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Abstract

We consider a singularly perturbed system where the fast dynamic
of the unperturbed problem exhibits a trajectory homoclinic to a crit-
ical point. We assume that the slow time system is 1-dimensional and
it admits a unique critical point, which undergoes to a bifurcation as
a second parameter varies: transcritical, saddle-node, or pitchfork. In
this setting Battelli and Palmer proved the existence of a unique tra-
jectory (Z(t,e, A),y(t,e, \)) homoclinic to the slow manifold. The pur-
pose of this paper is to construct curves which divide the 2-dimensional
parameters space in different areas where (Z(t,e,\), y(t, €, A)) is either
homoclinic, heteroclinic, or unbounded. We derive explicit formulas
for the tangents of these curves. The results are illustrated by some
examples.

Keywords. Singular perturbation, homoclinic trajectory, transcritical bi-
furcation saddle-node bifurcation.
MSC 2010. 34D15, 34C37,37G10

1 Introduction

In this paper we consider the following singularly perturbed system:

i =cf(v,y,6\)
{ y=g(x,y,e ) (1.1) [n1.1
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where * € R, y € R" and (z,y) € Q, Q C R is open, \ and ¢ are
small real parameters and f(x,y,e,\), g(z,y,e, A) are C"functions in their
arguments bounded with their derivatives, » > 2. We suppose that the
following conditions hold:

(i) for any = € R, we have
9(x,0,0,0) =0,

(ii) the infimum over x € R of the moduli of the real parts of the eigenvalues
of the jacobian matrix g—g(:p, 0,0,0) is greater than a positive number

A9.

(iii) the equation
§=9(0,5,0,0)

has a solution A(t) homoclinic to the origin 0 € R”

(iv) A(t) is the unique bounded solution of the linear variational system:

dg

Y= 8_3;(0’ h(t),0,0)y (1.2)

up to a scalar multiple.

According to condition (ii), for any x € R, the linear system y = (:v 0,0,0)y
has exponential dichotomy on R with exponent A9 > 0 and pl"OJeCtIOIlS say,
PY(z). For simplicity we set P°(0) = P°. Let rank[P"(z)] = p, p being the
number of eigenvalues of g—g(x, 0,0,0) with positive real parts: we stress that
p is constant for |z| small enough. From the assumptions (ii) and (iii) it
follows that the linear system (1.2) and its adjoint

=~ [520.h(0).0,0)]'y (1.3

have exponential dichotomies on both R, and R_; i.e. there are projections
P* and k > 0 such that

1Y (¢ )P_Y_ (5)|| < ke=20=9) ifs<t<0
1Y ()X = P)YY(s)|| < ke 6D if ¢ < 5 <0
1Y () P+HY —1(s)|| < ke A(t=9) 0 <s<t (1.4)
1Y (6)X = PHY " Hs)|| < ke ™™D if0<t < s

where Y () is the fundamental matrix of (1.2), and the analogous estimate
hold for (1.3). Here and later we use the shorthand notation + to repre-
sent both the + and — equations and functions. Observe that rank(P*) =

nl.3

nl.4
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rank(P~) = p and the projections of the dichotomy of (1.3) on R, are
I — [P*]*. Moreover from (i)—(iv) it follows that (1.3) has a unique bounded
solution on R, up to a multiplicative constant. We denote one of these solu-
tions by ¥ (t). Note that ¢ := ¢(0) satisfies N[PT|* N R[P~]* = span(¢)) =
[RPT N NP~]*; we assume w.lo.g. that [1/(0)] = 1. As a second remark
we observe that condition (i) implies the existence of a function v(z,e, \)
defined for x,e, A small enough, such that v(x,0,0) = 0 and the manifold
y = v(z, e, \) is invariant for the flow of (1.1) (see for example [2, 11]) and
satisfies the following: if (z(t,e,A),y(t,e,A)) is the solution of (1.1) such
that (z(0,e,A),y(0,e,N)) = (Z,v(Z,e,N)), then ||g(0,e,\)|| < Ce for a cer-
tain C' > 0. Moreover v(x, e, A) is C" and bounded with its derivatives. Using
the flow of (1.1) we can pass from the local manifold y = v(x, ¢, \) to a global
slow manifolds for system (1.1) which will be denoted by M = M¢(g, A).
Let z.(t,&,e,\) be the solution of the scalar ODE:

T = f(z,v(z,e,\),&,\) xz(0) =¢ (1.5)

So (ze(t, &, e, N),v(z:(t,€,6,\),e,\)) describes the flow on the slow manifold
M¢, and (1.5) is the so called “slow time” system.

The behavior of homoclinic and heteroclinic trajectories subject to sin-
gular perturbation has been studied in several papers, see e.g. [1, 2, 4, 5,
6, 11, 12]. In particular in [6] the authors built up a theory to prove the
existence of solutions homoclinic to M€, for the perturbed problem (1.1)
assuming conditions (i)—(iv) and giving transversality conditions of several
different types. They refine previous results obtained in [4].

This paper is thought as a sequel of [6]. Here we assume that the “slow
time” system (1.5) is one-dimensional so that there is a unique solution
(Z(t,e,N),y(t,e,\)) homoclinic to M. Moreover we assume that (1.5) un-
dergoes to a bifurcation for ¢ = 0 as A changes sign. We mainly focus on the
transcritical and saddle-node case, i.e. we assume f has one of the following
form:

f(z,0,e,)) = 2% —b(e)N\*+O(z?) (1.6)
f(z,0,e,A) = 2% —a(e)A+0O(z?) (1.7)

where a(e) and b(e) are positive C" functions and the terms contained in
O(x3) are C" in z and € and C""! in A\. The aim of this paper is to derive
further Melnikov conditions which enable us to divide the €, A space in differ-
ent sets in which (z(t, e, A),y(t, e, A)) has different behavior: it is homoclinic,
heteroclinic or it does not converge to critical points either in the past or
in the future. We stress that we have explicit formulas for the derivatives
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of the curves defining the border of these sets. This is the content of Theo-
rems 3.3, 3.6 which regard respectively the case where (1.5) undergoes to a
transcritical or to a saddle-node bifurcation.

We emphasize that the assumptions (1.6) and (1.7) on f are generic.
In fact assume f(0,0,0,0) = 0, %(0,0,0,0) = 0 and %(0,0,0, 0) # 0.
Following subsection 11.2 of [?], we see that when %(O, 0,0,0) # 0 we can
find a new parameter A = (e, \) with C"! dependence on ¢ and X and a

C" change of variables 7 = Z(z, e, \), so that (1.5) takes the form

i=—Ae,\) +c(e)Z+ 0(z?),

where ¢(e) > 0 is C" (possibly reversing time, i.e. passing from t to —t).
Hence we reduce to the case where f has the form (1.7), and (1.5) undergoes
to a saddle-node bifurcation. When %(0,0,0,0) =0, , eg. if for some
physical reasons the origin of the system (1.5) is forced to be a critical point
of the system for any A, generically we have a transcritical bifurcation. In
such a case, up to a C"~! change of parameters and a C” change of variables
we can pass from (1.5) to

T = -2\, \) +cle)z® + O(z°),

see again subsection 11.2 of [?]. Then passing from z to T = = — #(8), we
reduce to the case where f has the form (1.6), and (1.5) undergoes to a
transcritical bifurcation. We emphasize that in all the change of parameters
we can and will leave unchanges the singular parameter ¢.

Let u(e, A), s(e,\) be the zeroes of f(z,v(z,e,\),e,\) = 0, and denote
by U(e, A) = (u(e, A),v(u(e, N),e,A)), S(e, A) = (s(g,A),v(s(e, A),e,A)) the
critical points of (1.1) when they exist. When f is either of the form (1.6) or
(1.7) (1.5) admits two critical points for A > 0 = ¢, i.e. u(0,A),s(0,\) € R:
u is unstable while s is stable.

When f does not depend on ¢, the solutions of u(e,\) = s(e,\) is given
by A = 0, but when f depends on e there is a function ¢(\) such that
u(q(N), A) = s(q(A),A). Hence if f is as in (1.6), the critical points u(e, A)
and s(e, A) of (1.5) reverse their stability properties as we pass from € > ¢(\)
to € < g(A), while if it is as in (1.7) then u(e, ) and s(e, \) are distinct for
e > ¢()), they coincide for € = ¢(\) and they do not exist for e < g(A).
Note that ¢ is a smooth function of A for (1.6) while it is a smooth function
of v = sign(A)V/ for (1.7).

Our purpose is to find trajectories of (1.1) which are close for any t € R
to the homoclinic trajectory (0, h(t)) of the unperturbed system. We use the
implicit function theorem to construct Melnikov conditions which ensure the
existence of such trajectories, and which allow to say if they are homoclinic,
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heteroclinic or unbounded. The techniques can be applied also to bifurcations
of higher order, i.e. when the first nonzero term of the expansion of f; in
xo has degree 3 or more: we discuss shortly this setting in subsection 3.3
focusing in particular on the pitchfork bifurcation. The assumptions used in
the main Theorems are the following:

/_OO w*(t)g_z(oa h(t),0,0)dt # 0

f wta—g h(t),0,0)dt s
(00 = )20, h(0),0,0)d %aA(OO)

where the computable constant By is given in (2.26).

With our techniques we may also consider more degenerate bifurcations,
i.e. the first non-zero term in the expansion of f(z,0,0,0) has degree three
or larger. However in such a case to obtain a complete unfolding of the
singularity more parameters are needed. In fact we just sketch the case of
pitchfork bifurcation, which however appears frequently when f is odd in x
for any € and A for some physical reasons. Again, following subsection 11.2
of [?], we see that, up to changes in variables and parameters, we may reduce
to f of the form

f(2,0,e,A) = [2% = b(e) N[z — a(e)N] + O(z*) (1.8)

where a(e) and b(g) are C" positive functions and the O(x?) has C™ depen-
dence on € and .

The paper is divided as follows. In section 2 we briefly review some facts,
proved in [6]: we construct the solutions asymptotic to the slow manifold M€,
then we match them via implicit function theorem, to construct a solution
(Z(t,e,N\),y(t,e,A\)) homoclinic to M°. In section 3 we show which is the
behavior of (Z(t,e,\),y(t,e,A)) as € and A varies, in the transcritical and
in the saddle-node case (subsections 3.1 and 3.2 respectively). So we give
sufficient conditions in order to have homoclinic, heteroclinic or no bounded
solutions close to (0,h(t)), as the parameters vary: this is the content of.
Theorems 3.3 and 3.6. Finally we explain how the same methods can be
extended to describe pitchfork and higher degree bifurcations in subsection
3.3. We illustrate our results drawing some bifurcation diagrams. Finally
in section 4 we construct examples for which we can explicitly compute the
derivatives of the bifurcation curves appearing in the diagrams.
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2 The centre-stable and centre-unstable man-
ifolds

In this section we define the local centre-stable and centre-unstable manifolds
and we recall their smoothness properties. These manifolds are (locally) in-
variant manifolds of solutions that approach the slow manifolds y = v(z, e, A)
at an exponential rate. In [5, 6] the following result has been proved.

2.1 Theorem. [6] Let f and g be bounded C™ functions, r > 2, with bounded
derivatives, satisfying conditions (i)-(iv) of the Introduction and let the num-
bers B and o satisfy 0 < ro < [ < A9. Then, given suitably small positive
numbers 1 and o, there exist positive numbers ag, A, €0(< 20 /N, where N
is a bound for the derivatives of f(x,0,0,0)), such that for |e| < &g, |A| < Ao,
1EF] < g, (T € R(PT), ICT] < 1, ¢ €N(P), || < pa, there exists a
unique solution

(@), 57 (1) = (@ (€5, C5 N,y (165, N)
of (1.1) defined respectively for t > 0 and for t < 0 such that
PNt (1) — welet, €76, M) <, Myt (t) —o(@(t),6, )] < (21)
fort>0, and
() — wo(et, €8, M) < pa, My (1) —v(a™(t),6, M) < pp (22)
fort <0, and

Py (0) - o(a* (0),2, 0] = ¢+, (T— P)y~(0) — vla™(0),2, \)] = ¢
2.3
Moreover y£(t, 65, (F e, \)—v(a®(t, €5, ¢F, e, M), 6, \) and 25 (t, €5, (F, e, \)—
z.(et, &5, e, N) are C™~1 in the parameters (€5,(F, e, \) and fork =1,...,r—
1 their k™ derivatives also satisfy the estimate (2.2) with B replaced by 38— ko
and 1 and py replaced by possibly larger constants. Also there is a constant
N1 such that fort <0

e‘ﬁt‘|x_(t,§‘,§_,s, >‘) - xc(€t>€_>€7)\)| S N1|5HC—|>
€‘Bt‘|y_(t,€_,c_,€,)\) - U(.%_(t,f_,c_,& )\)>€a )\))’ S Nl|C—|

and fort >0

(2.4)

Pt (t, €%, ¢ e, N) = we(et, €76, M| < Nafell(4],

Dyt (t €5, CH e A) — w(@ (6 5, e, A e, ) < NGy )

n2.5

n2.2
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Following section 2.1 in [6], using Theorem 2.1 we define the local centre-
unstable and centre-stable manifolds near the origin in R as follows

fgc = {(.T}_<O, 5_7 C_757 )‘)7y_(0>€_7 <_7€7 A)) : ’<_| < Ho, ’5_’ < a0}7
lc(fc = {($+<O, £+7 §+7 &, )‘)7 y+(07 §+7 C+7 & A)) : ’<+| < Mo, |£+| < aO}‘
In [6] it has been proved that M{* and M3, are respectively negatively and
positively invariant for (1.1). Thus, going respectively forward and backward
in ¢, we can construct from M7y and M. the global manifold M and M,
see Lemma 2.3 in section 2.2 in [6]. Therefore M and M are respectively
pl and n — p + 1 dimensional immersed manifolds of R"*!, made up by the
trajectories asymptotic to M€ resp. in the past and in the future.
Following the discussion after Theorems 2.1 and 2.2 in [6], we see that
the k™ derivatives of z*(¢,&,¢*,e,\) and of 2 (t,£,(",&,\) with respect
to (£,¢(*,e,\) are bounded above in absolute value by Cpe 1ot for ¢ ¢
R respectively, where C} is a constant and ¢ > Negy is a positive num-
ber that satisfies 0 < ro < f < AY. Finally, because of uniqueness of
(xE(t, €5, ¢E e, M), 45 (8, €, CF e, \)), we see that the following properties hold:

rE(t, EE v(EE e, 0), 6, \) = zo(et, 5,6, N), 56
yE(t €5 0(E5, 6, 0),6,\) = v(we(et, €F,2,0), 6, \) (2.6)

and
2 E5,CT0,0) = €F (2.7)

see [6]. Since z.(0,£,e,A) = &, we see that the slow manifold M€ defined by
y =wv(&, e, \) is contained in the intersection between M and M.

Exploiting section 2.3 in [6] we can define a foliation of Mf% and M,
as follows. Let || be sufficiently small, we set

M) = {7 (£,6,¢7, 6,0,y (1,6,¢ &, ) [T < po, ¢ € NPTt €R}

| 1€
M=(E) = {(@"(t,&,¢7, e, A), ¥y (1,€,¢T e, N) | [CT] < po, ¢7 € RPT ¢ € R}

Using the flow of (1.1) we can remove the smallness assumption on £ (but
we get w1 = i ([€]), p2 = ua(l€l), N1 = N1(J€]) in the estimates (2.2), (2.1),
(2.4), (2.5)).

From section 2.3 in [6] we see that that M (£) and M (§) are p and n—p
manifolds for any ¢ € R, and that M = Ugeg M (), M = Uger M (§),
are the global centre-unstable and centre-stable manifolds defined above.

Moreover given &,& € R then either M(€) and M(&) coincide or they

do not intersect; similarly either M (£) and M (&) coincide or they do not
intersect: thus M (§) and M (&) define indeed foliations for M and M.

n2.7

n2.8
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We denote by B(&, p) the ball with centre £ € R and radius p > 0. Let
A C R be a set, we define dist(¢, A) = inf{|{ — 7| | n € A}. We borrow from

[6] a theorem which ensures the existence of a solution of (1.1) homoclinic to

Me.
2.2 Theorem. [6] Let f and g be bounded C" functions, r > 2, with bounded

derivatives, satisfying conditions (i)—(v) of the Introduction. Then there exist
positive numbers No, €9 such that for any |e| < o, || < Ao there is a solution

(Z(t, & e, N), U, &, e, A)) € (M@ N M)\ M€ satisfying
lim dist((Z(e, A, t), §(e, A, t)), M) =0

[t|—=o0
Moreover there is a neighborhood Q° of (0,h(0)) such that, if (x(t),y(t)) €
(M= N M) and (x(0),5(0)) € Q°, then (x(t),y(t)) = (E(t, €, A),5(t,e, A)),

so local uniqueness is ensured.

We sketch the proof since some details will be useful later on. To prove
theorem 2.2 Battelli and Palmer in [6] look for a bifurcation function whose
zeroes correspond to solutions of the system

y (=T,67.¢TeN) = y (T,6,¢ .60 (2.8)
ot (=T, &7,¢Te,N) = o (T,6,(,8)) (2.9)
where T' > 0, and |£%| < pg. They begin from (2.8), so they rewrite it as
$+(_T7 §+7 C+7 &, )‘) - 5 =0
et S (210

Since T (=T,£",(T,0,A) = ¢ and 2 (T,€,(7,0,\) = £, using the im-
plicit function theorem they find unique C" functlons £ = EX(€,(F e, N,
such that £¥(&,¢*,0,)) = ¢ and

'T+(_T7 €+(§7C+a57 )\)a C+75a )‘) = g = 'T_(Ta g_(ga <_75a )\)7C_7€7 A) (211)
for any (£,¢*, (7, ¢) such that |[¢F] < po, €] < po, €] < g0 and any A. Set

i(t7§a Qi,E,)\) = xi(t,gi(é“,Ci’E’)\)’Cﬂ:’g’ )\)
FHECF e N) =y (4, 65(6,CF e, ), ¢F e A) (212)

and note that %~ =(€,¢*,0,0) = I, while ﬁ(g ¢£,0,0) =0, 2£2(,¢%,0,)) =
0. Following [6] we see that

=+ +o00
X et e N looon = [ F0.(:),0,0)ds

o : 219

+
—o (tF1.0.¢%,0,0) /th $),0,0)ds

n3.2

Kl
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Observe further that
U6 e N) = 9@ (16, ¢ e N) g (L6 e e ) (214)
Following section 3.1 in [6], by the uniqueness in Theorem 2.1 we see that
y(t,0,65,0,0) =h(t+T), 5 (t0,¢,0,0)=h(t—T)

where

Gh=Pth(T) and ¢, =1 — P )h(-T).
Since (2%, 7%)(t,0, (5, 0,0) = (0, h(t £ 7)) it follows that
y=(t,0,G5,0,0) = gu(t £T) = g(t £ T,0,h(t £ T),0,0). (2.15)
Using (2.15) we can differentiate (2.14) to evaluate the derivatives of y* with
respect to all the variables. Recalling that 89” ($T £,¢%,e,\) =1 we find

oyt n 0 89
e :FT7 07 ) 07 0 = *

see [6] for details. Let us set 2 (t 0,¢;7,0,0) = Y(¢), and observe that Y (¢)
solves

29.(0, h(t),0,0)dt (2.16)

{ ; t) = 2900, h(t+T),0,0)Y(t) +ht(t+T) (2.17)

oy
F(Y(0)) = P*32(0,0,0)

where h*(t) = 29(0,h(t),0,0)% (¢t — T,0,¢,0,0) + 2(0,h(t),0,0), and

oz
we have used (2.3). Using the variation of constants formula and the fact
that ¢ € (RPt N NP~)%, and repeating the argument for 3, we find the
following;:
*E(:FT,QC;TaOaO) = w*(S)hi<S)dS (218)
+o0

where h*(t) := g—g((),h( ),0,0)2= “(tFT,0 ,G5,0,0) + (O, h(t),0,0), see also
[6]. Let us denote by

K(&CT (e A) =7 " (-T,&¢" e, \) =y (T,6,¢ 7,6, A) (2.19)

It is easy to see that K(0,(, ¢, ,0,0) = 0. Following pages 449-450 in [6]
we evaluate the derivatives with respect to ((*,¢7) to apply the implicit
function theorem. Note that Z*(t) = agi (t 0,¢F,0,0) solve

dg

ZE(t) = a—y(o, h(t +T),0,0)Z%(t). (2.20)

newstar

n3.9
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and are such that e/®=?%| Z+(t)| and e®~2)!| Z=(t)| are bounded respectively
for t > 0 and for ¢ < 0; moreover Z*(0)¢* = (" and Z~(0)¢~ = ¢~ whenever
¢t € RPT and (- € N P~. We stress that (2.20) is a £7-translate of (1.2),
so it admits exponential dichotomy. We introduce the continuous family of
projections P(t) = Y (¢)PYY ~1(¢t) for (1.2). Observe that lim; 4., PE(t) =
P and that RP™(T) and N'P~(—T) are assigned but we can and will choose
NPHT)=NP* and RP~(—T) = RP~, see [4] and [10]. Then

S (00.61.0.0) =Y (¢ + T)Y (D)D) = V(14 T)PTY(T)
gg_ (£,0,¢7,0,0) =Y (t — T)(I = P-)Y " (=T).

Therefore

0K 0K

(0.6, 6, 0,0) = PTYH(T), (0,¢4,6,0,0) = =(I=P7)Y (=T

221)

(0,¢,,¢,F,0,0), then

ac+ -

If (vi,v-) € (RPT x NP7) is in the kernel of 8(C+ =

PYY YTyt =1-P )Y H(-Thw =we (RPTNNP).
From (iv) we find w = ¢gp(0) for a certain ¢ € R. It follows that PT(T)v" =
cyn(T), (I — P~ (=T))v~ = cyn(=T); so vT = cPTy,(T) and similarly
v~ = ¢(I — P7)yu(=T). Thus the kernel of %(0, ¢, G, 0,0) is the

one dimensional space spanned by (P*y'h(T) (I—P7)yn(—T)), see page 450
of [6] for more details. The range of (* = (0 ¢r, ¢, ,0,0) is a subspace of

codimension one in R" and it is contained in RPT + NP~ = ¢, so it co-
incides with the whole 1. We apply the Lijapunov-Schmidt reduction and
consider, instead of (2.8) the system:

G, ¢ ¢ e \) =K (6,CT, ¢ e, 0) = [¥°K(6,¢, ¢y, \)]w = 0
WK (6,CT, (7,8, A) =0

together with the anchor condition

Q(§7<+7€7 )‘> = [ng(_Tvéa C+7€7 )‘> - h(O)] yh(o) 07

which has to be added to ensure uniqueness

(222)

Following [6] page 450 we see that C* C (0 ¢, , ¢, 0,0) is invertible.

So, from the Implicit Function Theorem we find unique C"-functions (¥ =

CE(€,e, ) for €], |A| and |e| sufficiently small which solve é(f,é*(f,e,)\),
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- (€,€,7A),€,A) = 0 and ¢(¢, (FH(€,e,)0),6,\) = 0. Because of uniqueness we
get ( jE(0 0, O) (;F. Hence we are left with solving the bifurcation equation:

where we have set §= (¢, &, e, \) == 77 (¢, &, CF(€,2, 1), 6, M); 50 G(€, ¢, \) is the
bifurcation function we looked for. Since ¢ € (RPTNNP™)L, from (2.21)
it follows that ¢*a<i (FT,€, ¢, 0,0) =0, so

aG K aG 0K .
(9G

(2.24)

From (2.8) we see that G(0,0,0) = 0; we need to evaluate all the derivatives
of G. From (2.16), (2.24), (2.19) and (v) we see that

0 oo dg
6_§’G<000) 1/1() (O h(t),0,0)dt # 0.
Reasoning in the same way we see that
+o00
%G(O 0,0) = w (t )%(O,h(t),o,())dt. (2.25)

Therefore, from the Implicit Function Theorem we obtain the following

o taA ,h(t),0,0)dt
[ (t)92(0, h(t),0,0)dt

Similarly, using (2.18), and (2.24) we find

a ~(0.0,0) /¢ {g +%(s)(/osf(t)dt)]ds (2.27)

where g(s) stands for ¢(0, h(s),0,0), f(s) for f(0,h(s),0,0) and similarly for
their derivatives; thus

o -
=€ N 0,0)= Bo = —

o (2.26)

°"I

c oG
%(O, 0) = gg =2, where
o "‘f (2.28)
o I V()G ()ds + [7 (4 (s) )52(s) [y f(t)dt)ds

o v(s % (s)ds

cizero

newderep
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So, if (v) holds, for any (&,s,\) € R™™ small enough, there is a unique
solution of (1.1) which is homoclinic to the slow manifold M€, i.e.:

(=T A A) t>0
I(t,&,6,N) = :f_( 0l N 2 A) 820,
P (t+T,80(&, 6. 0), &8, ) £ < 0. 229)
, gt —T,&(&, e N), &6, 0) £ >0, '
y(t7£6757 >\) = V_( 0( ) 0 )
Y (t + T> 50(5075 >\) 507 7)\) t S 0.
This concludes the proof of Theorem 2.2. We stress that in [6] the authors
Just require 8G(0 0,0) # 0 (i.e. dg ¢(0,0,0) # 0 for a certain j = 0,1,...,m)

and use such a condition and the implicit function theorem to construct the
solution defined in (2.29). Our request is slightly more restrictive: we need
g—g(o, 0,0) # 0 (i.e. we ask the j-coordinate to be the 0 one).

3 Existence of Homoclinic and Heteroclinic
solutions.

In this section we state and prove our main results. Let €2 be a neighborhood
of the graph of the unperturbed homoclinic, i.e. Q, D {(0,h(t)) | t € R};
we stress that, if €2, is small enough, each solution (z(t),y(t)) of (1.1) which
is contained in €, is in fact contained in M N M or it is in M€. The
latter case is trivial, i.e. (x(t),y(t)) coincides with one of the critical points
Ule, ) = (ule, N),v(u(e, A),e,N), S(e, A) = (s(e, A),v(s(e, A), e, A)), or it is
a heteroclinic connection between them lying on the slow manifold. So we are
interested in the former case, for which we have sup,y || (z(¢,€,A), y(t, e, A) —

h()I = O(IA + [e])-

3.1 Theorem. Let f and g be C" functions, r > 2, bounded with their deriva-
tives, satisfying conditions (i)—(v) of the Introduction. Then there are ¢g > 0
and Ao > 0 such that for any 0 < |e| < €9 and |A| < Ag there exists a
tragectory (&(t,e, N),y(t,e, X)) homoclinic to M.

We look for a trajectory contained in (M (C'(g, A))NM(C(g, A)). Since
(Z(t,e, N),y(t, e, A)) is constructed via implicit function theorem we have lo-
cal uniqueness, see the explanation just after theorem 2.2. Our purpose is
to divide the parameters space in different subsets in which the solution
(Z(t,e,N\),y(t,e,\)) constructed via Theorem 3.1 has a different asymptotu:
behavior: for this purpose we need to evaluate all the derivatives of {0
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We observe that, if v(z,e,\) = 0, (??) holds and f does not depend on
g, the stability properties of the critical points change when the parameters
cross the coordinate axes €, \. E. g. in the (s.n.) case v and s do not exist
for A < 0, they coincide for A = 0, and they split for A > 0. In the general
case, when (??) holds, there is a smooth function A = ¢(e), defined for ¢
small, such that ug(e,\) = so(g, A) if and only if A = ¢(g). Then it follows
that U(e,q(e)) = S(e, q(¢)). We can assume w.l.o.g. that ug(e, \) > so(e, )
for A > ¢(e); when A < ¢(g) if (tr.) holds we have ug(g, ) < so(eg, A), while
when (s.n.) holds there are no critical points of (1.5) in a neighborhood of
the origin. So the critical points U(e, A) and S(e, A) change their stability
properties when the parameters cross either the line € = 0 or A = ¢(g). Thus
we need to argue separately in the 4 different quadrants in which these lines
divide a neighborhood of the origin. Note that

0(0,0) — 2(0,0)

"0) = -2 Oz ) 3.1) |deri
TN N (31) [gorived

In fact we could reduce the general case to the case where ¢(g) = 0, simply
by making a change of parameters from (g, \) to (¢, \), where A = X — ¢(¢).
However the expression of ¢(g) is a priori unknown, while we can compute
explicitly the derivative ¢/(e).

At this point we need to distinguish between f satisfying (tr.) and (s.n.):
we start from the former.

3.1 Transcritical bifurcation.

We argue separately in each quadrant, so we start from € > 0 and A > ¢(e).
The key point to understand the behavior in the future is to establish the
mutual positions of £* (g, A) and u(e, A), while to understand the behavior in
the past we need to know the positions of 5* (e, \) with respect to s(e, A). So
we define the functions Ji° : [~&g, €0] X [~Ao, o] — R as follows

T (e A) =€ (e, 0) —u)e, A)
Jl( ) 5(7 )_8<€>)‘)

We want to construct via implicit function theorem two curves, A\{(g) and

A (€), satisfying A (0) = 0, and such that J;¥ (e, \f(e)) = 0. Then (Z(t, ¢, A] (¢)),

y(t, e, AT (€))) converges to U(e, A\f (€)) as t — +o0, while (Z(¢,&, A\] (€)), 4(t, &, A\[ (€)))

converges to S(e, A\] (€)) as t — —oo. Since

5 10 0.0y %

9, oA

(32)

O*
B\

——(0,0) = ==(0,0,0)==(0,0) + %(07 0,0),
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using (?7), (2.26) and ("‘7) we find %(0,0) = By where By is defined in
(2.26). Hence in particular %-(0,0) = ﬂ(o, 0). Similarly we find !

o+ 08
Oz 8

Hence using (??), (7?), (??) we find 2= (O 0) = AF. Using (??) and (??) we
find

2(0,0) = —=2(0,0,0).

aJy £+ w

g(o,()):%%(o,m—%(o,o,m:B 4.(0,0)
o~ o o s

a_)l\(070):%(070)_88h>\ (07070)_30 60(0 0)

so, if (vi) holds we can apply the implicit function theorem and construct the
curves A\f(e) (defined for 0 < e < g¢) such that Jif(, A7 (¢)) = 0. Moreover

; (3.3)

ixf( . %?(0,0) 840,00 AJ2(0,0)

de 2€4(0,0) — 22(0,0) By — 54(0,0) (3.4)
i/\l_(o):_A(;_%m?O) '
de By — 2:(0,0)

3.2 Remark. The curves A\ () and A\ (¢) may not intersect the open set
Q1 = {(e,\) | X —q(e) > 0 and ¢ > 0}. If this is the case for any
(g,\) € @y the trajectory (Z(t,e,A), y(t,e,\)) does not converge respectively
to U in the future neither to S in the past.

Let €2 be a sufficiently small neighborhood of the origin in R, independent
of € and A, and denote by

AT ={z <ule,\) |z €Q} BT ={z>u(e\) |z}
A - ={x<s(e,\) |zeQ} B ={x>s(g,\) |z}

By construction s(e,\) € A" and u(e,\) € B~; hence if £(g,\) € AT
then the trajectory x.(t,€(s,A),e,A) of (1.5) converges to s(e,\), while
if £t(e,\) € BF there is T > 0 such that z.(T,"(e,\),e,\) & Q,. So,
if £+(e,\) € AT then (¥(t,e,\),j(t,e,\)) — S(e,\) as t — 400, while
if £F(e,)\) € BT then there is T > 0 such that (#(T,e,\),J(T, e, \)) is
not close to the homoclinic trajectory of the unperturbed problem (0, h(t))
(obviously £t (g, A (¢)) € W*(u(e, A (€))) so (i(t,e, N),ij(t,e,\)) = Ule, \)
as t — +00). Furthermore

T, ) = JF (20 (9) + 2 (e AFE) (A = AF(2) + O((A = A (e))?

)
Jr(EA) = J1 (5,00 (0) + (8. A (€)= Ay (2) + O((A - )‘1<5>>2<23

5)

Lcheck

tay
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From (3.3) we know the signs of & Ji"(e, A{ (€)); thus, exploiting these two
elementary observations we deduce for which values of the nonnegative pa-
rameters ¢, A the point £ (e, \) belongs to At, B or W*(u(e, V), and we
obtain a detailed bifurcation diagram (we give some examples in figures 1, 2,
3).

To complete the picture we need to repeat the analysis for € and A — ¢(¢)
negative. When A—¢(g) < 0 < ¢ the critical points u(e, ) and s(e, \) change
their stability properties; hence u is stable and s is unstable with respect to
the flow of (1.5). So we define

(3.6)

Thus, if (vi) holds, we can apply the implicit function theorem and construct
the curves A\f(e) such that Ji (g, \f(g)). Moreover we find

0 0s
de 2.77(0,0) By — 22(0,0) 37)
dygy= 2100 Ay - & (0,0)
4 — u
de 2.7;(0,0) By — 24(0,0)

Obviously Remark 3.2 holds also in this setting with trivial modifications
(and when € < 0 as well, see below). Moreover reasoning as above and using
a Taylor expansion analogous to (3.5), we can draw a detailed bifurcation
diagram (we give some examples in figures 1, 2, 3).

When ¢ < 0 we have an inversion in the stability properties of the critical
points of (1.1) with respect to the stability properties of (1.5). Therefore if
£(e,A) = u(e, \) then Z(f,e,\) converges to u(e,\) as t — +oo, while if
& (e,\) = s(e, A) then z(t, e, \) converges to s(e, A) as t — —oo. Once again
we assume (vi) and we distinguish between negative and positive values of
A —q(g). When X — g(¢) > 0 we use again the functions J;- defined in (3.2)
and we extend the curves \{"(¢) to e < 0; similarly for A — g(¢) < 0 we use
Jif defined in (3.6) and we extend the curves A\f(¢). Note that also in these
cases the derivatives of AT and AT are the ones given in (3.4) and in (3.7) so
the curves are C* in the origin.

The bifurcation diagram changes according to the signs of the nonzero

+
computable constants %(0, 0) and of the following computable constants
which may be zero

d AT (0) = ¢(0), - d%&‘ (0)

_ , d .,
de 220 (0 =¢(0),  —=A(0) (3.8)

acca2bis

constant
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Yy RYC) ¥C) !

NCN

v x
Vil o s oo —s
Vi T M

Figure 1: Bifurcation diagrams in the transcritical case: when

aJE AT dA; .
we assume —- > 0, and - > 7= > ¢/(0) for i = 1,2,3,4.

9so
< 0. Here

for ¢+ = 1,4. To illustrate the meaning of Theorem 3.3 we draw some pic-
tures for specific nonzero values of the constants given in (3.8), the other
possibilities can be obtained similarly (not all the combinations are effec-
tively possible). In section 4 we construct a differential equation for which
the values of these constants are explicitly computed.

3.3 Theorem. Assume that Hypotheses (i)—(vi) of the Introduction hold and
that f satisfies (7?) and (Tr.). Then we can draw the bifurcation diagram
for system (1.1), see figures 1, 2, 3)

3.4 Remark. We think it is worthwhile to observe that generically, when
(Z(t,e, N),y(t,e, \)) tends to a critical point it has a slow rate of convergence.
Namely if it converges to S(e, \) as t — 400 there is C; > 0 (independent of
e and ), such that ||(Z(t,e,\),y(t,e, X)) — S(e, \)|| exp(Cy|eA|t) is bounded
for t > 0. However when A = A\{(¢) and A and € are both positive, we have
faster convergence i. e. there is Cy > 0 (independent of € and ), such that
(&, e, \),4(t, e, N\)=U(e, \] ()| exp(eCat) is uniformly positive for ¢ > 0.
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~ A e ¥ | Vi
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N } [ il
= % u—s s—u ; ;
Vil L T . IR
L X
s v
i re .
e AN S— S —
- VI \ .
’»( s u s u
INC) v Y v x
)\‘ l“ll oo —» ‘oo —e Y
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Figure 2: Bifurcation diagram in the transcritical case: =+

L)+ <0 fori=1,2,34 (and 22 < 0),

il
R - I Vil
+ LYC)
o i Mo v @ 7°°Hf/© s Q\
X
XVIII . s u s u s u
XVI M " Vil v
n +eo—s -0
s— s s— s
XIv s u s u s u
[0 X xv
v =g
v o too—vg
€ s u s u s u
v X xvi
@y
s—u teo sy
M N Y s U s u
X xvil
. Xl Vil NG u—u
NG ot u—u
" s U s u
X IX v i Xviil
g E Q@ Y Q
s u

Figure 3: Bifurcation diagram in the transcritical case: I ) < 21

B o
S o aN; o] : . 9 -
q(0) < = < 5=, and 5= < = <0,fori=1,3,j=2,4 (and 52 <0). [transcriticaba
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For completeness we observe that, when ¢ = 0 (1.1) reduces to

=9&y.0,0) Y& )l==CER" (R (3.9) [red

From Hypothesis (v) it follows that there is § > 0 such and a unique £ €
(—0,0) (which is not necessarily a critical point for (1.5)) such that y(&,t) is
a homoclinic trajectory.

When the computable constants given in (3.8) are null we cannot draw
the bifurcation diagram in all details. However, using the expansion (3.5), we
obtain the asymptotic behavior of (Z(t,¢e, \), (t g, \)), far from the A = ¢(¢)
axis. dc/z\g (0) = d;\a' (0) for either ¢ = 1,2,3,4, we cannot exactly
determine the behavior of (Z(t,e,A),y(t,,A)) for (A, e) close to the curves
A= /\i( ).

D (0)— 2(0) = 0or D _99(0) = 0 fori = 1,2,3,4,
we cannot say wether the curves A\ are above or below the line A = q( ).

We think it is worth observing that in the former case a new scenario may
arise. In fact a priori we could have uncountably many intersections between
A and \;. These intersections would correspond to heteroclinic trajectories
with fast convergence and following the unusual direction: when ¢ and A
are positive the trajectory tend to S in the past and to U in the future.
So (Z(t,e,\),y(t,e,\)), together with the heteroclinic connection between U

and S contained in M°(e, A), form a heteroclinic cycle.

3.5 Remark. Observe that the classification result can be developed also when
Hyp. (vi) is not satisfied. In such a case we should replace condition (vi)
with the following, which is more difficult to handle:

(vi:) %7(0,0) # %(0) and %-(0,0) # %0(0),

where the formulas for (0 0) are given in (??) and (?7).

In fact we may use the implicit function Theorem to prove the existence of
curves €& (\) in the i quadrant, such that the trajectory (& (¢, (), ), #(t, €5 (\), \))
converges respectively to the unstable point of M(C'(g, )\)) as t — +oo and to
the stable point of M(C(e,\)) as t — —oc. However if %= (O 0) = 22(0,0)
the curve &; (¢, \) would be tangent to the e = 0 axis, so once again We could
not decide the behavior of the trajectory (z(t,e, \),y(t, e, A)) for (g, A) close
to the ¢ = 0 axis.
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Figure 4: Bifurcation diagram in the saddle node case. We have assumed
g(e) = 0, 22(0,0) < 0 < %-(0,0), £2(0,0) < 0 < Z-(0,0) (and 22(0) <

0).

)\“ | A(e) il
e
7 s
Vz;ts) i il
f } s—'s ;
vty S
: T 0
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Vi)

P RS > ulr——

Vi

| X1
VIl
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Ae)
v X1l
sS—— too U2

Figure 5: An example of bifurcation diagram in the pitchfork case. We have
~ 1
assumed q(¢) = 0, AT + A, + C,, > 0, AT + A, + Cp > 0, % > 0 and

Bu+ B — B >0

I : ;
v
ul—u1 ;
\%

|

-~
o
u s u2
ur s u2
u s vz
©
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3.2 Saddle-node bifurcation.

We briefly consider the case where f satisfies (s.n.) so that the origin
undergoes to a saddle-node bifurcation. We need to introduce the auxil-
fary variable v = sign(\)y/|\| and we observe that u(e, v|v|) and s(e,v|v|)
are smooth functions (while they are just holder functions of A). Via im-

plicit function theorem we define the smooth curve v = Q(¢) such that
u(e, Q(e)|Q(e)]) = s(e, Q(e)|Q(e)]); we find Q(0) = 0 and

@«)) _ d(uzl;SO) (O, O) _ d(U(()i;SO) (0’ 0)

= A(0,0) 252(0.0)

Set q(e) = Q(g)|Q(¢)|, then both (1.5) and (1.1) admit two critical points in
a neighborhood of the origin for A > ¢(¢) and no critical points for A < ¢(e).
Note that 92(0) = 0.

Theorem 3.3 works also in this setting, with some minor changes, but condi-
tion (vi) is not needed anymore. Once again we have to argue separately in
each quadrant of the parameters plane; we start from ¢ and A — ¢(¢) positive,
and we define

Ji (e, v) =& (e, vv]) —ule,vlv])  and

i (e.v) = € (e, vlv]) — s(e,vlv))

and we repeat the analysis made in the previous subsection. So the solution

defined by (??) converges to U as t — +oo if J (s,v) = 0 and to S as
~ F+

t - —oo if Jy(e,v) = 0. We stress that 86%(0,0) = 0 since 2(0) = 0,

therefore

F— -+
O (9,0 = 20,0y = ~ 20

v v v
So we can apply the implicit function Theorem and construct smooth curves
vE(e) such that v5(0) = 0, J; (e,v7 (€)) = 0 and J; (g, 17 (€)) = 0 respec-
tively. Furthermore

(0,0).

d - 2 d _ 95
d—gi(O)I— 0e g (0,0) = =5

When ¢ <0 < X\ —¢(e) we define

Ji (e.v) = € (e, vlv]) — s(e,vlv)),

Jy (e,v)

Il
J\‘\lr(
—~
o
=

<
N

|

g
—~
o
=

<
—
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and we find again curves vy (e) such that 5(0) = 0, Jf (e, vE(e)) = 0 re-
spectively, and

d o Aj—5500,0)  d _ A° — 244(0,0)
—uv, (0) = - , —Uy(0,0) =— - 3.11
22 (0) 2 50(0,0) =2 (0.0) 2 55(0,0) (3.11)

As usual the solution defined by (??) converges to S as t — +oc if J; (¢, v) =
0 and to U as t — —oo if J; (,v) = 0.

Obviously in both the cases for A < ¢(g) there are no critical points and
hence no bounded trajectories. Arguing as in the previous subsection we
obtain a result analogous to Theorem 3.3.

3.6 Theorem. Assume that Hypotheses (i)—(v) of the Introduction hold and
that f satisfies (7?7) and (s.n.). Then we can draw the bifurcation diagram
for system (1.1).

If %(O7 0) = —%%’(O, 0) >0, i.e. g—ggg(o, 0,0,0) > 0, the bifurcation dia-
gram of (1.1) described in Theorem 3.6 depends on the signs of the following
computable constants:

dv™ dv;” d i d
! ! —v; — —v; (0). 12
Y (0), Y (0), O - L0, (312)

We give again one example for illustrative purposes, see figure 4.

3.3 Degree 3 or more.

In this subsection we show briefly how our methods can be applied to unfold
more degenerate singularities of (1.1). We just sketch the case where (1.5)
undergoes to a pitchfork bifurcation, stressing that the construction can be
easily generalized to describe singularities of higher order. So we assume that
(??7) holds but (gz—g())g(O, 0,0,0) = 0 and (59;;—5())3,(0,0,0,0) # 0 and we consider
the following assumption.

(pitch) The equation f(z,0,0,\) = 0 admits three solutions for A > 0, say
u'(0,\) < s(0,\) < u?(0,)), and one solution s(0, \) for A < 0.

We denote by u}, so and u2 the zy coordinates of the critical points, and we set
Ul(e,\) = (ul(e,\),v(ut(e, M), e, N), U(e,\) = (u?(g, \),v(u?(g, \), €, \)),
S(e, A) = (s(e,N),v(s(e,A),e,A))). We think it is worthwhile to stress that
to achieve a complete unfolding of the singularity one more parameter is
needed. Similarly to the previous subsections, we can construct smooth
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curves ' = Qi(e) for i = 0,1,2, and X' = ¢'(e) = Q'(¢)|Q"(¢)| such that
¢'(0) = Q'(0) =0, and

u'(e,q’(e)) = u(e. (), s(e,q'(e)) =u'(e.q'(e)), s(e.q*(e)) = u’(e, ¢*(e));

moreover ‘2—‘5(0) =0 for i =0,1,2. In fact

dQo  Mo0) a2 “0)(0 0) 4> “O’(o 0)

dz 2ﬁ<07 O) ’ de dy (07 O) 7 de dz/ (07 O)
(313
We assume for simplicity that u'(e,0) = u?(g,0), i.e. ¢°(¢) = 0. We assume
w.l.o.g. that u'(e,\) and u?(e, \) are unstable for the restriction of system
(1.5) to C(g,A) (when A > 0, they do not exist for A < 0) while s(e, \) is
stable for A > 0 and unstable for A < 0.

Theorem 3.1 holds in this case too, so using the function H defined in
(??) for € > 0, and the function H defined in (??) for ¢ < 0, via implicit
function theorem we construct the smooth function gﬁ(a,A) such that the
solution defined by (??) is homoclinic to M¢(C(e, \)).

Similarly to the saddle-node case the functions uj(e, \) and uZ(e, \) are
not smooth in the origin, so we need to introduce the parameter v = v/X. On
the other hand the function sg(e, ) is smooth and its derivative with respect
to v is null; so, in order to apply the implicit function theorem, we have to
work with u (e, v?), u2(v?) and sp(e, A).

Let us start assuming A > ¢(¢) = 0 and ¢ > 0, in analogy to the previous
subsection we define the functions h}, hZ : A, X [—€0,€0] X [ Ao, Ao] — R,
he @ A, X [—€0,€0] X [=Ao, Ag] — R such that € e We(ui(e,\)) N A if and
only if & = hi(&,¢e,v) and £, = h, b)(fo,&),e v2) for i = 1,2, while £ €
W(s(e,A) N A if and only if & = ha(a,6,A) and & = hoa) (S0, a6 A)-
Again the derivatives of h, and h] in (0,0,0) with respect to ¢ and x; are
null, and

Oht oul Oh? Oh, so

22 (0,0,0) = Z0(0,0) = —=2(0,0,0),  —(0,0) = =

a =2(0,0).

Then we define the functions

V]

T e v) = e, ) = hi(Gew),  Ji(e,N) =€ (e, A) = Rl 5, V)

for i = 1,2; obviously JU"(0,0) = 0 for i = 1,2 and J#(0,0) = 0. We
stress that 2% (g, %) = 0 for (g,v) = (0,0). To apply the implicit function
theorem we just need to assume
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(vi’) 8“0(0 0) #0, and By + By, — 2:50(0,0) #
)

So we prove the existence of curves 1" (), X3 (e) such that( (t,e,N),y(t,e,N)
converges to U’ as t — +oo when X\ = [11"%(¢)]? for i = 1,2, and to S as
t — —oo when A = Aj(e). Moreover

2£4(0,0) — 6“0 £(0,0) _ An + Bt + on "’“O £(0,0)

d
-V ’u<0) = 1
8“0 8u(2)
iym(g) B §+(o 0) 52(0,0) _Am+BO++Cm—E(O,O) (3.14)
1 = = - :
e 58(0,0) 2 (0,0)
Doy = 2 7 (0,0) = 22(0,0) _ Aw + By +Ci — %2(0,0)
de 1 aé—O(O, O) 850 (0 0) BO + Bm . %(07 0) )

When A < 0 the only critical point of (1.5) in a neighborhood of the origin
is s(e,A), which is unstable in the direction of C(e,\). So we define the
function h; such that & € W*(S) N A if and only if & = hy(&,¢,A\) and
§a = hop)(&0:&r €, A) and

Ti(e,N) =& (e N) — hy(&,e. M)

Then via implicit function theorem we construct the curve A\j(e) such that
(x(t,e, A5(e)),y(t, e, \5(g))) converges to S as t — +00; moreover

4 e0) = 2£40,0) — £2(0,0)  Ap+ Bf + C — 22(0,0)
de™ 56(0,0) — 22(0,0) Bo+ By~ 25(0.0)
When A < 0 < e the trajectory (Z(t,e, A), y(t, €, A)) homoclinic to M(C'(e, \))

converges to S as t — —o0.

When € < 0 as usual the critical points of (1.1) reverse their stability
properties, so we have to redefine the auxiliary functions as we did in the
previous section. When ¢ < 0 < \ we construct via implicit function theorem
the curves v,™(¢), v5"(e) and A\j(g) with the following properties: the tra-
jectory defined by (??) converges to U’ as t — —oo when /A equals V5" ()

for i = 1,2, and to S as t — 400 when A = A\j(¢). Moreover

d Lug _Am+Bg+ém—%(o,0)

. (3.15)

-1 (0) =

de %4(0,0)

d Ay + By + Cypy — 24(0,0

—v2"(0) = — 0 — 2. (0.0) (3.16)
de 24(0,0)

i)\s(o) _ An+ By +Cn — 22(0,0)

de? By + By, — 22(0,0)
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Similarly when € and A are negative, we construct the curve A\3(¢), such that
the trajectory defined by (??) converges to S as t — —oo. Moreover

d Ay + By + Gy — 22(0,0
4 yg0) = ~Am B0 +Cn =52 (0.0),
de By + By, — % (0 0)

Furthermore the trajectory (z(t,e,\),y(t,,\)) homoclinic to M(C(g, N))
converges to S(e,\) as t — +oo. Now, similarly to the previous subsections,
using a Taylor expansion analogous to (3.5), we can draw the bifurcation
diagram for (1.1). Once again the bifurcation diagram depends on the sign
of some computable constants, i. e. By + B,, — ‘950 2 (0, O) ,fori=1,2,
%’\j for i = 1,2, 3,4, see figure 5.

3.7 Remark. When f does not depend on \ or anyway ¢ is the only parameter
involved in the bifurcation, we can still perform our analysis, with some
trivial (and simplifying) changes. When both f and g do not depend on A,
we cannot unfold completely the singularity. However the behavior of the
solution (Z(t,¢),y(t, €)) defined by (?7) is determined in the transcritical case
by the sign of the following constants:

Blas Aug Aug
+ 250 - — AF -
K+ = e (0) R 0)=A;+A,+Cn R (0),
K== %00) = P0(0) = 45 + A+ G- 200),
Oe Oe Oe (3.17)
_ . 9&r Aug - dug
+— 250 gy — Z=(0) = A -0
K+ = B (0) o (0)=A; + A4, +C, o (0),
. 0& dso Jsg
K™ = 88(0)—88(0) Ay + A+ Gy, +a€(0),
see (?7), (?7). E.g. if K* are positive and 22(0) < 22(0), using a Taylor

expansion we find that & (¢) — ug(¢) and & (¢) — so(e) are positive for & > 0;
thus (Z(t,e),y(t,e)) converges to U(e) as t — —oo and gets out from a
neighborhood of the origin for ¢ large. Similarly if ¢ < 0 and K#* are both
positive we find that & (g) — ug(e) and & (¢) — so(e) are both negative, so
again (Z(t,€),y(t,e)) converges to U(e) as t — —oo and gets out from a
neighborhood of the origin for ¢ large.

Reasoning in the same way it is easy to see that when (1.5) exhibits
a saddle-node bifurcation, then (x(¢,¢),y(t,¢)) is a heteroclinic connection
between U and S and converges to the former in the past and to the latter

in the future, since so(e) < & () < uo(e) for & > 0; in fact %0(0) = —oo and
% (0) = +o00.
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4 Examples.

In this section we construct examples for which the conditions of Theorems
3.1, 3.3, 3.6 are fulfilled and the derivatives of the bifurcation curves can be
explicitly computed. Let us consider the following system:

g9 =e|xd — (0oN)? + ayrys + wi(z,y,6,N)] == cfo(z,y,e, )
T, = ¢e|x — o)+ BYiys + wolx, y, €, )\)]
iy =e|— 22+ 02X+ Y2 + ws(z,y,e, )]
1 =Y2 + xo(d'yr + a"y2) + " x1ys + a”xoys + Mgk (yr) + O(Nz))
Jo =y — (11)* + 2o(V'y1 +0"y2) + 2151 + Ma(y1) + O(N|]) )
4.1
where h and k are smooth functions satisfying h(0) = 0 = k(0), w;(z,y,&, A) =
O(lyl|z|) + o(e* + A? + |z|?) for i = 1,2, 3.
We stress that the y component of (4.1) is constructed on the unperturbed
problem
v = 91(07?/’()70) = Y2
A AT S “2)
which admits two homoclinic trajectories £(x1(t), x2(t)) where

t o —t
22 2\/56 e

_ave 1) = — - =
et + et XQ( ) (et + e—t>2

and x1/2 — x? 4+ x3 = 0. So x(t) = (0,0,0,x1(t), x2(t)) and —x(t) are ho-
moclinic trajectory for (4.1) for e = XA = 0. Note that the adjoint variational
systems y = —[dg/0y]*(0, x(t),0,0)y admits the unique (up to multiplica-
tive constant) solutions +(t) = +({x1(t) — [x1(H)]*}, —x2(¢)).
To simplify matter we have assumed that g does not depend on ¢ so that the
slow manifold M¢ is given simply by y = v(z,e,A) = 0. From a straight-
forward computation we find 2%(0,0) = (00,01, 02), 92(0,0) = (—00,01,02),
and 8“80 (0,0) = 8360 (0,0) = 0. It follows that the line A\ = g(e) such that
U(e,\) = S(g, \) satisfies ¢’(¢) = 0. If we assume further that f does not
depend on ¢, the line A\ = ¢(¢) is simply defined by A = ¢(¢) = 0.

From further computations we get x1(0 ) V2, x2(0) = 0, fR X1 =

IRX%: %’ f]RX%:él’ fRXflj: %v fRX%X% 15> fol =7V2, fRXl

xi(t) =

Go= [ #0052 (00,00t = [ [0 = xi(0) - ¥d(0)] it =
:_g/ 36”’ Glz/_ izﬂ()il( x(1),0,0)dt = 0,

Gy — / w()%( X(1),0,0)dt = — "

esempio

esempio0
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Moreover

[ it 0,00 = S - o))

[ 0.0 = 22000 - 01, [ Ren(s).0.0ds = #2000~ (0]
F?:iA ﬁ@qﬁyqomw—%im(» 2%?3:Fﬁ

B = [ ple0.0,0 - 520.0) = VB = B

and

Kb:/%iwﬂﬂggﬁwﬁyam[j;jMiMQJLQ@}ﬁ:—§%8d+US,

/ (1) 90 (& x<t>,o,o>dt=/ 7 (1) 22 (x(1),0, 0t = 0

K= [ >a—~"< <t>,o,o>[/0tf1<ix<s>,o, 0)ds]dt = 0
K5 = [~ w002 (ex(0.0.0) /Otf2<ix<s>,o,o>ds}dt:ia%(?—%).

We stress that condition (v) is satisfied whenever G # 0, so it is satisfied for
both +x when o’ # —4b". Condition (vi) is satisfied whenever oG +02Gy #
:l:O'OG().

The values of F;f, F;" and K3 change to F~, F;~ and K passing from y to
—X, while the other values remain the same. For simplicity from now on we
restrict our attention to +x(¢). So when (v) and (vi) hold, using (??), (?7?),
(7?) and (??) we find:

K0+K1—|—K2+ By B, — 01G1 + 02G
o e ]

A+ An=——— ’ "Gy
Go

Thus, from (3.4), (3.7), (?7?), (?7?) we get the following:

c,=C,

+ F ¥ + — Ky — K
8)\1 = 8)\4 = a)\z 0) = 8)\3 0) = F1Gy + 3G — Ko K2 . (4.3) ’contiderivol

Oe (O) Oe (0) N E( ) N E( N UlGl +0’ng + UoGO

So we can draw explicitly the bifurcation diagram of (1.1), and our descrip-
tion is accurate at least at the first order.
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If we replace fj in (4.1) by
fO(x; Yy, &, )‘) = xg o <00>\) + ayiy2 + wsn(a:, Y&, )‘)

where wg, (z,y,£,\) = O(|y||z]) + o(e2 + X + |z0]? + |25]) and ¢ > 0 we have
a saddle-node bifurcation. We recall that in the saddle-node case we always
have that the line A = ¢(e) satisfies ¢’(0) = 0. Once again condition (v) is
satisfied whenever Gy # 0, and using (3.10) we find

+ . .
6@%( ) = :FFlGl + Fi/i;zGoKo K _ 6812 (0) (4,4) lcontoderiv02

So we can draw the bifurcation diagram of (1.1), also in this case.
If we replace fy in (4.1) by

fﬂ(aja Yy, ¢, )‘) = (xO - 5’0)\)(1‘3 - UO)\) + ayi1yY2 + wp(x7 Y, ¢, )\)

where wy(z, y,e,\) = 0(Jy||z]) +o(e? + X + |xo | + |24]?) and ¢ > 0, we have
a pitchfork bifurcation. So we find

o™ 0) = vy (0) = Ko+ Ki +aGy— F1G, — B,Gy " 0) = vy )
Oe Oe VoG Oe Oe

ONS (0) = Ko+ K — Gy — BG,
Oe 01G1 + 092Gy + 9GY

for i =1,2,3,4

(4.5) |contoderivo3

Thus we obtain the bifurcation diagram of (1.1) in this case, too.
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