundary value problem{

u′′ + cu′ + F (u) = 0
u(−∞) = 1, u(+∞) = 0

where F : C(R) → C(R) is a given functional operator. Assuming the existence of a pair of well-ordered
upper and lower-solutions, we prove a general existence result (see Theorem 4.3). Moreover, we show
how it can be applied to reaction-diffusion equations having non-local or delayed terms, showing that
under certain limitations on the wave speed c, a pair of upper and lower-solutions can be actually found
(see Theorems 5.2, 5.3, 5.7).

In particular, our existence result can be fruitfully applied to delayed reaction-diffusion equation of
the type

vτ (τ, x) = vxx(τ, x) + g(v(τ, x))v(τ − T, x)

or non-local equations of the type

vτ (τ, x) = vxx(τ, x) + g(v(τ, x))
∫ +∞

−∞
Φ(x− σ)v(τ, σ) dσ,

where g is a generic Lipschitz function satisfying

0 < g(u) ≤ g(0)(1− u) for every u ∈ [0, 1).
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We underline that both in the non-local setting and in the delayed one, we obtain the existence of
t.w.s. when the speed c lies in a certain interval [c∗1, c

∗
2]. We show that in both cases, when the model

tends to the usual Fisher-KPP one, for instance when the delay tends to 0 or the kernel in the non-local
equation tends to the Dirac delta function, then the left endpoint c∗1 tends to the threshold value c∗ of
the non-functional equation and the right endpoint c∗2 diverges to +∞.

Our approach is based on fixed point techniques combined to the method of upper and lower-solutions,
following an idea considered by S. Ma in [8] (see Section 2). In Sections 3 and 4 we present general
existence results, which are applied to non-local or delayed equations in Section 5.

2. An auxiliary problem

This section is devoted to some preliminary results related to an auxiliary linear problem.

Let c ∈ R, β > 0 be fixed. Given h ∈ L∞(R), in what follows we will consider the function uh : R → R
defined by

uh(t) := −eα1t

∫ t

−∞
h(s)e−α1s ds− eα2t

∫ +∞

t

h(s)e−α2s ds, t ∈ R, (2.1)

where α1 < 0 < α2 are the solutions of the algebraic equation x2 + cx− β = 0.
The following result concerns some properties of the function uh.

Lemma 2.1. Let h ∈ L∞(R). Then

i) uh is a C1-function on R, with u′h a.e. derivable, and

u′′h(t) + cu′h(t)− βuh(t) = (α2 − α1)h(t) for a.e. t ∈ R;

ii) if h(t) ≤ 0 for a.e. t ∈ R, then uh(t) ≥ 0 for every t ∈ R.
iii) if −β ≤ h(t) ≤ 0 for a.e. t ∈ R, then 0 ≤ uh(t) ≤ α2 − α1 and |u′h(t)| ≤ 2β for every t ∈ R;
iv) if h monotone increasing, then uh is monotone decreasing.
v) if h is continuous for |t| large and if h(±∞) exists, then uh(±∞) exists too and uh(±∞) =
−h(±∞)α2−α1

β .

Proof. First observe that uh is absolutely continuous on every compact interval of R, hence it is derivable
for a.e. t ∈ R with

u′h(t) = −α1e
α1t

∫ t

−∞
h(s)e−α1s ds− α2e

α2t

∫ +∞

t

h(s)e−α2s ds a.e. t ∈ R. (2.2)

The right-hand side of (2.2) is a continuous function on R, call it γ(t). So, since uh is absolutely continuous
in every compact interval, fixed t ∈ R we have uh(t) = uh(0) +

∫ t

0
u′h(s)ds = uh(0) +

∫ t

0
γ(s)ds hence

uh ∈ C1(R) and (2.2) holds for every t ∈ R. Therefore, u′h is absolutely continuous in every compact
interval and

u′′h(t) = −α2
1e

α1t

∫ t

−∞
h(s)e−α1s ds− α2

2e
α2t

∫ +∞

t

h(s)e−α2s ds+ (α2 − α1)h(t) a.e. t ∈ R.

Recalling that α1 and α2 satisfy the equation x2 + cx − β = 0, one gets u′′h(t) + cu′h(t) − βuh(t) =
(α2 − α1)h(t) for a.e. t ∈ R, and assertion i) is proved.

Property ii) is immediate. Let us prove iii).
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If h(t) ≥ −β for a.e. t ∈ R, then for every t ∈ R we have

uh(t) ≤ β

(
eα1t

∫ t

−∞
e−α1s ds+ eα2t

∫ +∞

t

e−α2s ds
)

= β

(
− 1
α1

+
1
α2

)
= α2 − α1

(recall that α1α2 = −β).
Furthermore, if −β ≤ h(t) ≤ 0 for a.e. t ∈ R, recalling that α1 < 0 < α2, we have

|u′h(t)| ≤ β

(
α2e

α2t

∫ +∞

t

e−α2s ds− α1e
α1t

∫ t

−∞
e−α1s ds

)
= 2β for every t ∈ R.

As for property iv), let us fix T > 0 and observe that

uh(t+ T ) = −eα1t

∫ t+T

−∞
h(s)e−α1(s−T ) ds− eα2t

∫ +∞

t+T

h(s)e−α2(s−T ) ds

= −eα1t

∫ t

−∞
h(σ + T ) e−α1σ dσ − eα2t

∫ +∞

t

h(σ + T ) e−α2σ dσ.

with σ = s− T . Thus,

uh(t+ T )− uh(t) = −eα1t

∫ t

−∞
(h(s+ T )− h(s)) e−α1s ds− eα2t

∫ +∞

t

(h(s+ T )− h(s)) e−α2s ds.

Hence, if h is increasing, then h(s+ T )− h(s) ≥ 0 a.e. s ∈ R and consequently uh(t+ T )− uh(t) ≤ 0 for
any t ∈ R, i.e. uh is decreasing.

Finally, let us prove v). By the L’Hopital rule,

lim
t→±∞

uh(t) = lim
t→±∞

(
h(t)e−α1t

α1e−α1t
− h(t)e−α2t

α2e−α2t

)
= h(±∞)

(
1
α1

− 1
α2

)
= h(±∞)

α2 − α1

−β
.

�

Let BC(R) denote the space of all the bounded continuous maps u : R → R. For every ρ > 0, we can
introduce a norm ‖ · ‖ρ in the space BC(R) by defining

‖u‖ρ := sup
t∈R

|u(t)|e−ρ|t| < +∞. (2.3)

From now on, BCρ(R) will denote the space BC(R) endowed with the norm ‖ · ‖ρ. As it is easy to check,
BCρ(R) is a Banach space.

Let us define the linear operator S in BCρ(R) by

S(h)(t) =
1

α2 − α1
uh(t), t ∈ R,

where uh was defined in (2.1).
By virtue of property iii) of Lemma 2.1, if h(t) ∈ [−β, 0] for every t ∈ R, then 0 ≤ S(h)(t) ≤ 1

for every t ∈ R. Moreover, from the linearity of S and property ii) of the same Lemma we get that
S is monotone decreasing with respect the partial ordering in BC(R) induced by the cone K := {h ∈
BC(R) : h(t) ≥ 0 for every t ∈ R}, i.e.

h1(t) ≤ h2(t) for every t ∈ R ⇒ S(h1)(t) ≥ S(h2(t)) for every t ∈ R. (2.4)

Finally, from property i) of Lemma 2.1, it follows that S(h) is a solution of the following second order
linear differential equation:

u′′(t) + cu′(t)− βu(t) = h(t), a.e. t ∈ R. (2.5)
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The next Lemma states that S is continuous with respect to the norm ‖ · ‖ρ for ρ > 0 small enough.

Lemma 2.2. The operator S is continuous in BCρ(R) for every ρ < min{−α1, α2}. More precisely,
there exists a constant k = k(ρ) such that

‖S(h1)− S(h2)‖ρ ≤ k‖h1 − h2‖ρ for every h1, h2 ∈ BC(R). (2.6)

Proof. By the linearity of S it suffices to prove the continuity at the origin. To this aim, notice that

|uh(t)| ≤
∫ t

−∞
|h(s)|eα1(t−s) ds+

∫ +∞

t

|h(s)|eα2(t−s) ds

=
∫ t

−∞
(|h(s)|e−ρ|s|)eα1(t−s)+ρ|s| ds+

∫ +∞

t

(|h(s)|e−ρ|s|)eα2(t−s)+ρ|s| ds

≤
∫ t

−∞
||h||ρeα1(t−s)+ρ|s| ds+

∫ +∞

t

||h||ρeα2(t−s)+ρ|s| ds

= ||h||ρ
(∫ t

−∞
eα1(t−s)+ρ|s| ds+

∫ +∞

t

eα2(t−s)+ρ|s| ds
)
.

Then,

|uh(t)|e−ρ|t| ≤ ||h||ρ
(∫ t

−∞
eα1(t−s)+ρ|s| ds+

∫ +∞

t

eα2(t−s)+ρ|s| ds
)
e−ρ|t|. (2.7)

We now proceed distinguishing the two cases t ≥ 0 and t < 0. If t ≥ 0, by the upper limitations on ρ we
have (∫ t

−∞
eα1(t−s)+ρ|s| ds+

∫ +∞

t

eα2(t−s)+ρ|s| ds
)
e−ρ|t|

=
(∫ 0

−∞
e−(α1+ρ)s ds+

∫ t

0

e(ρ−α1)s ds
)
eα1t−ρt +

(∫ +∞

t

e(ρ−α2)s ds
)
eα2t−ρt

=
(

1
−(α1 + ρ)

+
e(ρ−α1)t − 1
ρ− α1

)
e(α1−ρ)t +

(
e(ρ−α2)t

α2 − ρ

)
e(α2−ρ)t

=
e(α1−ρ)t

−(ρ+ α1)
+

1− e(α1−ρ)t

ρ− α1
+

1
α2 − ρ

≤ 1
−(α1 + ρ)

+
1

ρ− α1
+

1
α2 − ρ

=
2α1

ρ2 − α2
1

+
1

α2 − ρ

since being α1 − ρ < 0 we get 0 < e(α1−ρ)t < 1 for every t ≥ 0. Therefore, by (2.7) we obtain

|uh(t)|e−ρ|t| ≤ k+||h||ρ for every t ≥ 0 (2.8)

where k+ :=
(
−2α1
α2

1−ρ2 + 1
α2−ρ

)
> 0.

Analogously, if t < 0 we have(∫ t

−∞
eα1(t−s)+ρ|s| ds+

∫ +∞

t

eα2(t−s)+ρ|s| ds
)
e−ρ|t|

=
(∫ t

−∞
e−(α1+ρ)s ds

)
e(α1+ρ)t +

(∫ 0

t

e−(α2+ρ)s ds+
∫ +∞

0

e(ρ−α2)s ds
)
e(α2+ρ)t

=
(
e−(α1+ρ)t

−(α1 + ρ)

)
e(α1+ρ)t +

(
−1− e−(α2+ρ)t

α2 + ρ
+

1
α2 − ρ

)
e(α2+ρ)t

=
1

−(α1 + ρ)
+

1− e(α2+ρ)t

α2 + ρ
+
e(α2+ρ)t

α2 − ρ
≤ 1
−(α1 + ρ)

+
1

α2 + ρ
+

1
α2 − ρ

=
1

−(α1 + ρ)
+

2α2

α2
2 − ρ2

.



6 A. CALAMAI, C. MARCELLI, AND F. PAPALINI

since being α2 + ρ > 0 we get 0 < e(α2+ρ)t < 1 for every t < 0. Thus, by (2.7)

|uh(t)|e−ρ|t| ≤ k−||h||ρ for every t < 0 (2.9)

where k− :=
(

1
−(α1+ρ) + 2α2

α2
2−ρ2

)
. Hence, setting k := 1

α2−α1
max{k+, k−}, by (2.8), (2.9) and the defini-

tion of S we conclude
‖S(h)‖ρ ≤ k‖h‖ρ.

�

In the sequel we will need to consider the operator S for varying values of c. In such situations, we will
write Sc to emphasize the dependence on the value c. The following proposition concerns the behavior
of the operator S with respect to c.

Proposition 2.3. Let (cn)n be a sequence of numbers converging to some c∗ ∈ R. Moreover, let (hn)n

be a sequence in BC(R) of equibounded functions, pointwise convergent to some h∗. Then, the sequence
(Scn

(hn))n pointwise converges to Sc∗(h∗).

Proof. Since the sequence (hn)n is equibounded, then there exists a positive value K > 0 such that
|hn(t)| ≤ K for every t ∈ R and n ∈ N. So, denoted by α1(cn) < 0, α2(cn) > 0 the two roots of the
algebraic equation x2 + cnx− β = 0, we have α1(cn) → α1(c∗) < 0 and α2(cn) → α2(c∗) > 0 and by the
dominated convergence theorem∫ t

−∞
hn(s)e−α1(cn)s ds→

∫ t

−∞
h∗(s)e−α1(c

∗)s ds ,
∫ +∞

t

hn(s)e−α2(cn)s ds→
∫ +∞

t

h∗(s)e−α2(c
∗)s ds

as n → +∞. Hence, recalling the definition of the operator Sc we obtain Scn
(hn)(t) → Sc∗(h∗)(t) for

every t ∈ R. �

Our approach for finding heteroclinic solutions is based on the method of super and sub-solutions,
which will serve as barriers. The following result states conditions which guarantee that a function φ is
a lower [upper] bound for the operator S.

Lemma 2.4. Let φ ∈ BC(R) be given. Assume that there exist −∞ = τ0 < τ1 < · · · < τN < τN+1 = +∞
such that φ ∈ C2(τi, τi+1), with φ′, φ′′ bounded in (τi, τi+1), for every i = 0, . . . , N .

Moreover, assume that for every i = 0, . . . , N + 1 there exist finite the limits φ′(τ−i ) and φ′(τ+
i ) (of

course for i = 0 just the right limit and for i = N + 1 just the left one).

Define h0 by

h0(t) = φ′′(t) + cφ′(t)− βφ(t), for every t ∈ R, t 6= τi, i = 1, . . . , N.

Then,

i) φ′(τ−i ) ≤ φ′(τ+
i ) for every i = 1, . . . , N ⇒ S(h0)(t) ≥ φ(t) for every t ∈ R;

ii) φ′(τ−i ) ≥ φ′(τ+
i ) for every i = 1, . . . , N ⇒ S(h0)(t) ≤ φ(t) for every t ∈ R.

Proof. Let us prove statement i) (the other one being analogous). Fix t ∈ R \ {τi, i = 1, . . . , n} and k

such that t ∈ (τk, τk+1). We have

uh0(t) = −eα1t

∫ t

−∞
(φ′′(s) + cφ′(s)− βφ(s))e−α1s ds− eα2t

∫ +∞

t

(φ′′(s) + cφ′(s)− βφ(s))e−α2s ds =
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= −eα1t
k−1∑
i=0

(∫ τi+1

τi

(φ′′(s) + cφ′(s)− βφ(s))e−α1s ds
)
− eα1t

∫ t

τk

(φ′′(s) + cφ′(s)− βφ(s))e−α1s ds

−eα2t

∫ τk+1

t

(φ′′(s) + cφ′(s)− βφ(s))e−α2s ds− eα2t
N∑

i=k+1

(∫ τi+1

τi

(φ′′(s) + cφ′(s)− βφ(s))e−α2s ds
)
.

Integrating by parts on each interval (τi, τi+1) and recalling that α1 < 0 < α2 are the solutions of the
equation x2 + cx− β = 0, we get∫ τi+1

τi

(φ′′(s) + cφ′(s)− βφ(s))e−α1s ds =

= (α1 + c)[φ(τi+1)e−α1τi+1 − φ(τi)e−α1τi ] + φ′(τ−i+1)e
−α1τi+1 − φ′(τ+

i )e−α1τi

for every i = 0, . . . , k − 1 with the convention e−α1(−∞) = 0. Analogously,∫ τi+1

τi

(φ′′(s) + cφ′(s)− βφ(s))e−α2s ds =

= (α2 + c)[φ(τi+1)e−α2τi+1 − φ(τi)e−α2τi ] + φ′(τ−i+1)e
−α2τi+1 − φ′(τ+

i )e−α2τi

for every i = k + 1, . . . , N with the convention e−α2(+∞) = 0. On the other hand,∫ t

τk

(φ′′(s) + cφ′(s)− βφ(s))e−α1s ds = (α1 + c)[φ(t)e−α1t − φ(τk)e−α1τk ] + φ′(t)e−α1t − φ′(τ+
k )e−α1τk

and analogously,∫ τk+1

t

(φ′′(s)+cφ′(s)−βφ(s))e−α2s ds = (α2+c)[φ(τk+1)e−α2τk+1−φ(t)e−α2t]+φ′(τ−k+1)e
−α2τk+1−φ′(t)e−α2t.

Therefore, recalling that −c = α1 + α2, for every t 6= τi, i = 1, . . . , N , we get

uh0(t) = −eα1t
k∑

i=1

(
(φ′(τ−i )− φ′(τ+

i ))e−α1τi
)

+ (α2φ(t)− φ′(t)) +

−eα2t
N∑

i=k+1

(
(φ′(τ−i )− φ′(τ+

i ))e−α2τi
)
− (α1φ(t)− φ′(t))

= −eα1t
k∑

i=1

(
(φ′(τ−i )− φ′(τ+

i ))e−α1τi
)
− eα2t

N∑
i=k+1

(
(φ′(τ−i )− φ′(τ+

i ))e−α2τi
)

+ (α2 − α1)φ(t).

Since, by assumption, φ′(τ−i ) ≤ φ′(τ+
i ) for any i = 1, . . . , N , it follows

S(h0)(t)− φ(t) = − eα1t

α2 − α1

k∑
i=1

(
(φ′(τ−i )− φ′(τ+

i ))e−α1τi
)
− eα2t

α2 − α1

N∑
i=k+1

(
(φ′(τ−i )− φ′(τ+

i ))e−α2τi
)
≥ 0

for every t 6= τi, i = 1, . . . , N . By the continuity of φ and uh0 , the statement holds for every t ∈ R. �
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3. An existence result

Consider the following functional equation:

u′′(t) + cu′(t) + F (u)(t) = 0, t ∈ R (3.1)

where c > 0, and F : C(R) → C(R) is a given operator.

In the sequel we assume that there exists β > 0 such that the following conditions hold:

(H1) 0 ≤ u(t) ≤ 1 for every t ∈ R ⇒ 0 ≤ F (u)(t) + βu(t) ≤ β for every t ∈ R.

(H2) u monotone decreasing ⇒ F (u) + βu monotone decreasing.

Fixed a value β > 0 in such a way that conditions (H1) and (H2) hold, define F : C(R) → C(R) by

F(u)(t) = −F (u)(t)− βu(t), t ∈ R.

By using the operator F , equation (3.1) can be equivalently written as follows:

u′′(t) + cu′(t)− βu(t) = F(u)(t), t ∈ R. (3.2)

Setting M := 2β√
c2+4β

, let us consider the following subset of BC(R):

Ω := {u ∈ C(R) : 0 ≤ u(t) ≤ 1 for all t ∈ R, u is decreasing, |u(t1)−u(t2)| ≤M |t1−t2| for all t1, t2 ∈ R}.

By assumption (H1), we have F(u) ∈ BC(R) for every u ∈ Ω, so we can define the composition
operator

G(u) := S(F(u)), for u ∈ Ω.

Notice that a function u ∈ Ω is a fixed point for the operator G if and only if it is a solution of equa-
tion (3.2). Hence the study of the existence of solutions of (3.1) reduces to the proof of the existence of
fixed points for the operator G, as we do in the following theorem.

Theorem 3.1. Assume that conditions (H1), (H2) are verified. Moreover, assume that the operator
F : BCρ(R) → BCρ(R) is continuous for some 0 < ρ < min{−α1, α2}.

Then, equation (3.1) has a solution in Ω.

Proof. First note that as an immediate consequence of conditions (H1), (H2) and statements iii)- iv) of
Lemma 2.1, we have

G(Ω) ⊆ Ω.

Moreover, G is continuous in Ω with respect to the norm ‖·‖ρ, indeed if (un)n is a sequence in Ω converging
to u ∈ Ω, then

‖G(un)− G(u)‖ρ = ‖S(F(un)− S(F(u))‖ρ ≤ k ‖F(un)−F(u)‖ρ ≤ k‖F (un)− F (u)‖ρ + kβ‖un − u‖ρ

where k = k(ρ) is the constant given by Lemma 2.2. Then, the continuity of G follows from the continuity
of F .

Observe now that Ω is a nonempty, convex subset of the Banach space BCρ(R), so in order to apply the
Schauder fixed point theorem it remains to show that Ω is compact.

To this purpose, let (un)n be a given sequence in Ω. By the definition of Ω we get that (un)n is equi-
bounded and equiuniformly continuous. So, by the Ascoli-Arzelà theorem, its restriction to the interval
I1 = [−1, 1] admits a subsequence (un1,k

)k uniformly convergent in I1 to a function v1(t). Similarly,
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in the interval I2 = [−2, 2] the sequence (un1,k
)k admits a further subsequence (un2,k

)k uniformly con-
vergent in I2 to a function v2(t). Of course, v2(t) = v1(t) for t ∈ I1. By induction, for every m ∈ N
the sequence (unm−1,k

)k admits a further subsequence (unm,k
)k uniformly convergent in Im to a function

vm(t) satisfying vm(t) = vm−1(t) for t ∈ Im−1.

Consider now the “diagonal” subsequence (unk,k
)k and the function v : R → R defined by v(t) = vm(t) if

t ∈ Im. Clearly, v is well defined, continuous and decreasing; moreover 0 ≤ v(t) ≤ 1 for any t ∈ R, and
|v(t1)− v(t2)| ≤M |t1 − t2| for and any t1, t2 ∈ R; that is, v belongs to Ω.

Finally, fix ε > 0 and choose L ∈ N such that e−ρ|t| < ε
2 for any t with |t| > L. We have

|unk,k
(t)− v(t)|e−ρ|t| ≤ 2e−ρ|t| < ε, (3.3)

for any t with |t| > L. On the other hand, since {unL,k
(t)} converges to vL(t) = v(t) uniformly on IL,

and since {unk,k
} is a subsequence of {unL,k

(t)}, we have

sup
t∈[−L,L]

|unk,k
(t)− v(t)| → 0, k →∞.

Hence, there exists k̄ > L such that for any k > k̄ one has

|unk,k
(t)− v(t)|e−ρ|t| ≤ |unk,k

(t)− v(t)| < ε for every t ∈ [−L,L].

Consequently, taking (3.3) into account we get

||unk,k
− v||ρ < ε for every k > k̄

i.e. the sub-sequence (unk,k
)k converges to v with respect to the norm ‖ · ‖ρ and then Ω is compact.

By applying the Schauder fixed point Theorem we achieve the existence of a fixed point for the operator
G and this concludes the proof. �

The following Proposition concerning the asymptotical properties of the decreasing solutions of equa-
tion (3.1), will be used in the sequel.

Proposition 3.2. Assume that conditions (H1), (H2) are verified. Moreover, assume that the operator
F : BCρ(R) → BCρ(R) is continuous for some 0 < ρ < min{−α1, α2} and has constant sign, i.e.

F (u)(t) ≤ 0 (or F (u)(t) ≥ 0) for every decreasing, non-negative u ∈ C(R), and every t ∈ R. (3.4)

Then, if u ∈ C2(R) is a decreasing solution of equation (3.1), with 0 ≤ u(t) ≤ 1, it satisfies

u′(±∞) = u′′(±∞) = 0,

and the constant c has the same sign of the operator F .

Proof. Fix τ < t. Integrating the equation (3.1) in (τ, t) we obtain

u′(t) = u′(τ)− c(u(t)− u(τ))−
∫ t

τ

F (u)(s) ds

and by the assumption (3.4) we deduce the existence in R ∪ {±∞} of the limit lim
t→+∞

u′(t), which has to

be null by the boundedness of the function u(t). Similarly we can prove that u′(−∞) = 0. Moreover,
from the previous equation, taking the limits as t→ +∞, τ → −∞ one derives that c has the same sign
of F .
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Finally, by assumptions (H1)-(H2) we have that F (u)(t) + βu(t) is a decreasing bounded function, so
there exist in R the limits F (u)(±∞). Hence, by equation (3.1) there exist in R also the limits u′′(±∞),
which have to be null owing the boundedness of u′ as |t| → +∞. �

4. Boundary value problem

In this section we finally investigate the solvability of the following boundary value problem:{
u′′(t) + cu′(t) + F (u)(t) = 0, a.e. t ∈ R
u(−∞) = 1, u(+∞) = 0.

(4.1)

Note that the solution of equation (3.1) found in the proof of Theorem 3.1 may be trivial, i.e. constant.
In order to obtain heteroclinic solutions we need further conditions, such as the existence of suitable super
and sub-solutions. To this end, let us now introduce the following definition.

Definition 4.1. A decreasing function φ ∈ BC(R) is said to be a super-solution [respectively sub-solution]
of (3.1) if there exist −∞ = τ0 < τ1 < · · · < τN < τN+1 = +∞ such that:

(i) φ ∈ C2(τi, τi+1), with φ′, φ′′ bounded, for every i = 0, . . . , N ;
(ii) the limits φ′(τ−i ), φ′(τ+

i ) exist finite with φ′(τ−i ) ≥ φ′(τ+
i ) [ φ′(τ−i ) ≤ φ′(τ+

i ) ], i = 1, · · · , N ;
(iii) the following differential inequality holds:

φ′′(t) + cφ′(t) + F (φ)(t) ≤ 0 [φ′′(t) + cφ′(t) + F (φ)(t) ≥ 0] for every t 6= τi, i = 1, · · · , N.

Remark 4.2. The enlargement of the class of admissible super and sub-solutions to possible non-smooth
functions is motivated by the difficulty to find well-ordered smooth super and sub-solutions, due to the
lack of monotonicity of F (see [10] for recent comparison results for non-functional equations). In this
setting, the relation between the left and right derivatives in the non-smoothness points (condition (ii))
is fundamental. Recently, some papers appeared using a more general definition, without requiring (ii)
(see [14], [5], [6], [12], [9]), but the arguments there used do not work (see [15]).

The following theorem provides sufficient conditions for the solvability of problem (4.1).

Theorem 4.3. Assume that there exists β > 0 such that conditions (H1), (H2) are verified. Moreover,
assume that the following condition holds:

(H3) u1(t) ≤ u2(t) for every t ∈ R ⇒ F (u1)(t) + βu1(t) ≤ F (u2)(t) + βu2(t) for every t ∈ R.

Fixed 0 < ρ < min{−α1, α2}, assume that the operator F : C(R) → C(R) is continuous with respect
to the norm ‖ · ‖ρ.

Finally, assume that there exist a pair φ, ψ of sub and super-solutions of (3.1) such that 0 ≤ φ(t) ≤
ψ(t) ≤ 1 for every t ∈ R.

Then, the differential equation in (4.1) admits a decreasing solution u ∈ Ω, such that

φ(t) ≤ u(t) ≤ ψ(t) for every t ∈ R.

Therefore, if
φ(−∞) = 1, ψ(+∞) = 0

then, u solves the boundary value problem (4.1) too.
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Proof. Let Ω and G as in Section 3. Consider the following subset of BC(R):

Ω̂ = {u ∈ Ω : φ(t) ≤ u(t) ≤ ψ(t)}.

Of course, Ω̂ is nonempty and convex. Moreover, since it is a closed subset of Ω, which is compact, also
Ω̂ is compact in the Banach space BCρ(R).

Observe now that G(Ω̂) ⊆ Ω̂. Indeed, we already proved that G(Ω) ⊆ Ω, so it suffices to show that

φ(t) ≤ G(u)(t) ≤ ψ(t) for every u ∈ Ω̂, t ∈ R. (4.2)

Let us prove that G(u)(t) ≥ φ(t) for every t ∈ R (the other inequality being similar). Notice that
condition (H3) implies that F(u)(t) ≤ F(φ)(t) for every t ∈ R. So, defined η : R → R by η(t) =
φ′′(t)+cφ′(t)−βφ(t), a.e. t ∈ R, we have η ∈ L∞(R), and F(φ)(t) ≤ η(t) a.e. t ∈ R as φ is a sub-solution.
Moreover, S(η)(t) ≥ φ(t) for every t ∈ R by Lemma 2.4.

Consequently, by the monotonicity the of operator S we get

G(u)(t) = S(F(u))(t) ≥ S(F(φ))(t) ≥ S(η)(t) ≥ φ(t) for every t ∈ R.

Thus, G(Ω̂) ⊆ Ω̂. Moreover, we already proved in Theorem 3.1 that G is continuous in Ω. So, by applying
again the Schauder fixed point theorem it follows that G has a fixed point u ∈ Ω̂, which results to be a
solution of equation (3.1).

Moreover, if 0 ≤ φ(t) ≤ u(t) ≤ ψ(t) ≤ 1 for every t ∈ R, the conditions φ(−∞) = 1 and ψ(+∞) = 0
respectively imply that u(−∞) = 1 and u(+∞) = 0 and, consequently, u is a solution of problem (4.1).

�

Concerning the properties of the set of the values of the speed c for which problem (4.1) admits
solutions, we are able to prove that it is closed provided that the problem is autonomous, in the sense
specified by the following definition.

Definition 4.4. We will say that the boundary value problem (4.1) is autonomous, if the following
property holds:

u(t) is a solution to (4.1) ⇒ u(t+ k) is a solution to (4.1) too, for every k ∈ R.

Proposition 4.5. Let F : C(R) → C(R) be a continuous operator with respect to the norm ‖ · ‖ρ,
satisfying assumptions (H1)-(H2) and (3.4). Assume that problem (4.1) is autonomous and

∃ lim
t→±∞

F (u)(t) 6= 0 for every decreasing function u ∈ C(R) such that u(±∞) ∈ (0, 1). (4.3)

Let C denote the set of the admissible speeds for problem (4.1), i.e.

C := {c > 0 : problem (4.1) admits a decreasing solution}.

Then C is a closed set (possibly empty).

Proof. As we already observed in the previous section, a decreasing function u is a solution to the
differential equation in (4.1) if and only if it is a fixed point for the operator G. Since now the parameter
c is not fixed, from now on we use the notation Gc for making explicit the dependence on the speed c.

So, assume that C is nonempty and take a sequence (cn)n in C converging to a value c∗. Let un(t)
denote a decreasing solution to problem (4.1) for c = cn, satisfying un(0) = 1

2 (this is possible since the
problem is autonomous). By Lemma 2.1, part iii), we deduce that |u′n(t)| ≤ 2β√

c2
n+4β

≤
√
β for every
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t ∈ R. Hence, by the same argument used in the proof of Theorem 3.1 for proving that Ω is compact, one
can show that there exists a sub-sequence, again denoted (un)n, uniformly converging in every compact
set to a decreasing function u∗.

By the continuity of operator F and assumption (H1), we get that (F(un))n is an equibounded sequence
pointwise convergent to F(u∗). So, by Proposition 2.3 we deduce

Gc∗(u∗)(t) = lim
n→+∞

Gcn(un)(t) = lim
n→+∞

un(t) = u∗(t).

Therefore, the function u∗ is a fixed point for the operator Gc∗ and this means that it is a solution of
the differential equation in (4.1) for c = c∗. Moreover, u∗(0) = 1

2 , so u∗ is not one of the trivial solutions
u(t) ≡ 0 or u(t) ≡ 1.

Let us denote by `− := u(−∞) ≥ 1
2 and `+ := u(+∞) ≤ 1

2 . Since by Proposition 3.2 we have
u′(−∞) = u′′(−∞) = 0, then by assumption (4.3) we deduce `− = 1 and `+ = 0. Hence u∗ is a solution
to problem (4.1) for c = c∗.

�

5. Applications and examples

In this section we present some non-local reaction-diffusion equations which can be handled by means
of the approach we introduced here. More in detail, as mentioned in Introduction, we refer to models
whose reaction term has a retarded component or depends on a convolution integral.

5.a - Reaction-diffusion equations with delay

Fixed T ∗ > 0, let f : C([−T ∗, 0]) → [0,+∞) be a given continuous operator (with respect to the usual
topology in C([−T ∗, 0])). Let us consider the following partial differential equation

vτ = vxx + f(vτ (x)) (D)

where vτ (x) ∈ C([−T ∗, 0]) is the function defined by vτ (x)(θ) := v(τ + θ, x), for θ ∈ [−T ∗, 0].

In the sequel we will assume that the constant functions 0 and 1 are stationary states for the equation
(D), that is

f(1) = f(0) = 0 (5.1)

(here and later on, k denotes the constant function w(θ) ≡ k, θ ∈ [−T ∗, 0]).

When searching for traveling wave solutions connecting the equilibria 0 and 1, put t := x − cτ ,
u(t) = u(x− cτ) and consider the functional boundary value problem{

u′′(t) + cu′(t) + f(ut,c) = 0
u(−∞) = 1, u(+∞) = 0

(5.2)

where ut,c ∈ C([−T ∗, 0]) is the function defined by

ut,c(θ) := u(t− cθ).

In order to treat such a problem by means of the approach presented here, we deal with reaction terms
having the following structure:

f(w) = f1(w) · f2(w(0))

where f1 : C([−T ∗, 0]) → [0,+∞), f2 : R → [0,+∞) are continuous functions satisfying the following
conditions.
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(F1-A): f1(0) = 0, f1(k) > 0 for every k 6= 0;

(F1-B): f1 is increasing, that is f1(u) ≤ f1(v) whenever u(θ) ≤ v(θ) for every θ ∈ [−T ∗, 0];

(F2-A): f2(1) = 0, f2(s) > 0 for every s ∈ [0, 1);

(F2-B): f2 is Lipschitzian with Lip-constant L.

For every c > 0 let Fc : C(R) → C(R) denote the operator defined by

Fc(u)(t) := f(ut,c) = f1(u(t− cθ))f2(u(t)).

Of course, the operator Fc is continuous (with respect to the norm ‖ · ‖ρ).

The following Lemma concerns the applicability of the method presented in the previous sections.

Lemma 5.1. Assume that the operator f satisfies the properties listed above. Then for every c > 0 the
operator Fc satisfies assumptions (H1)-(H3) with the constant β := L f1(1) > 0.

Proof. As for property (H1), since f(w) ≥ 0 for every w ∈ C([−T ∗, 0]), of course Fc(u)(t)+βu(t) ≥ 0 for
every u ∈ C(R). Moreover, by (F2-A) and (F2-B) we have f2(s) ≤ L(1− s) for every s ∈ [0, 1], so being
f1(ut,c) ≤ f1(1) by (F1-B), we deduce f1(ut,c)f2(u(t)) ≤ β(1− u(t)), that is Fc(u)(t) + βu(t) ≤ β.

If u is monotone decreasing, then fixed t1 < t2 we have u(t1−cθ) ≥ u(t2−cθ) for every θ ∈ [−T ∗, 0], that
is ut1,c(θ) ≥ ut2,c(θ) for every θ ∈ [−T ∗, 0]. Hence, by assumption (F1-B) we get f1(ut1,c) ≥ f1(ut2,c).
Moreover, by (F2-B) we have f2(u(t1)) ≥ f2(u(t2))− L[u(t1)− u(t2)], so

f1(ut1,c)f2(u(t1)) ≥ f1(ut2,c)f2(u(t2))− Lf1(ut2,c)[u(t1)− u(t2)] ≥ f1(ut2,c)f2(u(t2))− β[u(t1)− u(t2)].

Hence,

f1(ut1,c)f2(u(t1)) + βu(t1) ≥ f1(ut2,c)f2(u(t2)) + βu(t2)

i.e. condition (H2).

Finally, if u, v ∈ C(R) satisfy u(t) ≤ v(t) for every t ∈ R then f1(ut,c) ≤ f1(vt,c) and f2(v(t)) ≥
f2(u(t))− L[v(t)− u(t)], so

f1(vt,c)f2(v(t)) ≥ f1(ut,c)f2(u(t))− Lf1(ut,c)[v(t)− u(t)] ≥ f1(ut,c)f2(u(t))− β[v(t)− u(t)],

that is f(vt,c) + βv(t) ≥ f(ut,c) + βu(t), i.e. condition (H3). �

The following existence result shows that a pair of ordered super- and sub-solutions can be found under
very mild assumptions on the non-functional term f2, provided that the functional term f1 depends on
a simple discrete delay. Moreover, we also obtain an estimate of the rate of decay as t → +∞. In this
context, we adopt the notation

u(t) ≈ e−λt ⇔ u(t)eλt → ` ∈ (0,+∞) as t→ +∞. (5.3)
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Theorem 5.2. Let
f1(wt,c) := w(t+ cT ) for some T ∈ [0, T ∗],

and let f2 be satisfying conditions (F2-A), (F2-B), such that

f2(s) ≤ f2(0)(1− s) for every s ∈ [0, 1]. (5.4)

Then, for every c > 2
√
f2(0) there exists a positive value T0 = T0(c) such that if 0 ≤ T ≤ T0 the

boundary value problem (5.2) admits a decreasing solution u. Moreover, u(t) ≈ e−λt as t → +∞, for
some λ ≤ 1

2 (c−
√
c2 − 4f2(0)).

Proof. In view of Lemma 5.1 and Theorem 4.3, we only need to find a pair of ordered super and sub-
solutions. To this aim, put K := f2(0) and let us consider the function

H(`, c, T ) := `2 − c`+Ke−c`T , for `, T ≥ 0; c > 2
√
K. (5.5)

Since H is a continuous function satisfying H(0, c, T ) = K > 0 and H( c
2 , c, T ) = c2

4 − c2

2 + Ke−
c2
2 T ≤

K − c2

4 < 0, the set

Ac,T := {` ∈ (0,
c

2
) : H(`, c, T ) = 0}

is a nonempty closed set. Put
λ = λ(c, T ) := maxAc,T . (5.6)

As a consequence of the previous definition, for every c, T there exists a positive value ε = ε(c, T ) < λ,
such that

H(λ+ ε, c, T ) = (λ+ ε)2 − c(λ+ ε) +Ke−c(λ+ε)T < 0. (5.7)

Now, given M > 1, consider the function

φ(t) := max{0, (1−Me−εt)e−λt}.

Let t∗ denote the positive value such that Me−εt∗ = 1. Observe that 0 = φ′(t∗−) < φ′(t∗+), moreover
if t < t∗ then φ′(t) = φ′′(t) = 0, so φ′′(t) + cφ′(t) + f(φt,c) ≥ 0. Instead, if t > t∗ (and t + cT > t∗ too)
then

φ′(t) = −λe−λt +M(ε+ λ)e−(ε+λ)t; φ′′(t) = λ2e−λt −M(ε+ λ)2e−(ε+λ)t.

If L denotes the Lipschitz constant for f2, put h := L
K we have

f2(s) ≥ K(1− hs) for every s ∈ [0, 1]. (5.8)

Then,
φ′′(t) + cφ′(t) + f(φt,c) ≥ φ′′(t) + cφ′(t) +Kφ(t+ cT )[1− hφ(t)] =

= e−λt{λ2 −M(ε+ λ)2e−εt − cλ+ cM(ε+ λ)e−εt +K(1−Me−εte−εcT )e−cλT [1− h(1−Me−εt)e−λt]} ≥

≥ e−λt{(λ2 − cλ+Ke−cλT )−Me−εt[(ε+ λ)2 − c(ε+ λ) +Ke−c(ε+λ)T ]−Khe−λte−λcT } =

= e−λt{H(λ, c, T )−Me−εtH(λ+ ε, c, T )−Khe−λ(t+cT )} ≥Me−(λ+ε)t{−H(λ+ ε, c, T )− L

M
e−λcT },

since H(λ, c, T ) = 0 and (λ − ε)t > 0. By (5.7) we deduce that there exists a positive value M0 such
that if M ≥ M0 the last term in the previous chain of inequalities is positive, and this implies that φ is
a sub-solution for every M ≥M0.
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In order to find a super-solution, consider the function

ψ(t) :=
1

1 + αeλt
with α > 0 and λ = λ(c, T ) defined in (5.6).

Of course, ψ is a decreasing function satisfying ψ(−∞) = 1, ψ(+∞) = 0.

Observe that

ψ′(t) = −αλ eλt

(1 + αeλt)2
, ψ′′(t) =

αλ2eλt

(1 + αeλt)3
(αeλt − 1).

Therefore, by (5.4) we have

ψ′′(t) + cψ′(t) + f(ψt,c) ≤ ψ′′(t) + cψ′(t) +Kψ(t+ cT )[1− ψ(t)] =

=
αλ2eλt(αeλt − 1)

(1 + αeλt)3
− αλceλt

(1 + αeλt)2
+K

αeλt

(1 + αeλt)(1 + αeλtecλT )
=

=
αeλt

(1 + αeλt)3(1 + αeλtecλT )
{
λ2(αeλt − 1)(1 + αeλtecλT )− λc(1 + αeλt)(1 + αeλtecλT ) +K(1 + αeλt)2

}
.

Hence, putting A(t) :=
αeλt

(1 + αeλt)3(1 + αeλtecλT )
> 0 and recalling that λ2 − cλ+Ke−cλT = 0, the last

term in the previous chain of equalities becomes

A(t)
{
α2e2λtecλT (λ2 − cλ+Ke−cλT ) + αeλt[λ2 − cλ+ ecλT (−λ2 − cλ+ 2Ke−cλT )] + (K − cλ− λ2)

}
=

= A(t)
{
−αeλt[Ke−cλT + ecλT (2λc− 3Ke−cλT )]− (2cλ−K −Ke−cλT )

}
. (5.9)

Let us now consider the function h(c) := cλ(c, 0) = c
2 (c −

√
c2 − 4K), for c > 2

√
K. Observe that

h(c) is a strictly decreasing function, indeed

h′(c) =
1
2
(c−

√
c2 − 4K)+

c

2
(1− c√

c2 − 4K
) =

1
2
[2c− c2√

c2 − 4K
−
√
c2 − 4K] =

c
√
c2 − 4K − c2 + 2K√

c2 − 4K
< 0.

Then,
c · λ(c, 0) = h(c) > K = lim

c→+∞
h(c), for every c > 2

√
K. (5.10)

So, put

γ(c, T ) := Ke−cλT + ecλT (2λc− 3Ke−cλT ), δ(c, T ) := 2cλ−K −Ke−cλT ,

by (5.10) we have γ(c, 0) = δ(c, 0) = 2(h(c)−K) > 0. Hence, for every c > 2
√
K there exists a positive

value T0 = T0(c) such that γ(c, T ), δ(c, T ) > 0 if T ∈ [0, T0]. Therefore, for such values of T we get that
the term in (5.9) is negative for every t ∈ R and this means that ψ is a super-solution.

Let us now show that if we take α < 1− 1
M , then φ(t) < ψ(t) for every t ∈ R. Such a relation is trivial

for t ≤ t∗, whereas for every t ≥ t∗, since e−λt < e−εt ≤ e−εt∗ = 1
M , we have

(1−Me−εt)(e−λt + α) ≤ e−λt + α ≤ 1
M

+ α < 1,

hence φ(t) = (1−Me−εt)e−λt < 1
1+αeλt = ψ(t) for every t ≥ t∗.

Therefore, by applying Theorem 4.3 we deduce that the differential equation in (5.2) admits a decreas-
ing solution u satisfying φ(t) ≤ u(t) ≤ ψ(t) for every t ∈ R. This immediately implies that u(+∞) = 0,
so it remains to show that u(−∞) = 1.

In order to do this, observe that by Proposition 3.2 we have u′(−∞) = u′′(−∞) = 0, so also
lim

n→+∞
f(u−n,c) = 0. Put ` := u(−∞), it is easy to see that the sequence of function (u−n,c(θ))n uni-

formly converges to the constant function u(θ) ≡ `. Indeed, for every fixed ε > 0, let t̃ε be such that
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|u(t) − `| < ε for every t < t̃ε. So, if we take n̄ = n̄ε > cT ∗ − t̃ε then for every n ≥ n̄ε and θ ∈ [−T ∗, 0]
we have −n− cθ ≤ −n̄ε + cT ∗ < t̃ε, so

|u−n,c(θ)− `| = |u(−n− cθ)− `| < ε for every θ ∈ [−T ∗, 0], n ≥ n̄ε.

Thus, by the continuity of f we get f(`) = 0 and being ` > 0, by assumptions (F1-A) and (F2-A) we
deduce ` = 1.

Finally, as regards the rate of decay, since φ(t), ψ(t) ≈ e−λt as t → +∞, also u(t) does. Moreover,
since H(λ(c, 0), c, T ) < 0, we have λ ≤ λ(c, 0) = 1

2 (c−
√
c2 − 4K). �

In the previous theorem we fixed a generic speed c > 2
√
K and show that if the delay T is sufficiently

small there exists a front having speed c. In the following result we change point of view, indeed we show
that fixed a delay T there exists a bounded interval such that if the speed c belongs to it then there exists
a traveling wave having speed c.

Theorem 5.3. Under the same assumption of Theorem 5.2, for every 0 < T < 1
f2(0)

log 4
3 there exists a

value c∗ = c∗(T ) > 2
√
f2(0) such that for every c ∈ [2

√
f2(0), c∗] the boundary value problem (5.2) admits

a decreasing solution u. Moreover, u(t) ≈ e−λt as t→ +∞ (see (5.3)), where λ ≤ 1
2 (c−

√
c2 − 4f2(0)).

Moreover, c∗(T ) → +∞ as T → 0.

Proof. Put, as above, K := f2(0), and considered the function H(`, c, t) defined in (5.5), observe that
H(

√
K
2 , 2

√
K,T ) = K

4 −K+Ke−KT = K(e−KT − 3
4 ) > 0, due to the assumption on the upper limitation

of T . Then, λ(2
√
K,T ) >

√
K
2 , i.e. 2

√
K · λ(2

√
K,T ) > K. Therefore, there exists a value c∗ = c∗(T ) >

2
√
K such that

c · λ(c, T ) > K for every c ∈ (2
√
K, c∗). (5.11)

The proof of the present result proceeds as that of Theorem 5.2 until formula (5.9). From there on,
observe that by (5.11) we get

Ke−cλT + ecλT (2cλ− 3Ke−cλT ) > Ke−cλT + 2KecλT − 3K = Ke−cλT (1 + 2e2cλT − 3ecλT ) > 0

and 2cλ−Ke−cλT −K > K(1− e−cλT ) > 0, implying again that ψ is a super-solution. Hence, from now
on the proof proceeds as that of the previous theorem.

The assertion for c = 2
√
K and c = c∗ is a consequence of the closure of the range of the admissible

speeds proved in Proposition 4.5.
Finally, as regards the behavior of c∗ for T small, observe that put

c∗∗(T ) := sup{c : c λ(c, T ) > K}

this is a continuous function of T taking value on R∪{+∞}, such that c∗∗(0) = +∞, by virtue of (5.10).
So, the assertion follows.

�

We present now just an example of applications of the results in this section.

Example 5.4. Let us consider the delayed reaction-diffusion equation

vτ (τ, x) = vxx(τ, x) +Kv(τ − T, x) (1− v(τ, x))p
, with p ≥ 1.

Put
f(w) := Kw(−T ) (1− w(0))p

, for w ∈ C([−T, 0],
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by what we just observed in the previous remark, we can apply Theorems 5.2 and 5.3 to deduce the
existence of travelling fronts.

5.b - Non-functional Fisher-KPP equations

Despite the present research is motivated by the study of non-local reaction-diffusion equations, we
wish to show how we can fruitfully treat also the non-functional case by means of our approach.

Let us consider the classical equation

u′′ + cu′ + f(u) = 0 (5.12)

where f : [0, 1] → R is a Lipschitzian Fisher-type term, that is satisfying f(u) > 0 in (0, 1), f(0) = f(1) =
0. We extend the definition of f in all R as the null function and define F : C(R) → C(R) by

F (u)(t) = f(u(t)), t ∈ R.

Notice that F is a continuous operator with respect the norm ‖·‖ρ, for every ρ > 0, since f is a continuous
function.

Set β := sup
u 6=v

∣∣∣∣f(u)− f(v)
u− v

∣∣∣∣ the Lipschitz constant of f , it is immediate to verify that the operator F

satisfies the assumptions (H1) − (H3). Moreover, as an application of Theorem 4.3, we can derive the
following result, which is well-known.

Proposition 5.5. Let f be a function as above, differentiable in a right neighborhood of 0 with f ′(0) > 0,
such that there exist f ′′(0) > −∞ and

0 < f(u) ≤ f ′(0)u for every u ∈ (0, 1). (5.13)

Then, for every c ≥ 2
√
f ′(0) there exists a decreasing solution u of the problem{

u′′ + cu′ + f(u) = 0
u(−∞) = 1, u(+∞) = 0.

Moreover, u(t) ≈ e−λt as t→ +∞ (see (5.3)), where λ = 1
2 (c−

√
c2 − 4f ′(0)).

Proof. Since f ′′(0) > −∞, then there exists positive values ν, δ > 0 such that f ′(u) ≥ f ′(0) − νu for
every u ∈ [0, δ), with f ′(0) > 0 owing to assumption (5.13). So, integrating, we deduce

f(u) ≥ f ′(0)u− ν

2
u2 = f ′(0)u

(
1− ν

2f ′(0)
u

)
for every u ∈ [0, δ).

Therefore, considered the function φ(t) := δmax{0, (1−Me−εt)e−λt} ≤ δ (with λ = 1
2 (c−

√
c2 − 4f ′(0))),

by means of the same proof of Theorem 5.2 (rewritten for T = 0), one deduce that the function φ is a
sub-solution.

Moreover, let us consider now the function ψ(t) := min{1, e−λt}. Observe that 0 = ψ′(0−) > ψ′(0+)
and since f(1) = 0, it is immediate to verify that ψ′′(t) + cψ′(t) + f(ψ(t)) = 0 for every t < 0. Instead,
if t > 0 then

ψ′′(t) + cψ′(t) + f(ψ(t)) ≤ ψ′′(t) + cψ′(t) + f ′(0)ψ(t) = e−λt(λ2 − cλ+ f ′(0)) = 0.

Therefore, ψ is a super-solution. Finally, one can easily verify that φ(t) < ψ(t) for every t ∈ R. Hence, by
applying Theorem 4.3 we deduce the existence of a decreasing solution u(t) satisfying φ(t) ≤ u(t) ≤ ψ(t)
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for every t ∈ R, implying u(+∞) = 0 with u ≈ e−λt as t→ +∞. Being f(u) > 0 for every u ∈ (0, 1) and
applying Proposition 3.2, we necessarily have u(−∞) = 1 and this concludes the proof.

�

5.c - Reaction-diffusion equations with convolution integrals

Let us consider the non-local reaction-diffusion equation

vτ (τ, x) = vxx(τ, x) + f0(v(τ, x))
∫ +∞

−∞
Φ(x− σ)v(τ, σ) dσ,

where Φ : R → R is a continuous, non-negative map satisfying∫ +∞

−∞
Φ(s) ds = 1,

and f0 : R → [0,+∞) is a continuous function satisfying the following conditions:

(F0-A): f0(1) = 0, f0(s) > 0 for every s ∈ [0, 1);

(F0-B): f0 is Lipschitzian with Lip-constant L.

When searching for traveling wave solutions v(τ, x) = u(x−cτ), the change of variable t = x−cτ leads
to consider the functional boundary value problem (recall that the convolution product is commutative){

u′′(t) + cu′(t) +
(∫ +∞
−∞ Φ(s)u(t− s) ds

)
f0(u(t)) = 0

u(−∞) = 1, u(+∞) = 0.
(5.14)

In order to treat such a problem by means of the approach presented here, define F : C(R) → C(R) by

F (u)(t) =
(∫ +∞

−∞
Φ(s)u(t− s) ds

)
f0(u(t)), t ∈ R.

Notice that F is a continuous operator.

The following Lemma concerns the applicability of the method presented in the previous sections.

Lemma 5.6. Assume that the function f0 satisfies the properties listed above. Then, the operator F
satisfies assumptions (H1)-(H3) with β ≥ L.

Proof. As for property (H1), assume 0 ≤ u(t) ≤ 1 for any t ∈ R. Then, F (u)(t) + βu(t) ≥ 0 for any t.
Moreover, by (F0-A) and (F0-B) we have f0(s) ≤ L(1− s) for every s ∈ [0, 1], so(∫ +∞

−∞
Φ(s)u(t− s) ds

)
f0(u(t)) ≤ L(1− u(t)),

and, being β ≥ L, we deduce

−F (u)(t)− βu(t) + β ≥ (β − L)(1− u(t)) ≥ 0

for any t. Hence, condition (H1) holds.
Assume now u ∈ C(R) monotone decreasing and let us show that F (u) + βu is monotone decreasing

too. Fixed t1 < t2 we have u(t1) ≥ u(t2), so∫ +∞

−∞
Φ(s)u(t1 − s) ds ≥

∫ +∞

−∞
Φ(s)u(t2 − s) ds,
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and by (F0-B) we have f0(u(t1)) ≥ f0(u(t2))− L(u(t1)− u(t2)). Therefore,

F (u)(t2)− F (u)(t1) =
(∫ +∞

−∞
Φ(s)u(t2 − s) ds

)
f0(u(t2))−

(∫ +∞

−∞
Φ(s)u(t1 − s) ds

)
f0(u(t1)) ≤

≤
(∫ +∞

−∞
Φ(s)u(t2 − s) ds

)
[f0(u(t2))− f0(u(t1))] ≤

≤ L

(∫ +∞

−∞
Φ(s)u(t2 − s) ds

)
[u(t1)− u(t2)] ≤ β[u(t1)− u(t2)]

since β ≥ L. Hence, condition (H2) is satisfied. The proof of the validity of (H3) is analogous. �

In order to present a concrete application of our existence result, let us consider the particular function

Φ0(t) =
b

2
e−b|t|, t ∈ R, for some b > 0. (5.15)

The following result states that imposing some further conditions on the function f0 and the constants b,
c, a pair of ordered super and sub-solutions can be found and consequently the boundary value problem
(5.14) admits solutions.

Theorem 5.7. Let Φ0 be defined by (5.15) and let f0 satisfy conditions (F0-A) - (F0-B). Assume that
b > 2

√
f0(0) and

f0(s) ≤ f0(0)(1− s) for every s ∈ [0, 1]. (5.16)

Then, for every c ∈ [c∗1, c
∗
2], where

c∗1 :=
√

2
(
b2 − b

√
b2 − 4f0(0)

)
, c∗2 :=

√
2
(
b2 + b

√
b2 − 4f0(0)

)
, (5.17)

the boundary value problem (5.14) admits a decreasing solution u. Moreover, u(t) ≈ e−λt as t → +∞
(see (5.3)), for a suitable λ < c/2.

Proof. In view of Lemma 5.6 and Theorem 4.3, we only need to find a pair of ordered super and sub-
solutions.

First of all, observe that it suffices to prove the assertion for c ∈ (c∗1, c
∗
2). Indeed, in the present

framework all the assumptions of Proposition 4.5 are satisfied and then the range of the values of c
for which the boundary value problem (5.14) is solvable is closed. So, from now on we fix a constant
c ∈ (c∗1, c

∗
2).

From now on, put K := f0(0). Moreover, if L denotes the Lipschitz constant of f0, put h := L
K ≥ 1,

we have
f0(s) ≥ K(1− hs) for every s ∈ [0, 1]. (5.18)

Given M > 1, consider the function

φ(t) := max{0, 1
h

(1−Me−εt)e−λt},

where 0 < ε < λ and λ < λ+ ε < b. Let t∗ denote the positive value such that Me−εt∗ = 1. Observe that
0 = φ′(t∗−) < φ′(t∗+), moreover if t < t∗ then φ′(t) = φ′′(t) = 0, and if t > t∗ then

φ′(t) = −λ
h
e−λt +

M

h
(λ+ ε)e−(λ+ε)t; φ′′(t) =

λ2

h
e−λt − M

h
(λ+ ε)2e−(λ+ε)t.



20 A. CALAMAI, C. MARCELLI, AND F. PAPALINI

To show that φ is a sub-solution, taking (5.18) into account, we have to prove that

φ′′(t)+cφ′(t)+
(∫ +∞

−∞
Φ0(s)φ(t− s) ds

)
f0(φ(t)) ≥ φ′′(t)+cφ′(t)+

(∫ +∞

−∞
Φ0(s)φ(t− s) ds

)
K(1−hφ(t)) ≥ 0

for every t in R. Now, for t < t∗ we have

φ′′(t) + cφ′(t) +
(∫ +∞

−∞
Φ0(s)φ(t− s) ds

)
K(1− hφ(t)) = K

∫ +∞

−∞
Φ0(s)φ(t− s) ds ≥ 0.

Instead, for t > t∗ we have

φ′′(t) + cφ′(t) +
(∫ +∞

−∞
Φ0(s)φ(t− s) ds

)
K(1− hφ(t)) =

=
e−λt

h

{
λ2 −M(λ+ ε)2e−εt − cλ+ cM(λ+ ε)e−εt +

Kb

2
(1− hφ(t))

∫ t−t∗

−∞
eλs−b|s|(1−Me−εt+εs) ds

}
.

Computing the integral in the last formula, and recalling that Me−εt∗ = 1, we obtain∫ t−t∗

−∞
eλs−b|s|(1−Me−εt+εs) ds =

∫ 0

−∞
eλs+bs(1−Me−εt+εs) ds+

∫ t−t∗

0

eλs−bs(1−Me−εt+εs) ds =

=
1

λ+ b
−Me−εt 1

λ+ ε+ b
+
e(λ−b)(t−t∗) − 1

λ− b
−Me−εt e

(λ+ε−b)(t−t∗) − 1
λ+ ε− b

=

=
2b

b2 − λ2
−Me−εt 2b

b2 − (λ+ ε)2
+ e(λ−b)(t−t∗)

(
1

b− (λ+ ε)
− 1
b− λ

)
.

Therefore,
Kb

2
(1− hφ(t))

(∫ t−t∗

−∞
eλs−b|s|(1−Me−εt+εs) ds

)
=

=
Kb

2
(
1− e−λt +Me−εt−λt

)(∫ t−t∗

−∞
eλs−b|s|(1−Me−εt+εs) ds

)
=

=
(
1− e−λt +Me−εt−λt

)( Kb2

b2 − λ2
−Me−εt Kb2

b2 − (λ+ ε)2
+ e(λ−b)(t−t∗) εKb

2(b− λ)(b− (λ+ ε))

)
.

Now, since λ < λ+ ε < b, we get (b−λ)(b− (λ+ ε)) > 0. Consequently, being 1−hφ(t) ≥ 0 for every
t, it follows(

1− e−λt +Me−εt−λt
)( Kb2

b2 − λ2
−Me−εt Kb2

b2 − (λ+ ε)2
+ e(λ−b)(t−t∗) εKb

2(b− λ)(b− (λ+ ε))

)
≥

≥
(
1− e−λt +Me−εt−λt

)( Kb2

b2 − λ2
−Me−εt Kb2

b2 − (λ+ ε)2

)
=

=
Kb2

b2 − λ2
−Me−εt Kb2

b2 − (λ+ ε)2
− e−λt(1−Me−εt)

(
Kb2

b2 − λ2
−Me−εt Kb2

b2 − (λ+ ε)2

)
.

Since
1

b2 − λ2
≤ 1
b2 − (λ+ ε)2

and 0 ≤ 1−Me−εt ≤ 1 for t > t∗, we have

e−λt(1−Me−εt)
(

Kb2

b2 − λ2
−Me−εt Kb2

b2 − (λ+ ε)2

)
≤

≤ e−λt(1−Me−εt)2
(

Kb2

b2 − (λ+ ε)2

)
≤ e−λt Kb2

b2 − (λ+ ε)2
.
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Finally,(
1− e−λt +Me−εt−λt

)( Kb2

b2 − λ2
−Me−εt Kb2

b2 − (λ+ ε)2
+ e(λ−b)(t−t∗) εKb

2(b− λ)(b− (λ+ ε))

)
≥

≥ Kb2

b2 − λ2
−Me−εt Kb2

b2 − (λ+ ε)2
− e−λt Kb2

b2 − (λ+ ε)2
.

Hence, we get

λ2 −M(λ+ ε)2e−εt − cλ+ cM(λ+ ε)e−εt +
Kb

2
(1− hφ(t))

(∫ t−t∗

−∞
eλs−b|s|(1−Me−εt+εs) ds

)
≥

≥ λ2 −M(λ+ ε)2e−εt − cλ+ cM(λ+ ε)e−εt +
Kb2

b2 − λ2
−Me−εt Kb2

b2 − (λ+ ε)2
− e−λt Kb2

b2 − (λ+ ε)2
=

= λ2 − cλ+
Kb2

b2 − λ2
−Me−εt

(
(λ+ ε)2 − c(λ+ ε) +

Kb2

b2 − (λ+ ε)2

)
− e−λt Kb2

b2 − (λ+ ε)2
=

Q(λ)−Me−εtQ(λ+ ε)− e−λt Kb2

b2 − (λ+ ε)2
,

where Q(s) := s2 − cs+
Kb2

b2 − s2
.

We claim that for a suitable choice of λ, ε and M the last term in the previous chain of inequalities
is non-negative. Indeed, notice that Q(0) = K. Moreover, conditions b > 2

√
K and (5.17) imply that

c < 2b and Q(c/2) < 0. Consequently, there exist positive numbers λ = λ(c, b,K), ε = ε(c, b,K) satisfying
ε < λ, λ+ ε < c/2, such that

Q(λ) = 0 and Q(λ+ ε) < 0. (5.19)

Moreover, since t > t∗ > 0, we have 0 < e−(λ−ε)t < 1, so

Q(λ)−Me−εtQ(λ+ ε)− e−λt Kb2

b2 − (λ+ ε)2
= e−εt

[
−MQ(λ+ ε)− e−(λ−ε)t Kb2

b2 − (λ+ ε)2

]
≥

≥ e−εt

[
−MQ(λ+ ε)− Kb2

b2 − (λ+ ε)2

]
≥ 0

provided that M > 0 is large enough.
Therefore, with the above choice of λ, ε, M = M(b,K, λ, ε) = M(c, b,K), the function φ(t) =

max{0, 1
h (1−Me−εt)e−λt} is a sub-solution.

In order to find a super-solution, consider the function

ψ(t) := min{1, e−λt}

where the constant λ > 0 is the same as above. Observe that 0 = ψ′(0−) > ψ′(0+), moreover if t < 0
then ψ′(t) = ψ′′(t) = 0, and if t > 0 then ψ′(t) = −λe−λt, ψ′′(t) = λ2e−λt.

To show that ψ is a super-solution we have to prove that

ψ′′(t)+cψ′(t)+
(∫ +∞

−∞
Φ0(s)ψ(t− s) ds

)
f0(ψ(t)) ≤ ψ′′(t)+cψ′(t)+

(∫ +∞

−∞
Φ0(s)ψ(t− s) ds

)
K(1−ψ(t)) ≤ 0

for every t in R. Now, for t < 0 we have ψ′′(t) + cψ′(t) +
(∫ +∞
−∞ Φ0(s)ψ(t− s) ds

)
K(1− ψ(t)) = 0.

Instead, for t > 0 we have

ψ′′(t)+cψ′(t)+
(∫ +∞

−∞
Φ0(s)ψ(t− s) ds

)
K(1−ψ(t)) = λ2e−λt−cλe−λt+K(1−e−λt)e−λt

∫ +∞

−∞
Φ0(s)eλs ds =
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= e−λt

(
λ2 − cλ+K(1− e−λt)

∫ +∞

−∞
Φ0(s)eλs ds

)
.

Since 0 ≤ 1− e−λt ≤ 1 for t > 0, taking account of (5.19), we deduce

λ2−cλ+K(1−e−λt)
∫ +∞

−∞
Φ0(s)eλs ds ≤ λ2−cλ+K

b

2

∫ +∞

−∞
eλs−b|s| ds = λ2−cλ+

Kb2

b2 − λ2
= Q(λ) = 0.

Then, the function ψ(t) is a super-solution.

Finally, note that φ(t) < ψ(t) for every t ∈ R. In fact, this is trivial for t ≤ t∗, whereas for every t ≥ t∗

we have
φ(t) =

1
h

(1−Me−εt)e−λt < e−λt = ψ(t).

Therefore, by applying Theorem 4.3 we deduce that the differential equation in (5.14) admits a decreas-
ing solution u satisfying φ(t) ≤ u(t) ≤ ψ(t) for every t ∈ R. This immediately implies that u(+∞) = 0.
Finally, by arguing as in the proof of Theorem 5.2, one can prove that u(−∞) = 1 and the proof is
complete. �

Similarly to what we done in the case of delayed equation, we present now an example of application
of the previous result.

Example 5.8. Let us consider the non-local reaction-diffusion equation

vτ (τ, x) = vxx(τ, x) +
Kb

2
(1− v(τ, x))p

∫ +∞

−∞
e−b|x−σ|v(t, σ) dσ, with p ≥ 1.

Put f0(s) := (1− s)p, we can apply Theorem 5.7 and deduce the existence of travelling fronts.

Remark 5.9. As we mentioned in Introduction, the classical Fisher-KPP equation with the reaction
term f(u) = Ku(1 − u) can be viewed as a particular case of the equation governed by the convolution
integral when the kernel is the Dirac delta function and can be obtained taking the limit as b → +∞.
Notice that the threshold values c∗1 = c∗1(b,K), c∗2 = c∗2(b,K) given by (5.17) satisfy

lim
b→+∞

c∗1(b,K) = 2
√
K and lim

b→+∞
c∗2(b,K) = +∞

in accordance with the circumstance that the classical Fisher-KPP equation in this case admits t.w.s. if
and only if c ≥ c∗ = 2

√
f ′(0) = 2

√
K.
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