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POSITIVE SOLUTIONS FOR SEMILINEAR ELLIPTIC
EQUATIONS: TWO SIMPLE MODELS WITH SEVERAL
BIFURCATIONS.

MATTEO FRANCA

ABSTRACT. In this paper we analyze the structure of positive radial solutions
for the following semi-linear equations:

Au+ fu, x]) = 0

where x € R™ and f is superlinear. In fact we just consider two very special
non-linearities, i.e.

(0.1)  flu, x]) = wjul? 2 max{|x|?", x|}  —2< 8% <A <5 <A,

i.e. f is supercritical for |x| small and subcritical for |x| large, and

(02)  f(w) = maxfulu "2 ulult" 2}, 2. <¢° <2*<q"

i.e. f is subcritical for u small and supercritical for u large.

We find a surprisingly rich structure for both the non-linearities, similar
to the one detected by Bamon, et al. for f = wd“ =1 4 49°~1 when 2, <
q° < 2* < ¢*. More precisely if we fix ¢° and we let ¢* vary in (0.2) we find
that there are no ground states for ¢* large, and an arbitrarily large number of
ground states with fast decay as ¢* approaches 2*. We also find the symmetric
result when we fix ¢* and let ¢° vary. We also prove the existence of a further
resonance phenomenon which generates small windows with a large number of
ground states with fast decay. Similar results hold for (0.1).

MSC (2000): 35J05, 34B18,37B55

Key words: Radial solutions, mixed nonlinearities, ground states, invariant
manifolds.

Dedicated to Professor Russell Johnson on the occasion of his siztieth birthday.

1. INTRODUCTION

Our purpose is to shed some light on the structure of positive radial solutions
for the following semi-linear elliptic equation:

(1.1) Au(x) + f(u,|x]) =0

where x € R™, n > 2 and f is supercritical for u large and |x| small and subcritical
for |u| small and |x| large. In fact in this paper we just consider two very special
non-linearities which are particularly suitable to be studied with our methods, i.e.

x| if x| <1

1.2 Jx)) = w|u|?7? . ,
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where ¢ > 2 and —2 < 0% < A" < §° < A, A = (n—2)[g — 22=]] > X =
“371a — 2755 and

13) Flu) = {uu|qs_22 pust

ulul? 2 ifu>1"

where 2, := % <@f < 2F = % < q".

We just consider radial solutions and we commit the following abuse of notation:
we write u(r) for u(x) where |x| = r. Since we only deal with radial solutions we
consider in fact the following singular O.D.E.

-1
(1.4) w = . u' + f(u,r) =0.

Here ' denotes the derivative with respect to r. We call “regular” positive solutions
u(d,r) of (1.4) satisfying w(0) = d > 0 and «'(0) = 0. We call “singular” positive
solutions u(r) which are singular in the origin, that is lim, ,qu(r) = 4+oco0. In
particular we focus our attention on the problem of existence of ground states
(G.S.), of singular ground states (S.G.S.) and of crossing solutions. By G.S. we mean
a positive regular solution u(r) defined for any r = |x| > 0 such that lim, _, o u(r) =
0. A S.G.S. of equation (1.1) is a positive solution v(r) such that lim,_,q v(r) = +00
and lim, 4. v(r) = 0. Crossing solutions are solutions u(x) such that there is
R > 0 for which u(x) > 0 for any 0 < |x| < R and u(x) = 0 for |x| = R, so
they can be considered as solutions of the Dirichlet problem in the ball of radius
R. We are also concerned with the asymptotic behavior of positive solutions: we
say that a positive solution u(r) has fast decay (f.d.) if u(r)r™~2 has positive finite
limit as r — oo and that it has slow decay (s.d.) if lim,_, 1 oou(r)r" =2 = co. When
f is either of type (1.2) or of type (1.3) we can give very precise estimates of the
asymptotic behavior of singular and s.d. solutions, see below.

In literature there are many results concerning (1.1) in the subcritical case, e.g.
when f has the form

(1.5) flu,r) = k(r)u|u|q_2

and k(r)r~" is non-decreasing and non-constant. Such a case is usually analyzed
through variational techniques, or exploiting the Pohozaev identity, which is a clever
way to restate Green’s formula, see e.g. [25]. In fact these methods allow to study
the problem in non-radial domains as well, and in general to look for the existence
of non-radial solutions. However, if the domain is radial (e.g. the whole R™), G.S.,
S.G.S and crossing solutions inherit this symmetry, under very mild assumptions,
see [5, 28]. In particular this is the case for all the equations we discuss in this paper,
see [5] for f of type (1.2) and [28] for f of type (1.3), and again [5] for a remarkable
counterexample. Here we follow the way paved by Johnson, Pan, Yi [19, 20, 21]
and later followed also by Battelli [3], Franca [16, 14, 15], Bamon et al., and Flores
[2, 13]. So we introduce a change of variable, known as Fowler transformation,
and we turn to consider a two dimensional dynamical system, which is suitable to
be studied through dynamical tools, such as invariant manifold theory and phase
diagrams. This approach cannot be adapted to study non radial solutions, but
it is particularly helpful to analyze the spatial dependent case, singular solutions
and to discuss the supercritical case, e.g. when f is of type (1.5) and k(r)r—*" is
non-increasing. In fact in this latter setting variational techniques are difficult to
be applied and the analysis is usually restricted to radial solutions, as far as we are
aware.

It is well known that in the subcritical case all the regular solutions are crossing
solutions, there are uncountably many S.G.S. with f.d. and one S.G.S. with s.d., see
e.g. [14] also for a more general definition of subcriticality in this context. In the
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supercritical case all the regular solutions are G.S. with s.d., there are uncountably
many solutions of the Dirichlet problem in exterior domains, and one S.G.S. with
s.d., see [14]. The situation becomes more interesting and challenging when f
exhibits both subcritical and supercritical behaviors. A remarkable case in which
this happens is given by the scalar curvature equation, i.e. f of type (1.5) and
q = 2*. This setting lies on the border between the subcritical and the supercritical
ones and is very sensitive to the behavior at 7 = 0 and at r = oo of the function k,
see in particular [5]. In [4, 5, 6, 21, 3, 16] are given rather natural conditions for
positive solutions to have structure Mix described below and even richer structures,
which collect features of both the subcritical and the supercritical case.

Another case, well studied in literature, is the one in which f exhibits supercrit-
ical behavior for u small and subcritical for w large. In this setting the solutions of
(1.4) typically have the following structure:

Mix: There is d* > 0 such that u(d,r) is a crossing solutions for d > d*, a
G.S. with f.d. if d = d* and a G.S. with s.d. if 0 < d < d*. Furthermore
there are uncountably many S.G.S. with f.d. and S.G.S. with s.d.

In fact this is a quite general feature, and this structure has been found for a rather
large family of spatial dependent nonlinearity see [22, 8, 9, 27, 15], also for the p-
Laplace case. However for the context discussed in this paper, these results reduces
to the following Theorem.

1.1. Theorem. Consider (1.4) and assume either f of type (1.3) and 2, < ¢* <
2 < q® or f of type (1.2), ¢ > 2 and —2 < 6° < \* < 0% < A.. Then positive
solutions have a structure of type Mix. If f is of type (1.3) and 2 < ¢* < 2* < ¢°
or [ of type (1.2), ¢ > 2 and —2 < 6° < X\* < &% we lose the result concerning
singular solutions but reqular solutions continue to have structure Mizx.

See [8, 9] for the (1.3) case, [22] for the conditions for the uniqueness of the G.S.
with f.d., [27] for the (1.2) case, and [15] for both (1.2) and (1.3). We stress that
in [15] a unifying approach, similar to the one exploited here, has been used which
allows to insert f of type (1.2) and (1.3) in a larger family and to discuss singular
solutions, too.

In this paper we consider the opposite situations: we assume that f is subcritical
for w small and supercritical for u large. This setting seems to be less understood:
this is probably due to the fact that the structure of positive solutions undergoes
to at least two different types of bifurcations, as we will see below.

As far as we are aware in literature it is discussed just the case where f(u) =
ulu|? =2 4+ ulul? 72, where 2, < ¢° < 2* < ¢*, and results appeared rather recently.
In [2] Bamon et al. proved the following very interesting result.

1.2. Theorem. Consider equation (1.4) where f(u) = ulu|? =2 4 ulu|?" ~2. Fiz
q° € (24,2%), then for any k € N there is €;,(¢°) > 0 such that (1.4) admits at least
k G.S. with f.d. for any ¢* € (2*,2* 4+ &].

Analogously fix ¢* > 2*, then for any k € N there is €(q") > 0 such that (1.4)
admits at least k G.S. with f.d. for any ¢° € (2* — &, 2*).

The proof is achieved through a dynamical approach similar to the one used in
this paper. In fact Campos in [7] gave a different proof of the same result using a
variational argument on the equation obtained via Fowler transformation. He also
showed that the G.S. with f.d. found through Theorem 1.2 can be approximated by
a finite sum of translates of the G.S. obtained in the critical case (for which there
is an explicit formula).

We recall that in fact €, cannot be too large. In fact in [2] the authors also
proved the following:
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1.3. Theorem. Consider equation (1.4) where f(u) = ulu|? =2 + ulu|? ~2. Fiz
q“ > 2*, then there is €(q") > 0 such that (1.4) admits no G.S. with f.d. for any
Q" € [24, 2« + €0(q"))-

We stress that these results have perturbative nature and give no clue to detect
“how large” the €, and € are. The first result for this type of non-linearity is due
to Ni who proved (by explicit calculation) the existence of a G.S. with s.d. when
q“ =2(q¢°—1), see [24]. As it is observed in [13] such a result is non generic, even if
it appears for particular values of the parameters also for f of type (1.3) and (1.2).
However the existence of this “rare” solutions gains more relevance by a further
resonance phenomenon explained by Flores in [13], which makes the situation more
complex. Let us denote by o* := 2n=2V/n—1-2 i p 5 10 and +oo if n < 10 and

n—2y/n—1-4
by o, = 2% Vz:ﬁ (the origin of these numbers will be explained in section 2).

Observe that 2, < 0, < 2* < o*.

1.4. Theorem. Consider equation (1.4) where f(u) = ulu|? =2 + ulu|?" ~2.

(a): Assume (1.4) admits a G.S. with s.d. for 2, < §° <2* < q* < o*. Then
there are infinitely many G.S. with f.d.

(b): Assume (1.4) admits a S.G.S. with f.d. for o, < §°® < 2* < §*. Then
there are infinitely many G.S. with f.d.

(c): If @ < q* satisfy either (a) or (b) then for any k € N, k > 1, there is
Nk > 0 such that (1.4) admits at least k G.S. with f.d. whenever |¢* — §“|+
lg° = G| <

We will see that for f of type (1.3) and (1.2) we can produce results analogous to
Theorem 1.2, 1.3, 1.4, and to complete the symmetry of the non-existence result 1.3
by fixing ¢° and letting ¢ tend to +oc0. In fact we are also able to give conditions
for the existence of the “rare” G.S. with s.d. (similarly to Ni’s result) and S.G.S.
with f.d. for our f. More precisely we prove the following results for f of type (1.2).

1.5. Theorem. Consider f of type (1.2). For any 6° € (A*, A.) we can find €1(6°) >
0 such that (1.4) admits at least a G.S. with f.d. whenever §* € (A* — €1(6°), \*).
Analogously for any —2 < 6% < X\* we can find €1(6") > 0 such that (1.4) admits
at least a G.S. with f.d. whenever §° € (\*, \* 4+ €1(0%)).

1.6. Theorem. Consider f of type (1.2). For any §° € (A\*, \y) we can find e;(6°) >
0 such that (1.4) admits at least k G.S. with f.d. whenever 6% € (A\* — €, (%), \*).
Analogously for any —2 < §* < X\* we can find €, (6*) > 0 such that (1.4) admits
at least k G.S. with f.d. whenever §° € (A*, \* + €, (6%)).

1.7. Theorem. Consider f of type (1.2). Fiz \* < §° < A, we can find No(6%) > 0
such that (1.4) admits no positive solutions either regular or singular whenever
0% € (—=2,—2 4 Ny(09)).

Analogously fix —2 < §" < X\*, we can find €5(0*) > 0 such that (1.4) admits no
positive solutions either regular or singular whenever A, — €g(6") < §° < As.

We introduce now two further critical values: X, := U*{Q(q — 04) and ¥* =

(g —0*) (we set ¥* = —2 when o* = 400, i.e. n < 10).

2
o*—2
1.8. Theorem. Consider equation (1.4) with f of type (1.2). Fix 6" € (=2, \*); we
can find a decreasing sequence of values r;(d") € (A\*, ), 7;(0%) = A* as j — oo,
such that (1.4) with 6° = r;(6") admits one S.G.S. with f.d.

Analogously fix \* < §° < A, then we can find an increasing sequence of values
ri(6%) € (X%, A%), 7;(0%) = A* as j — oo, such that (1.4) with 6" = r;(6°) admits
one G.S. with s.d.

Moreover for any fized j € N, 1;(0") — A* as 6" = =2 and r;(6°) — A\* as 0° — A,.
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1.9. Corollary. Consider equation (1.4) with f of type (1.2) for 6° = 6% and
54 = 6%, Assume that (1.4) either admits a G.S with s.d. and 6* € (\*,%,) or a
S.G.S with f.d. and §* € (S*,\*). Then (1.4) admits infinitely many G.S. with
f-d. too. Furthermore for any integer k > 0 there is n(k) > 0 small enough so that
(1.4) admits at least k G.S. with f.d. whenever |6° — 6| + |6 — 6%| < n(k).

Moreover we prove the following results for f of type (1.3).

1.10. Theorem. Consider f of type (1.3). Fix ¢" > 2*, then there is €1(¢") > 0
such that (1.4) admits at least one G.S. with f.d. whenever ¢° € (2* — e1(¢"),2%).
Analogously fix ¢° € (24,2%), then there is €1(q°) > 0 such that (1.4) admits at least
one G.S. with f.d. whenever g% € (2*,2* + €1(¢°)).

1.11. Theorem. Consider f of type (1.3). For any q* > 2* we can find e;,(¢*) > 0
such that (1.4) admits at least k G.S. with f.d. whenever ¢* € (2* — er(q¢"),2%).
Analogously for any ¢° < 2* we can find e (q®) > 0 such that (1.4) admits at least
k G.S. with f.d. whenever ¢* € (2*,2* + ex(q%)).

1.12. Theorem. Consider [ of type (1.8). Fix q“ > 2*, then there is y(g*) > 0
such that (1.4) admits no solutions u(r) positive for any r > 0, either regular or
singular, for any ¢° € (24,24« + €0(q%)). Analogously fix 2, < q° < 2*, then there is
No(q®) > 2* such that (1.4) admits no solutions u(r) positive for any r > 0, either
reqular or singular for any ¢ > No(q®).

1.13. Theorem. Consider f of type (1.83). Fix q¢° € (24,2*); we can find a decreas-
ing sequence of values 17(q®) € (2*,0*), 17 (q*) — 2* as j — oo, such that (1.4)
with ¢* = 17 (q®) admits one G.S. with s.d.

Analogously fix ¢* > 2%, then we can find an increasing sequence of values
7 (q%) € (04,2%), r(q%) — 2* as j — oo, such that (1.4) with ¢° = rI(q%) ad-
mits one S.G.S. with f.d.

Moreover for any fized j € N, r7(¢°) — 2* as ¢ — 2. and r7(¢*) — 2* as
q"* — +o0.

1.14. Corollary. Consider f of type (1.3) where ¢* = §* and ¢° = ¢° and 2, <
G°® < 2* < §“. Assume that (1.4) either admits a G.S with s.d. and §° € (04,2*)
or a §.G.S with f.d. and §* € (2*,0*). Then it admits infinitely many G.S. with
f-d. too. Furthermore for any integer k > 0 there is n(k) > 0 small enough so that
(1.4) admits at least k G.S. with f.d. whenever |¢* — §*| + |¢* — @°| < n(k).

All the proofs will be performed on the auxiliary systems (2.2), (2.3) and (2.4).
In fact the constants e, for £k = 0,1,... and Ny, appearing in Theorems concerning
(1.2) and in (1.3) are functions of the same constants of these systems and have a
precise geometrical meanings. The proof of Theorems 1.5,1.6,1.7,1.10 and 1.12 are
developed with sharper constants (e, and Np) denoted with ) but we preferred to
give the Theorems in these forms for homogeneity and also because we think that
in this form the results might be extended to a larger family of functions f.

We stress that our proofs are quite constructive and this gives a hint to perform a
rather easy computer assisted proof, to see how large the values ¢; in Theorems 1.10
and 1.5, and ¢y and Ny in 1.7 and 1.12 are, see Remark 3.6 for details. Moreover
we find analytically values for which the nonexistence result holds, see Corollaries
3.4 and 4.6.

We point out that Theorem 1.5 can be deduced from Theorem 1.6 and in fact they
are proved together. However we preferred to distinguish them since, exploiting
Remark 3.6, we could give a positive lower bound for the values €;, while we cannot
for ¢, when k > 2. However Theorem 1.10 cannot be deduced from Theorem 1.11.
In fact €1(1%) > &1(1%) and €1 (I"*) > €1 ("), and again Remark 3.6 allows to estimate
€1 while it does not work for .
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Note that Theorems 1.6 and 1.11 are the analogous of Theorem 1.2, while The-
orems 1.7 and 1.12 are the analogous of Theorem 1.3 (even if they include also its
symmetric counterpart), Corollaries 1.9 and 1.14 are the analogous of Theorem 1.4
(and in fact their proof is strongly inspired by the proof of Theorem 1.4). Further-
more Theorems 1.8 and 1.13 are analogous to the existence result for G.S. with
s.d. found by Ni (even if they include also its symmetric counterpart: existence of
S.G.S. with f.d.).

Also for these similarities we regard this paper as the second step in the com-
prehension of equation (1.1) with f supercritical for u large and |x| small and
subcritical for u small and |x| large. In fact we think that this rich structure is a
general feature for f with this characteristic.

After this paper was submitted we knew about two interesting papers [1, 10]
related to the topic studied here. They both consider f(u,r) = k(r)u|u|9=2, where
k(r) = 7% + %", In [1] the authors prove the analogous of theorem 1.6 for this
equations, using variational methods (so they also have an estimate of G.S. with
f.d. in terms of translates of the solutions of the critical case, but they cannot
estimate the smallness of the parameter ¢ involved). They also conjectured the
existence of the same result for f of type (1.3), which is proved in Theorem 1.11
in this paper. In [10] the authors manage to prove the coexistence of G.S. with
s.d. and of S.G.S. with f.d. for particular values of the parameters and special
functions k(7). As a consequence they also find two different sequences of G.S. with
f.d. So they prove a result related to both the existence parts of Theorem 1.8 (in
fact they let both the parameters vary together and found the most topologically
complex situation: a double intersection between stable and unstable manifold).
They exploit topological methods starting from a new idea: they let the so called
“natural dimension” change values.

For completeness we recall that (1.4) has a subcritical behavior (i.e. all the
regular solutions are crossing solutions, there are uncountably many S.G.S. with
f.d. and one S.G.S. with s.d.) whenever f is of type (1.2) and \* < §* < §° < A, or
f is of type (1.3) and 2, < ¢° < ¢* < 2*; while it has a supercritical behavior (i.e.
all the regular solutions are G.S. with s.d., there is one S.G.S. with s.d.) whenever
fis of type (1.2) and —2 < §* < §° < \*, or f is of type (1.3) and 2* < ¢° < ¢“.

The paper is divided as follows. In section 2 we introduce the Fowler transfor-
mation, and we review some known results concerning the autonomous case, such
as the existence of unstable and stable manifold M™ and M®. We also introduce
some of the tools used in the following sections, such as Kelvin transformation,
which in our setting works as an inversion of the time “variable” t. In section 3
we discuss (1.4) when f is of type (1.2) and we prove Theorems 1.5, 1.6, 1.7, 1.8,
and Corollary 1.9. In section 4 we discuss the case where f is of type (1.3) and
we prove Theorems 1.10, 1.11, 1.12, 1.13, and Corollary 1.14. At the end of sec-
tions 3 and 4 we also derive non-existence, existence and multiplicity results for the
corresponding Dirichlet problem in balls of radius R.

2. FOWLER TRANSFORMATION AND DYNAMICAL INTERPRETATION OF CLASSICAL
RESULTS

We begin this section by introducing the Fowler transformation for the Laplace
operator, which changes equation (1.4) in a two dimensional dynamical system. Let
us set

Oél:%, ﬁlzﬁv ’YZ:ﬁl_(n_l)v 1>2

(2.1) o =ulr)rY y=u'(r)rf r=et
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then (1.4) with f(u,r) = roulu|972, and § > —2 becomes

Q'Sl (6% 1 Xy 0
(2.2) ( i ) = ( 0 ) ( ” >+< —el820-0) /1Dt g [ |12 )

Thus, setting [ = [(0) := 22%, we obtain the following autonomous system

(2.3) ( zlz ) - < 061 711 ) ( zzl ) +( —ml\gl\q_2 )

Observe that when § = 0 we can simply set [ = ¢ to obtain

co ()= (% ) () (i)

Note that a; > 0 whenever [ > 2 and v; < 0 whenever [ > 2,. Moreover a; + y;
has the same sign as 2* — [ and it is null if and only if I = 2*. We wish to recall
that in [17] the authors introduced a change of variables which allows to change
solutions u(r) of eq. (1.4) with f(u) = wu|u|?7"? into solutions v(r) of eq. (1.4)
with f(v) = r%v|v|772, where the dimension n of the variable z has been changed
into the so called “natural dimension” N := 2’2%(‘3. The change of variables of [17],
which works more in general for spatial dependent p-Laplace equations, is in fact
equivalent to the change of parameter from ¢ to [ in (2.1), in this context. Clearly
this change in the dimension n affects the critical values 2, and 2*, so we can either
evaluate them replacing n by N, or we can maintain their values and compare them
with [ instead of ¢ (in this paper we follow this second idea).

The following notation will be in force throughout all the paper. We use bold
letters for vectors and normal letters for scalars; we write xj(¢, 7; Q) for a trajectory
of (2.2) or (2.3) where | = [, departing from Q € R? at ¢t = 7. The following sets
will be often used in the whole paper.

R% = {(z1,9) | 21 > 0} RE :={(z1,3) |1 <0 <21}
AY = {(21, ) € RL | gy +y; = 0}
AT = {(scl,yl) € Ri ‘ oyxy + Yy > 0} A; :z{(;vl,yl) € Rﬁ: | oy +y < 0}

System (2.3) admits three critical points for ¢ > 2 and [ > 2,: the origin
O = (0,0), P(l) = (Px(l), Py(l)), where Py(l) < 0 < Py(l), and —P(l), where
P.(l) = (f’ylal)ﬁ and P,(l) = f[ffyl(al)q’l]ﬁ. The origin is a saddle point and
it admits a one-dimensional stable manifold M}(¢) and a one-dimensional unstable
manifold M}*(g), which in the origin are tangent respectively to the z axis and the
line y = —(n—2)z, corresponding respectively to A% and to Ag*. Since we are just
interested in positive solutions u(r) of (1.4), we will commit the following abuse of
notation: we call stable and unstable manifold M} (q) and M}*(g) the branch which
departs from the origin and get into R% deprived of the origin.

The critical point P(I) is asymptotically stable if [ > 2*, asymptotically unstable
if 2, <l < 2* and a center if [ = 2*, for any ¢ > 2. Let us denote by o, < o*
the roots of (a; + )% + 4ayyi(q¢ — 1). It is easy to show that P(I) is a focus if
0+« <l < o*, and it is an unstable node if 2, <[l < o, and a stable node if [ > o*;
we stress that the values o,,0* are the ones defined just before the statement of
Theorem 1.4. See figure 1 for a sketch of the phase portrait.

From some asymptotic estimates we deduce the following useful result, see [12]
for the proof.

2.1. Remark. Regular solutions u(r) of Eq. (1.4) correspond to trajectories x;(t) of
system (2.3) departing from points in M;*(¢) and viceversa. Positive solutions u(r)
with f.d. correspond to trajectories x;(¢) of system (2.3) departing from points in
M7 (g) and viceversa.
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Moreover singular solutions v(r) of (1.4) and slow decay solutions u(r) correspond
to the trajectories x;(t) = P(1); thus lim,_,gv(r)r® = P,(1) and lim,_, y cov(r)r® =
P.(1).

Observe that system (2.3) is invariant for translations in t. Therefore if X (¢) is
a solution, X7 (¢t) = X (¢4 7) is a solution as well. Equivalently if u(r) is a solution
of (1.4), then v(r) = u(re™)e*” is a solution as well.

We recall now two useful basic results.

2.2. Remark. Consider system (2.3); then x;(¢; Q) is well defined for any ¢ € R,
and any Q € R2. Moreover if lim;_, 4+, [|x1(¢; Q)|| = +0o0, then x;(¢; Q) crosses the
coordinate axes infinitely many times rotating clockwise.

2.3. Remark. Consider system (2.3) where | = [ € (2,,2*) and choose L > I.
Then for any Q € A} there is 7(Q) > 0 such that x3(¢,0;Q) € A} whenever
0 <t < T(Q) and it crosses A} transversally in a point Q = (X,Y) such that
x> Py (L) at t =T(Q).

Analogously let [ =1 > 2*, L <[ and Q € A} ; then there is T(Q) < 0 such that
xi(t,0; Q) € A for any T(Q) < t < 0 and it crosses A} transversally in a point
Q = (X,Y) such that x > P,(L) at t = T(Q).

Proof. Remark 2.2 follows from the super-linearity of f and it is easily proved
passing to polar coordinates, see Lemma 2.5 in [14] for a detailed proof in a more
general context. We prove Remark 2.3. Assume first L = [ € (2,,2*) and let
Q € Af; if limyyoo|x1(t; Q)| = 400, then xj(t; Q) crosses the coordinate axes
indefinitely so Remark 2.3 follows from Remark 2.2. Assume that x7(t; Q) € A}
for any t € [0,T); if T = 400, it follows that z;(¢; Q) is positive and increasing, so
admits a limit: we find easily that lim;_, . x7(t; Q) = P(I). But if [ < 2*, P is a
repulser so we have found a contradiction. It follows that T" < oo and the flow of
(2.3) on Q = x;(T; Q) is transversal to A?.

Now fix L > [: from the previous argument for any Q € A} C Alj' we find T > 0
such that xj(t; Q) crosses A? at t = 7. From a continuity argument then we find
T(L) € (0,T) such that xg(; Q) crosses A} at t = T(L). We prove that such a
crossing is transversal. We denote by m(xg) := ;/4; evaluated along A9 i.e.

apy+a??

2. =
(25) mia,ape) = L

Since m(x, ) is monotone in x and the flow of (2.3) on AY points towards A for
x > 0 small enough, and towards A} for x large enough, there is a unique point of
A9 in which the flow of (2.3) is tangent to A}; from a straightforward computation
we find that the tangency point is in fact P(L). From a simple analysis of the
phase portrait of (2.3) we find that x7(7'(L); Q) = (Cy, Cy) where Cy > P, (L) so
the crossing is transversal. The proof when [ > 2* is completely analogous and will
be omitted. O

Using the previous argument and the fact that (2.3) admits no critical points in
AY for L # | we get the following.

2.4. Remark. Consider system (2.3) where [ = {,, > 2* and choose L* > [,,. Then
for any Q € A7, there is T(Q) > 0 such that x;, (¢,0; Q) € A}, whenever 0 < t <

T(Q) and it crosses A}, transversally in a point Q = (X,Y) such that x > P, (L")
at t =T(Q).

Analogously let I = I € (2,,2%), L® € (24,15) and Q € A} ,; then there is T(Q) < 0
such that x_(¢,0;Q) € A7, for any T(Q) < t < 0 and it crosses A%. transversally
in a point Q = (X,Y) such that x > P,(L*) at t = T(Q).
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Using the ¢- invariance property of (2.3) we easily get the following.

2.5. Remark. Let u(d,r) be a regular solution of (1.4) and x;(¢,7; Q") the corre-
sponding trajectory of (2.3), so that Q" € M;*. Then d is a continuous monotone
function of 7 such that d(7) — +o00 as 7 — —oo and d(7) — 0 as 7 — 400, and
viceversa. Furthermore if we fix 7, d(Q) — 0 as Q — (0,0) and viceversa, and if
g < 2* then d(Q) — 400 as Q tends to the critical point P.

Analogously let v(L,7) be af.d. solution of (1.4) such that lim, _, o v(L,7)r" =2 =
L > 0, and x(¢,7; Q®) the corresponding trajectory of (2.2) such that Q% € M.
Then L is a smooth monotone function of 7 such that L(r) — 400 as 7 — —o0
and L(t) — 0 as 7 — 400, and viceversa. Furthermore if we fix 7, L(Q) — 0 as
Q — (0,0) and viceversa, and if ¢ > 2* then L(Q) — +o0o as Q tends to the critical
point P.

Now we see what happens if we switch between different values of [ in (2.2). Let
u(r) be a solution of (1.4) and xy, (t,7; Q') and xy, (¢, 7; Q?) be the corresponding
trajectories of (2.2) with | =, and | = lo. Then we denote by ] ; (x) the smooth
family of linear maps such that X!, (x1, (¢,7;Q")) = xi, (¢, 7; Q?), that is

l2,01
(2'6) Nfle (I, y) = (.Z‘, y) eXp[(alz - all)t] .

Observe that the sets A;, AY and AZJr are invariant for this maps, for any [.

A key tool for the analysis of equations of type (1.1) is the so called Pohozaev
identity, which is a clever way to restate Green’s formula. Fix ¢ > 2 and consider a
solution u(r) of (1.4) where f(u,r) = r’u|u|?72, and the corresponding trajectories
x1(t) and x2-(t) of (2.2). We introduce the Pohozaev function

n—2 2 |uld
Pu,u',r) = Pl 4 — L o,
( )= 5 .
and its translation for this dynamical context:
n—2 y? sy |z
H(x,t) := 24 el DLtk B
(x,t) 5 Y + B +e p
In this context the Pohozaev identity can be restated as follows:
dH . (1|2
(2.7 I (1) 0),1) = (6 — A7) ets 2O
q

Therefore if xa«(t) solves (2.2), then H(x2«(t),t) is monotone decreasing when
0 < A*, constant when § = A* and increasing when § > A\*. Note that if ¢ = 2*
then \* = 0 and if 6 = 0, then H(x2+(t),t) is decreasing if ¢ > 2*, constant if
q = 2* and increasing if ¢ < 2*.

We also need the following functions

x|
+ .
q

-2
H,.(x):= 5 zy +

v
2
Y

2 q
Yo ereat—ane 2l
5 Ty + 5 +e P
Observe that H(x,t) = Ha-(x,t) and Hy (x,t) reduces to H,(x) when (2.2) reduces
o (2.3) for I = L; furthermore if u(r) solves (1.4) and x2-(t) and xr,(t) are the
corresponding trajectories of (2.2) with { = 2* and with [ = L respectively, we find

(2.8) P(u(r),u'(r),r) = H(xg-(t),t) = Hp (x5 (t), t)e” (@ +e)t

Let us consider a regular solution u(r) and a f.d. solution v(r) and the corre-
sponding trajectories x5 (t) and x3. (¢). From (2.7) we easily get that H (x3.(t),t) <
0 < H(x5.(t),t) for any t € R if § > A\* (subcritical case), H(x%.(t),t) < 0 <

H(x,t) ="
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H(x3.(t),t) for any t € R if 6 < A* (supercritical case) and H(x¥.(t),t) = 0 =
H(x5.(t),t) if § = A* (critical case). From (2.8) we also find the following.

2.6. Remark. Let x,,(t) and x4(t) be the trajectories of (2.3) with | = u and [ = s
respectively, corresponding to a given solution w(r) of (1.4). Then H,.(x,(t)) has
the same sign as H.(xs(t)) and they become null for the same values of ¢.

Using this simple information and noticing that the level sets H,(x,y) = 0 are 8-
shaped and bounded, we can draw a picture of the stable and the unstable manifold
M7 (g) and M}(q) for (2.3), and we obtain figures 1, see [12, 14] and Remarks 2.8
and 2.9 below for details.

Another change of variables which is very useful in the context of equation of
type (1.1), is known in literature as “Kelvin transformation”. Let us set

(2.9) s=r"1 a(s)=s*>"u(l/s) f(a,s)=f(i,1/s)
Then (1.4) is transformed into

n—1

(2.10) fiss(s) + is(s) + f(a,s) =0.

In particular if f(u,r) = k(r)ulu|?2, then f(a,s) = k(1/s)s** @|a|?2. Moreover
if ¢ = 2* then A* = 0 so transformation (2.9) simply acts as a reversion of time in
(2.2). Combining (2.9) and (2.1) we obtain the following.

2.7. Remark. Let us consider (1.4) where f(u,r) = r%u|u|?~2 and the corresponding
autonomous system (2.3). Let u(r) and v(r) be a regular and a f.d. solution of (1.4)
respectively, and let xj'(¢) and xy () be the corresponding trajectories of (2.3). Let
u(s) and 9(s) be the solutions of (2.10) obtained from w(r) and v(r) through (2.9):
then o(s) is a regular solution and @(s) has f.d.

Moreover if we apply (2.1) with [, = 2% to (2.10) we obtain the
autonomous system (2.3); we emphasize that oy, = —v; and 7, = —aq. It follows
that a subcritical system is changed into a supercritical one and viceversa. Note
further that if [ = o* then I, = o, and viceversa, [, — 2, as | — +oo and [, — +00
as | — 2.

So the phase portrait of M}*(q) and M} (q) of a subcritical system (2.3) is changed
by the Kelvin inversion into a supercritical one and viceversa.

Now we give a key result which is summed up in figure 1.

2.8. Remark. Let ¢ > 2 be fixed, and Q" € M}*(q), Q° € M} (q).

If | > 2* then M/ (q) crosses the coordinate axis indefinitely rotating counter-
clockwise. Moreover H,(Q") < 0 < H,(Q?®). If [ > o* then there is a negative
decreasing function h" : [0, P;(1)] = R such that A*(0) = 0, h*(P,(l)) = P,(l) and
M (q) == {(z,h"(x)) |z € (0, Px(1))}. Furthermore M;*(q) N A; = 0.

If 2 <1 < o* then M}"(q) is a spiral which joins the origin and P([). There
exists U(l) € (2.,1) such that M(q) is tangent to AY, in the point P(U), and
M (q)n Ay, =0.

If | = 2* then M} (q) = M;(q) C R and they are the graph of a homoclinic
trajectory. Moreover H,(Q") = 0 = H.(Q?®) and the interior of the bounded set
enclosed by M}*(q) is filled by periodic trajectories which are the negative level sets
of the function H,; H.(P(2*)) < 0 is the minimum for H,.

If 2, << 2* then M}*(g) crosses the coordinate axis indefinitely rotating clock-
wise, while M} (q) C R3; H.(Q") > 0 > H.(Q?®).

If 0, <1 < 2* then M} (q) is a spiral which joins the origin and P(l). There exists
S(1) > 1 such that M;(g) is tangent to A% in the point P(S), and M} (q) N AL = 0.
If 2, < I < o, there is a negative decreasing function h® : [0, P,(I)] — R such
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that h*(0) = 0, h*(Py(l)) = Py(l) and M} (q) := {(z,h*(x)) |z € (0, Py(1))}. Fur-
thermore M;(q) N A = 0. Moreover U(l) — 2, as I — 2* and S(I) — +oo as
[ — 2%,

Proof. Most of the results of this Remark are proved in a more general context in
[12, 14]. The mutual position of M;*(¢) and M/ (q) is easily obtained evaluating
the function H,, whose sign easily follows from (2.8) and (2.7). The uniqueness of
the tangent points between M (q) and AY;, and M;(g) and A2, as well as the fact
that these points are in fact P(U) and P(.S) follows from Remark 2.3, and (2.5).

The really new part concern the shape of M;*(¢) and M} (¢) when [ > ¢* and
| < o, respectively. Assume first | = ¢ > o*: Wang in [26] proved that if dy > dy,
then w(dg, r) > u(dy,r) for any r > 0 (this monotony property of regular solutions
does not hold for 2* < ¢ < ¢*, since P(q) is a focus).

Combining this property with the translation in ¢ invariance of system (2.4) we
easily deduce that the trajectory xq(t) corresponding to u(1,7) is in A;}‘ for any
t € R. Then we easily deduce that M(}‘(q) is a graph on the z axis. Moreover,
as we have already observed, system (2.3) corresponds to equation (1.4) where
the dimension 7 is replaced by the natural dimension N = Q?FT’QZ. So the modified
equation (1.4) is endowed with the monotony property proved in [26], and it follows
that the manifold M} (g) is a graph on A, when [ # ¢ too. The monotonicity of h*
(which by the way is not relevant in this paper), follows again from the uniqueness
of the point in which the flow of (2.3) is tangent to A? for I > 2,, see (2.5) and
Remark 2.3.

Now set { < o, and consider Q% € M7 (q), the trajectory xi(¢,0; Q%) and the
corresponding fast decay solution v(L,7) where L = lim, _,, oov(L,7)r" 2. Let us
apply the Kelvin inversion (2.9) so that v(L, ) becomes the regular solution u(L, s)
of (2.10) with f(u,s) = s"ulu|9"2, where n = (n — 2)(q — 2*) — §. Then we apply
the change of variables (2.1) with [ = [, and we obtain system (2.3) with [, > o*.
So My (q) with 2, < I < o0, is changed into M}!(q) with I > o, see Remark
2.7. Using the fact that regular solutions are such that u(da, s) > u(dy, s) for any
s > 0, whenever do > dj, we find that the f.d. solutions v(Le,r) and v(Lq,7)
inherit the same property: v(La,r) > v(Ly,7) whenever Ly > Li. Combining this
order preserving characteristic with the ¢-invariance we easily get that M?(q) is a
monotone graph on the x positive semi-axis. O

By construction the functions U(1) : (2%, 4+00) = (24, +00) and S(I) : (24,2%) —
(24, +00) defined in Remark 2.8 are such that U(l) = for | > o* while U(I) < [ for
2, <l<o* and S() =1for2, <l <o,and S(I) >l forl > o.. Since P is a focus,
then M} (g) intersects A? indefinitely whenever 2* < [ < o*. Follow M}*(q) from the
origin towards P(1); we denote by QJ*(1) the first intersection met between M}"(q)
and AY, and by Q'(k) the k*; we set QJ*(0) = (0,0). We denote by M (k) the
branch of M}* between Qi*(k — 1) and Q}*(k). Observe that limy_, Q*(k) = P(l)
and that M;*(2k) N A" = 0, while M}*(2k + 1) N A, = 0, for any k € N.

Analogously we follow M} (q) from the origin towards P(I) when o, <1 < 2*; we
denote by Q5 (k) the k' intersection met between M (q) and AY; we set Q5(0) =
(0,0). We denote by M; (k) the branch of M} between Qf(k—1) and Qf (k). Again
limy,_, 0o Q5 (k) = P(I) and M;(2k) N A = 0, while M7 (2k + 1) N A" = 0, for any
k € N. Observe that the crossings Q*(k) and Qf(k) between A? and M and M;
respectively, are transversal, for any k € N, since the flow on A? is vertical.

2.9. Remark. The functions U(l) : (2%, +00) — (24, +00) and S(I) @ (2.,2%) —
(24,400), QP(k) : (2%,0%) — AD, Q5(k) : (04,2*) — AY for k € N, depend
continuously on I. Moreover for any k£ € N, Qj'(k) — P(o*) as | — o* and
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Q3 (k) — P(0.) as | — o.. Furthermore for any fixed k € N, Q*(2k+1) — QU (1),
Qj'(2k) — (0,0), Qf (2k + 1) — Q3. (1) = Q3.(1) and Qf'(2k) — (0,0), U(l) — 2.
and S(I) — 400 as | — 2*.

Proof. The continuity of QJ(k) with respect to I for I € (2*,0*), follows from the
continuous dependence of the flow of (2.3) on parameters, and the transversality of
the crossings. From Remark 2.3 we know that M} is tangent to A?J(l) in P(U(1)).

Observe further that P(U(1)) € M*(2) since Mj* cannot have self-intersections;
consider the line L orthogonal to Ag,(l) passing through P(U(1)): by construction
M;*(2) crosses L transversally in P(U(l)). Using again the continuous dependence
of the flow of (2.3) on the parameters we find that P(U(l)) depends continuously
on [. The continuity of U(l) then follows from the continuity of P(U(I)).

Let B(Q, R) denote the ball of radius R with center in Q; observe that for
any € > 0 we can find § > 0 such that M(1) N B(P(c*),¢/2) # 0 whenever
0 <1—0* < 4. Let us choose Q € M*(1) N B(P(c*),€/2) and consider x;(t,0; Q).
Using the fact that P(l) is attractive and that we can choose § > 0 such that
[P(c*) —P(I)| < €/2, we see that x;(t,0; Q) € B(P(c*),¢) for any ¢ > 0. Moreover,
since P(1) is a focus there is a sequence 7, — 400 such that x;(73,0; Q) = QU (k)
for k € N. For the arbitrariness of € > 0 it follows that Q}*(k) — P(c*) as | — o,
for any k € N. Since P(U(1)) € M{*(2) we find P(U(l)) — P(c*) as | — o*, too.
Therefore we also have U(l) — o* as | — o*.

Now we prove that QP(2k + 1) — QU.(1) as | — 2*, for any fixed k € N. Let
us fix [ € [2*,0*) and denote by af the segment of A? between P(I) and Q(1)
and by a! the segment of AY between the origin and P(l). Note that for any
Q € af\ {P(l)} there is T(Q) > 0 such that the trajectory xi(¢,0; Q) € A; for any
0<t<T(Q)and x1(7T(Q),0; Q) € aj*. Analogously for any Q € a;*\ {P(I),(0,0)}
there is 7(Q) > 0 such that the trajectory x;(¢,0; Q) € A for any 0 < t < T(Q)
and x1(7T(Q),0;Q) € af. So we can define the function T¢(Q) : af — a* as
T4P(l)) = P(I) and TYHQ) = x1(T(Q),0; Q) otherwise; for continuity we set
T4.(Qy.(1)) = (0,0). Analogously we can define Y*(Q) : a* — af as T¥(0,0) =
QP(1), TH(P(1)) = P(I) and T¥*(Q) = x1(T(Q),0; Q) otherwise. From continuous
dependence on initial data and parameters it follows easily that Tld and T; are

d

continuous in Q and that they depend continuously on [ (observe that af — ad

and af — a;' with respect to the Hausdorff distance between sets, as [ — ).
Let us define the continuous function A} (Q) : af — af as A}(Q) = TH(YHQ)),
and denote by A12 = Al1 o All, and Af = Al1 o Affl, for £ > 2. Observe that
AF(QI(1)) = QP(2k 4 1). By construction for any k € N, AF is continuous and
depends continuously on [ as well, and A, (Q) = Q for any Q € a?(2*). Thus it
follows that for any k € N, Q{*(2k + 1) — QY. (1) as | — 2*. Using the function
T (Y#(Q)) and reasoning as above we can prove that Q}*(2k) — (0,0) as [ — 2*
for any k£ € N.
Using the fact that Q(1) — Qu.(1) as | — 2* and continuous dependence on
parameters, we get that U(l) — U(2*) = 2, as | — 2*.
The proof concerning S(I), and Qf (k) is completely analogous so will be omitted.
U

Let 2, <l < 2* < I,; we set

e1(ls) :=sup{l — 2* > 0|U(L) < I, for any 2* < L < [}
(2.11) €1(ly) == sup{|l — 2*|| S(L) > I, for any | < L < 2*}
’ No(ls) :==inf{l|U(L) > I, for any L > [}
eo(ly) :==sup{l — 2, > 0|S(l) <, for any 2, < L <.}
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FIGURE 1. Sketch of the phase portrait of (2.3), for ¢ > 2 fixed.

The values defined in (2.11) are meaningful (nonzero and bounded), thanks to
Remark 2.9. In particular Ny(ls) < max{S(ls),c*} and €y(l,) > min{U(l,), o

2.

2.10. Remark. Fix I, € (2.,2%); for any I, € [2*,2*+€1(1,)) we have [A] NM}* (q)] #
0, while for any I,, > Ny(ls) we have M}" (q) C Alt. Analogously fix [,, > 2*; for any
ls € (2* — e1(ly), 2*) we have [A) N M (q)] # 0, while for any I, € (2.,2. + €o(lu))

we have M (q) C A, .

Let us define

(2.12)

&1(l,) = sup{l —2* | U (1) <
(1) = sup{j1 — 2 S(L) >
No(l,) = inf{l| U (1) >
éo(l,) = sup{l — 2.| (1) <

S(ls) for any 2* < L < I}
U(ly,) for any | < L < 2*}
S(ls) for any L > 1}

U(l,)for any 2, < L <1}
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We stress the values in (2.11) are the ones that appear in Theorems 1.10 and 1.12
and that the values €1(6%), €1(d%), €0(6%), No(d°) which appear in Theorems 1.5
and 1.7 are obtained simply setting €1 (0%) := €1(0(ly)), €1(6°) := €1(d(l5)) and so
on.

Observe further that if the functions U (1) and S(I) are monotone as we conjecture
than 2* — €1 (1) = 2. + &(l,) and 2* + & (1) = NO(ZS), and the definitions of the
functions €, €, Ny and Ny simplify. We stress that by construction é(1,) > € (),
&(ly) > e1(ls), é(ly) > eo(ly) and No(ls) < No(ls). The values €;, o and Ny in
Theorems 1.5, 1.7, 1.10, 1.12 might be replaced by the better constants é;, €y and
Ny defined in (2.12). However the values defined in (2.11) can be easily estimated
by a computer assisted proof. This way we may obtain precise values for which we
have either existence or non-existence of G.S. with f.d., see Remark 3.6.

In next sections we need also this Lemma.

2.11. Lemma. Fiz l; € (2,,2%); for any k € N we can find ex(ls) > 0 such that
M;* (q) crosses A} at least 2k times, whenever I, € [2%,2* + e;(ls)). Analogously
fix 1, > 2*; for any k € N we can find ex(l,) > 0 such that M} (q) crosses A?u at
least 2k times, whenever ls € (2* — € (1y,),2%). '

Proof. From Remark 2.9 we know that Q@(2k + 1) — QU.(1) and Q}(2k) —
(0,0) as I — 2*. Using continuous dependence on initial data we easily find that
M2k +1) — M (1) and MP(2k) — M (2) as | — 2* with respect to the
Hausdorff distance between sets. So the existence of e;(ls) is guaranteed by a
continuity argument.

Reasoning as above we see that M} (2k 4 1) — M3. (1) and M7 (2k) — Ms.(2)
as well, so the existence of e(l,) follows. O

Reasoning as in Remark 2.8, for any £ € N we can define the functions Uy :
[2%,0%] — [24,0%] as follows: Uy(2*) = 2,, Ug(c*) = o* and Ui(l) = L, where
L € (2.,0%) is the unique value such that M*(2k) crosses A9 for any u > L and it
is tangent to A%2. Analogously we define Sk : [04,2%) — [04, +0) as Sk(0x) = o,
and Sy (I) = L, where L > o, is the unique value such that M7 (2k) crosses A for
any s < L and it is tangent to A%.

From Remark 2.3 and reasoning as in Remarks 2.8 and 2.9 we find the following.

2.12. Remark. For any k € N the functions Uy : [2%,0%] — [2,,0%] and S} :
[04,2%) = [04, +00) are continuous and Sk(l) — +o0 as | — 2*. Moreover M}*(2k)
is tangent to A7, ) in P(Uy(l)) and M (2k) is tangent to Ag, ;) in P(Sk(1)).

Let us denote by

ex(ls) :=sup{l — 2* | Uy (L) < I, for any 2* < L < 1}
(2.13) €x(ly) == sup{|l — 2*| | Sk(L) > I, for any | < L < 2*}
’ €x(ls) :=sup{l — 2* | Ui (L) < S(l5) for any 2* < L < [}
€x(ly) == sup{|l — 2*| | Sk(L) > U(l,) for any I < L < 2*}

Observe that €;_1(ly) > €x(ly) > €x(ly), €x—1(ls) > €x(ls) > ex(ls) whenever k > 2.
We stress that the values € (6") and €;(6°) of Theorem 1.6 can be obtained simply
setting €(0") = ex(d(lu)) and €x(6*) = €x(3(ls)). )

For any [,, € (2*,0*) we denote by B} (j) the bounded set enclosed by M}* (j) and
the segment of A9 between Q! (j — 1) and Q}! (j). We have B} (2j) C B (2(j —
1)) C (A) UA; ) and By (2j+ 1) C Bf* (2j — 1) C (A}, UA[") for any j € N.

Analogously for any I € (04,2*) we denote by Bf (j) the bounded set enclosed
by ]\;[f (j) and the segment of A} between Qi (j—1) and Qi (4). We have Bls (29) C
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Bi (2 —1)) c (4) U AZ) and Bi(?y +1) C Bl‘:(Qj —1) C (A} U A]) for any
jeN.

Let I, € (2%,2*+€,(l,)) and follow M (¢) from the origin towards RZ : it crosses
A} in at least 2k distinct points. We denote by Qﬂ, (Gils) = (X“(§),Y"(j)) the jt*
intersections, for any j = 1,...,2k and we set Q}: (0;15) = (0,0); it follows that

XU(2) < X%(2i) < XU(2(i +1)) < Po(ly) < X*(2j +1) < X¥(2j — 1) < X},
for any 4,5 = 2,...,k — 1. We denote by M;i(j;ls) the branch of M;® between
Q“(j —1) and Q“(j), for j =1,...,2k, and by B;: (j;ls) the bounded set enclosed
by Ml'i (j) and the segment of A between QU(j—1) and Q¥(5). It is easy to check
that Bf* (2j;1,) C B (2(j —1);1s) C (A) UA; ) and By (2j+1) C Bf* (25 +1;1,) C
B (2§ — 1);1) C (A UAS) forany j =1,... .k — 1.

Analogously fix [, > 2* and choose ls € (2" —ex (1), 2") so that M (q) crosses A?u
in at least 2k distinct points. Follow M (¢) from the origin towards R% ; we denote
by Qf’s (Gily) = (X5(4),Y*5(5)) the j'* intersections met, for any j = 1,...,2k and
we set Qi (0;1,) = (0,0); again we have

X°(2) < X°(20) < X°(2(i + 1)) < Po(l) < X*(2j +1) < X°(2j — 1) < X},
for any 4,7 = 2,...,k — 1. We denote by ]\;Ifs (j;lu) the branch of M} between
Qfs(j —1;1,) and Qfs(j;lu), for j = 1,...,2k, and by Bf (j; 1) the bounded set
enclosed by Mls (j; 1) and the segment of A?u between Qi (j—1;1,) and Qi (J3 lu)-
It is easy to check that B (2j;1,) C Bf (2(j—1); L) C (A? UA;") and B; (2j+1) C
By (2§ + 1;1u) C By (25 — 1);1,) € (A) UA;) forany j=1,....k— L.

These constructions will be useful in next sections.

Denote by Q%(L) = (X°(L),Y°(L)) the unique intersection between A% and the
level set H,.(x) = 0, such that X°(L) > 0 for L > 2,. Consider system (2.3) where
2, <1 < 2* and follow M} from the origin towards R3 : using again (2.5), (2.8), and
the fact that M}* crosses the y negative semi-axis, we see that it crosses A9 once in
a point CJ*(L) such that H,(C}'(L)) > 0, for any L > 2,.. Therefore there is 7" < 0
such that x;(¢,0; Q°(L)) € Af for T* < t < 0 and x,(T%,0; Q°(L)) = R}(L) € AY.
Denote by D#(L) = {x;(t,0;Q°(L))|T* < t < 0}, by N*(L) the compact set
enclosed by D¥(L) and A%, and by E}*(L) := A}\ Ni(L) see figure 2.

Analogously consider system (2.3) where [ > 2*; and follow M} from the origin

towards R : reasoning as above we see that it crosses A9 once in a point C§(L) such
that H,(C§(L)) > 0, for any L > 2,. There is 7% > 0 such that x,(¢,0; Q%(L)) €
Ay for 0 < t < T° and x,(T%,0;Q°(L)) = R§(L) € AY. Denote by Dj(L) :=
{x(¢,0;Q%(L)) |0 < ¢ < T*}, by Ni(L) the compact set enclosed by D7(L), and
A% and by Ef(L) := A;\ Nf(L). From an elementary analysis on the phase
portrait we get the following.
2.13. Remark. Consider system (2.3) where 2, <[ < 2*, and choose Q in the interior
of Ej*(L), where L > 2,. Then there is T“(Q,L) > 0 such that x(¢,0;Q) € Af
for any 0 < t < T%(Q, L), x1(T*(Q,L),0;Q) = C* € A% and H,(C") > 0.
Moreover if R}'(L) = (A}(L), —arA}(L)) then A}(L) is positive and continuous
for 2, <1 < 2* and tends to 0 as | — 2*.

Analogously set I > 2* and choose Q in the interior of Ej(L), where L >
2.. Then there is T%(Q, L) < 0 such that x(t,0;Q) € A, for any T°(Q,L) <
t <0, X](TS(Q,L>,O; Q) = C® € A) and H,(C®) > 0. Moreover if R§(L) =
(A7(L), —apAj(L)) then Aj(L) > 0 is positive and continuous for [ > 2* and
tends to 0 as [ — 2%,
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R'O

F1GURE 2. Construction of E}*(L).

3. f oF TYPE (1.2)

In this section we analyze (1.4) assuming that f has the form (1.2). This partic-
ular non-linearity is suitable for a rather easy discussion, performed gluing together
two 2 dimensional autonomous systems. In this case the problem is simple enough
to detect several bifurcations (in fact we think all of them). However we believe
that the bifurcation diagram developed in Remarks 3.10 and 3.11, which sums up
the results of Theorems 1.6, 1.7, 1.8 and Corollary 1.9, should be typical for a much
larger class of nonlinearities f exhibiting supercritical behavior for u large and r
small, and supercritical behavior for w small and r large (or at least part of the
diagram). So we regard this simplest case as a prototype.

In the whole section we consider g > 2 fixed so we leave the dependence on this
parameter unsaid. Consider (1.4) where f(u,r) = roulu|?72; if we set | = [, :=
1(0%) = 2(6" 4+ q)/(0* + 2) we find that (2.2) reduces to the autonomous system
(2.3) when § = 0%, and if we set [ = I, it reduces to (2.3) when ¢ = 6°. We develop
all the proofs setting Iy < 2* < [, for homogeneity with the next section. So we
obtain values of the parameters ey, €z, No and Ny, giving bounds for the validity
of the Theorems, depending on [,, and I5. The original values which appear in the
statements of the Theorems have the form €5 (6%) := €x(6(Ly,)), €x(6™) := €x(6(1w)),
and so on.

We modify the change of variables (2.6) as follows: we set

B oo, ift<0 B=0(t)=al)+1
(3.1) aa(t){alw if ¢t > 0. and y=~{)=at)+2—-n

Then, setting z, (t) = u(e?)e*®* and y. (t) = u'(e*)e’ Dt we obtain:

(82 () =0 20 ) () ()

This way we have introduced a discontinuity at ¢ = 0, however the trajectories
obtained are C? for ¢ positive and for ¢ negative and locally Lipschitz for any ¢ € R.
A solution x,(t) of (3.2) will be a continuous and piecewise C'! function such that
limy_, g+ X4 (t) = limy_ g+ F(x.(¢),t), where F(x,(t),t) is the right hand side of
(3.2).
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Observe that for 7 < 0 the origin admits a 1-dimensional unstable manifold,
denoted by W*(7), which is in fact constant, equal to M} (g), and invariant for
the flow whenever ¢ < 0. Here and later we continue to abuse the notation and for
unstable manifold we mean just the branch which departs from the origin in the
direction of R3, since we are interested just in positive solutions. Using the flow of
(3.2) we can define the unstable manifold for 7 > 0 as follows:

WH(r) :={x.(1,0;Q) | Q € M }.
It is easy to check that W™ (7) varies continuously with respect to 7 but it is not

constant for 7 > 0 and it is not invariant for the flow for ¢ > 0. Furthermore observe
that for any 7 € R we have

WU(T) = {Q # (070) | t_ljl;noox*(tﬂ-; Q) = (070)}

Thus, using Remark 2.1, we see that the trajectories x.(¢,7;Q) such that Q €
W*(7) correspond to regular solutions u(r) of (1.4) and viceversa.
Analogously we define the stable manifold W*(7) = M} for 7 > 0 and

We(r) = {x, (1,0, Q) | Q € M;’ },

for 7 < 0. Again W?(7) depends continuously on 7, therefore W"(0) = M} ;
moreover we have

WS(T) = {Q # (0’ 0) | tlj}'i-noox* (taT; Q) = (O?O>}7

so trajectories x, (¢, 7; Q) such that Q € W#(7) correspond to f.d. solutions u(r) of
(1.4) and viceversa.

From the previous construction, Remark 2.1, and the stability properties of the
critical points P(l,) and P () we get the following.

3.1. Remark. Eq. (1.4) with f of type (1.2) admits a unique positive singular
solution, say v(r), and v(r) = P,(l,)r “« for » < 1, and a unique s.d. solution
w(r), and w(r) = Py(ls)r~*s for r > 1

Since P(l,,) # P(ls) whenever [, # I, we get the following.

3.2. Remark. Equation (1.4) admits no S.G.S. with s.d. whenever f is of type (1.2)
and A, < 0% < A* < 6%

Now we are ready to prove Theorem 1.5 and 1.6. We stress that both the results
are obtained directly working with the constants €, defined in (2.11) and (2.13)
which are larger than the ones used in the statement of the Theorems.

Proof of Theorems 1.5 and 1.6. Fix k € N, §° € (A*,\,) and correspondingly
ls € (24,2%); choose I, € (2*,2*+¢,(ls)) and correspondingly 6“. From the previous
section we know that W"(0) = M;" intersects A?s transversally in Q}L (4,1s) for
any j = 1,...,2k. For any j = 1,...,k we denote by E“(]) = Bﬁ(Qj -1, U
Bl“ (24,1). Since P(ly) is in the interior of the segment of A} between Qﬂj (2k—1,1)
and Q}L(Qk,ls), it follows that P(l,) is in the interior of B*(k) C B“(j) for j =
L,...,k, see Remark 2.3. Observe that M; is a continuous path that joins the
origin and P(ls). Moreover the flow of (23) where | = I, on the segment of A}
between Qﬂ(?j —2,15) and (3}1(2]’7 ls) points towards E“(g) forany j =1,...,k
(remember that Qﬂl (0,15) = (0,0)). So if we follow M} from the origin towards
P(ls) we find Q*(j) € (M;:(Qj - 1;l5) U Mli(Qj;ls)) N M; . Now consider the
trajectory x.(t,0;Q*(j)) of (3.2); since Q*(j) € W (0) N W (0) it follows that
X.(t,0; Q*(j)) € M* C R% for any t <0, and x.(t,0;Q*(j)) € My C R for any
t > 0 and it is homoclinic to the origin. So the corresponding solution u(r) of (1.4)
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FIGURE 3. Sketch of M;" and M; for I; € (24,2") and I, €
(2%,2* + e2(l5)). To the left the case 2, < I, < ¢* to the right
the case o* < [y < 2%

is a monotone decreasing G.S. with f.d. for j = 1,..., k. We also stress that Q*(¢) #
Q*(j) for ¢ # j since there is no intersection between M;i (26 — 1;15) U M;i (24;15)
and M} (25 — 1;15) U M (25;1,); thus u(r) # u/(r) for i # j.

The proof in the case —2 < §* < A* and §° € (\*, \* + € (6%)), i. e. L, > 2* and
ls € (2% — €,(ly), 2*) is completely analogous and will be omitted.

In fact we could work out a proof in this latter case also using the Kelvin inversion
as follows. Let us choose d* and correspondingly [, > 2*: we look for a value
ls € (24,2%) such that M;* N M} contains at least k distinct points. Then we can
conclude the existence of k decreasing G.S. with f.d. reasoning as above. Let us
apply the Kelvin inversion: f.d. solutions are changed into regular solutions and
viceversa. Moreover using Remark 2.7 we see that, applying (3.1) where L, (ls) :=
2% and Ly(l,,) := 2% to the equation (2.10) obtained through
(2.9), we obtain again a system of the form (3.2). Note that L, > 2* and L, €
(24,2%). So applying the result just proved we see that there is €;(Ls) such that
M}y N Mj contains at least k distinct points for any L, € (2%,2" + € (Ls)) and
we find k& G.S. with f.d. @/(s) for (2.10). Thus the function w?(r) = @/(1/r)r>="
obtained inverting (2.9) solves (1.4) and has fast decay (because @’ (s) is a regular
solution), and it is regular (because @/ (s) has f.d.) and it is always positive: so it
is a G.S. with f.d. Rewriting L, (ls) < 2* + €[Ls(l.)] as I > 2* — €, (l,), we get

eully) = ot ell)
0 — 2)&(Ls ()
Thus we find that the original equation (1.4) with f of type (1.2) has k decreasing

G.S. with f.d. whenever [, > 2* and I5 € (2* — €,(l,),2%), i.e. A < ¥ < A* and
5% € (N, \* 4+ & (6%)). O

3.3. Remark. From the argument at the end of the proof of Theorem 1.5 we get a
further symmetric relationship between € (l,) and ex(l;) for any k, i.e.:

. 2€,(Ls(ly)) . 2€k(Ly(ls))
3.3 ly) = — ls) = =
G3 sl =Rty YT T - vat.0)
Now we prove the non-existence counterpart of the previous Theorem. Once

again it is developed with the better constants €, and Nj.
Proof of Theorem 1.7. Fix —2 < §* < A* and correspondingly [, > 2*. From the

P (lu)
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definition of €y(l,), see (2.12), we get that M C A, for any I, < 2, + &(l,) and
M; N M = 0. So consider (3.2) with these Values for I, and I,: it follows that
W“( )n WS( ) = 0. Therefore there are no G.S. with f.d. Moreover, since neither
P(l,) € M, nor P(ls) € M*, there are no S.G.S with f.d., and no G.S. with s.d.
Moreover no S.G.S. with s.d. might exist, see Remark 3.2.

Analogously fix §° > 0 and correspondingly s € (24,2%). Reasoning as above
we conclude that (1.4) admits no G.S. neither S.G.S. (either with fast or s.d.),
whenever [, > No( s). Once again we could prove this second non-existence result
using the Kelvin inversion (2.9) and Remark 2.7 as in the proof of Theorem 1.5,
obtaining a further symmetric relationship analogous to (3.3). O

From the previous proof and Remark 2.9 we get also the following Corollary.

3.4. Corollary. Theorems 1.5, 1.6, and 1.7 hold also if we replace €, €y, No by
the constants €, > €5, €0 > € and Ny < Ny defined in (2.12).

Moreover 2, + é(ly) < o4 for any l, > o* and No(ls) < o* for any ls € (24, 04].
In particular (1.4) admits no positive solutions either regular or singular, whenever
ly >0* and s < o,.

3.5. Remark. Let us denote by w? :=sup{l|S(L) < 2* for any 2, < L <[} and by
w¥ = inf{l|U(L) > 2* for any L >1}. Then (1.4) admits no positive solutions

*
either regular or singular, whenever [, < wi < wy < ,,.

Note that 0, < wi < 2* <wi < o*.

3.6. Remark. We explain now, how a computer assisted proof could be worked out
in order to evaluate the values of €1 (1), €1(l5), €0(ly), No(ls) used in Theorems 1.5,
1.10, 1.7, 1.12.

Using a software capable to evaluate an approximated trajectory of an O.D.E.
taking into account the errors, we can draw an approximated unstable manifold
Mt for I, > 2* as follows. We choose Q € A?u where |Q] is small and we consider

the real trajectory xi, (t,0; Q). There exists a value U such that x;, (¢, 0; Q) crosses
AY for any [ > U and it is tangent to AO Analogously we choose D = (0, 9)
where 6 > 0 is small and we consider the real trajectory x;, (¢t,0;D); if 6 > 0
is small enough there exists a value U such that x, (t,0; Q) crosses A for any
| > U and it is tangent to AOU. It is clear from the uniqueness of the solutions

of (2.3) that U<U (ln) < U. Using an appropriate software we can replace the
values U and U by two approximating intervals, say [Ua,Ub] and [Ua,Ub] More
precisely we evaluate intervals such that surely U € [U,, U] and U € [U,, Uy).
Then, setting Uy := min{Ua, Ua}, Up = max{Ub,Ub}, we are sure that the real
value U(l,) € [Ua,Ug]. Note that we can assume 2, < Uy < Up < l,,. Then it
follows that no positive solutions exist for any [y < Uy and there is at least a G.S.
with f.d. whenever Iy > Upg (this corresponds to giving an estimate of the value
Eo(lu) and 61(lu))

Reasoning in the same way we obtain an estimate of the value S(l) i.e. we find

two values [, < Sa < Sp such that surely S(I5) € [Sa,Sp]; then we find values
l,, for which we have either non-existence of positive solutions or existence of G.S.
with f.d. for prescribed values of [,, and [.
In fact we can have better results through a construction analogous to the one of €
and Ny, but we need more computational power: (1.4) admits at least a G.S. with
f.d. whenever [,, > [; have been chosen so that Ug < S4, and no positive solution
if Sp < Ua.

Clearly if the function U (1) and S(I) are monotone as we conjecture this argument
can be improved further.
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From the proof of Theorems 1.5 and 1.6 we can easily infer also Theorem 1.8.

Proof of Theorem 1.8. Let us fix \* < 0° < A, and correspondingly I € (2,,2%).
Fix k € N; from Remark 2.12 we know that the function Ui (l) : [0, 2*] — [24,0%] is
surjective. Thus there is r(ls) such that M;‘ (1.)(2k) is tangent to A? inP(l;). Con-
sider system (3.2) where I, =I5 and [, = ri(ls), and the trajectory x.(t,0; P(l5));
let u¥ (1) be the corresponding solution of (1.4) with f of type (1.2) with 6% = 74(°)
and §° = 6(l;) where (abusing the notation) we set r(6°) = 0(rk(ls)). Then
x.(t,0; P (1)) € M:fk(ls) C R for any ¢t < 0 and x.(¢,0;P(ly)) = P(l,) for any
t>0: so uf(r) is a G.S. with s.d.
Since M L 10)(2) ﬂMT a.(24) = () for i # j it follows that r;(ls) # r;(Is). Moreover
we can assume ri(ls) — 2* as I — 2, for any fixed k, since U (2*) = 2,.. We ob-
serve that in fact we could have two values 74 (ls) and 7 (l5) giving a G.S. with s.d.,
since Uy is not a priori monotone, however we can always choose r(ls) monotone
decreasing in k. Furthermore by construction r(ls) — 2* as k — 400 for any fixed
ls.

Now fix §* € (=2, A*) in (1.2) and correspondingly I,, > 2*. Reasoning as above,
for any k € N we can find 74 (l,) € (04, 2%) such that P(l,) € Mfk (2k). So it follows
that x.(t,0,P(l,)) = P(l,) for t <0 and x.(t,0,P(l,)) € M for ¢t > 0, and the
solution u(r) of (1.4) corresponding to x.(t, 0, P(l,)) is a decreasing S.G.S. with f.d.
Then, reasoning as above, we get the monotonicity and the asymptotic properties
of ri(l,). An alternative proof can be obtained using Kelvin inversion (2.9) and
reasoning as in the proof of Theorems 1.5 and 1.6. O
With the same argument we obtain easily the following counterpart result. Set
Qf :=inf{l|S(L) > 2* for any | < L < 2*} and by Q¥ :=sup{l|U(L) < 2* for any
2" < L <l}.

3.7. Corollary. Consider equation (1.4) with f of type (1.2). Fix §* € (§(Q%), \*),
then there is at least a value §° = R(6") € (A\*, \.) such that (1.4) admits a G.S.
with s.d.

Analogously fix 6° € (X\*,6(Q)), then there is at least a value §* = R(0%) €
(=2, X*) such that (1.4) admits a S.G.S. with f.d.

Moreover observe that if 6* € (=2,0(w¥)) (1.4) admits no G.S. with s.d. when-
ever 6° € (A", ), and if §° € (6(w? ) ) (1 4) admits no S.G.S. with f.d. whenever
e (—2,1%)

Proof. Fix [, corresponding to §* and observe that if [, € (2*,0%) then M} is
tangent to AP,y in P(Uk(ly)) for any k € N. So if Uy(l,) < 2* we can set
ls = Ug(ly), and reasoning as in the proof of Theorem 1.8 we get a G.S. with s.d.
If I, € (2%,9QY%) then Ui(l,) < 2* by construction, so the claim concerning the
existence of G.S. with s.d. follows.

Moreover if I, > w then M} N A;. = ). Since P(ls) € A,. for any s € (24,2%) we
find that there cannot be G.S. with s.d. The claim concerning S.G.S. with f.d. can
be proved in the same way. O

The existence of G.S. with s.d. and of S.G.S. with f.d. for the equations discussed
in this paper, should be a rare phenomenon (non-generic) as pointed out in [2], and
as we will see in the next section. However, besides its intrinsic importance, it is
relevant because it indicates the appearance of the resonance phenomenon described
in Corollary 1.9, which was first detected by Flores in [11] for a similar problem.

To prove this result we need the following Lemma strongly inspired by Lemma
4.11in [11]. Let P € R? and consider the curves

(3-4) S(s) =P +p(s)e’™;  U(s) =P + R(s)e™,
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both defined for s € (0,+00). Assume that p,6, R, w are continuous; assume fur-
ther that p(s) > 0 and R(s) > 0 for any s > 0, p(07) = R(0") = 0, and that
the limits lim,_,ow(s) = w(0), lims—00(s) = 0(0), lims— 400 w(s) = w(oco) and
limg—, 400 0(s) = 6(o0) are well defined but possibly infinite. Furthermore assume
that S(s) and U(s) have no self-intersections. Then we have the following.

3.8. Lemma. Assume 6(0) = 400 > 0(+00) (possibly 0(+00) = —o0), and that
p(+00) < R(+00). Assume further that either w(0) and w(+00) are both finite or
w(0) < w(+00); then the curves U(s) and S(s) intersects infinitely many times.

Moreover there exists e, > 0 and My, > 0 such that for any couple of continuous
curves Uy, Sy @ (0, My) — R? satisfying |U(s) — U1(s)| +|S(s) — S1(s)| < ex for any

s € (0, M), there are at least k intersections between Uy and Si.

Proof. We lift U and S to the universal covering of R?\ {P}, hence the lifting of U
is U(s) = (R(s),w(s)) and the lifting of S is S(s) = (p(s),#(s)). Our assumptions
implies that both U and S lie in the strip [0, R(c0)] x R, which is divided by the
graph of U into two components A~ and AT, to the “left” and to the “right” of U
respectively. Consider the family of translates S;(s) = (p(s),8(s) — 2j7) which are
lifting of S’ as well. Observe that choosing k > 0 large enough we find S'j(O) € At
and S'j(—i—oo) € A~ for any j > k, hence there is an intersection (p;, 8;) between S’j
and U. In fact given n > 0 we can find j such that p; < 1/n. For the arbitrariness
of n the original curves S and U inherits infinitely many distinct intersections.
Now we consider the perturbed curves U; and S;. For any integer k we can
find §(k) > 0 such that there are at least k intersections (p;,6;), for j = 1,...,k
and p; € (0(k), p(+00)/4). Let S1(0) = Py and U;1(0) = Qq; we introduce again
the universal covering of R?\ {P;} and we choose €; small enough so that the
lifting U (s) = (R1(s),w1(s)) has R1(0) < 6(k)/2 and Ry (+00) > p(+00)/2. Using
a continuity argument (possibly choosing a smaller ¢, > 0) we find that the &
intersections persist. (]

In the next section we need to apply this Lemma in a more general framework.

3.9. Remark. Lemma 3.8 works with no changes in the proof also if we replace the
hypotheses on the limit lim;_,o+ w(s) by the following:

both liminfw(s) and limsupw(s) are bounded.
t—0t t—0+

Now we are ready to prove Corollary 1.9.
Proof of Corollary 1.9. Assume that (1.4) admits a G.S. with s.d. u(r) and let

x4 (t,0; Q) be the correspondlng trajectory of (3.2). Let I, and [, be the values
corresponding to 6% and 6* respectively. Then Q = P(l,) and x,(t,0; Q) = P(l,)
for t > 0 since u(r) has s.d., and x.(¢,0; Q) € M“ for t < 0 since u(r) is a regular

solution. Therefore P(l,) € M;"; denote by M ' the branch of M} between the
origin and P(l,). Since I, € (0*, 2*) P(l,) is an unstable focus, therefore M; winds

around P(l,) indefinitely.
Let F(x,[,) denote the right hand side of (2.3) where [ = l,,; then F(P(ls),[,) #
(0,0). So M“ has a definite tangent in P(l;); hence we can apply Lemma 3.8,

where P(l,) = P, S(t) and U(t) are parameterizations of M. 7 and M i respectively,
p(o0) = R(o0) = HP(Z )|, 6(00) = w(+00) are finite, and #(0) = +oo while w(0) is
finite.

Hence in an arbitrarily small neighborhood of P(l;) we can find infinitely many
points Pi € My N M.
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Consider the trajectories x,(t,0;PJ) and the corresponding solutions u/(r) of
(1.4). It follows that x.(t,0;Pd) € Ml‘: C R% for any t < 0, and x,(t,0;PJ) €
M C R for any ¢ > 0, so it is homoclinic to the origin; hence u/(r) is a monotone
degreasing G.S. with f.d., for any j € N.

From Lemma 3.8, we also infer the existence of n(k) > 0 such that there are k
points Q1,..., Q% € M3 N MY whenever [[* — Zu| el l;| < n(k). So arguing as
above we see that the solutions v/ (r) of (1.4) corresponding to x.(t,0; Q) are G.S.
with f.d. The proof when a S.G.S. with f.d. exists is completely analogous.[J

3.10. Remark. Consider equation (1.4) with f of type (1.2) for é* = 6(l,) and
d° = §(ls) where l; € (24,0,]. Summing up the previous results we find that (1.4)
admits no positive solutions either regular or singular whenever [,, > NO(ZS). Then
we find a decreasing sequence ri(l5) > ... > ri(ls) — 2* such that (1.4) admits
a G.S. with s.d. whenever I, = r;(ls) and at least k£ G.S. with f.d. whenever
ly € (rk+1(ls),76(ls)) for any k > 1.

Analogously assume [, > o*; then (1.4) admits no positive solutions either
regular or singular whenever 2, < I, < 2, + €y(l,,). Moreover there is an increasing
sequence 71(l,) < ... < rg(ly) — 2* such that (1.4) admits a S.G.S. with f.d.
whenever I, = ri(l,) and at least k G.S. with f.d. whenever I5 € (r5(l), 7k+1(l))
for any k£ > 1.

We stress that if the functions U (1) and S(I) are monotone we also have No(l,) =
r1(ls) and 2, + €y(ly) = r1(ly).

This Remark follows putting together Theorems 1.7, 1.6, 1.8, and observing that,
by construction, we can choose é(ls) + 2* = r(ls) and 2* — € (l,) = ri(ly)-

3.11. Remark. Consider equation (1.4) with f of type (1.2) for é* = §(l,) and
d° = 0(ly) where I, € (04,2*). Then (1.4) admits no positive solutions either
regular or singular, whenever [,, > No(ls). Then we find a decreasing sequence of
values r;(ls) — 2* such that (1.4) admits a G.S. with s.d. and infinitely many
G.S. with f.d. whenever [, = r;(l;). Close to these values there are small windows
of amplitude n(r;) > 0 such that if |I, — r;(Is)] < nk(r;), then (1.4) admits
at least £ G.S. with f.d. for any integer £ > 0. We can assume w.l.o.g. that
Ne(r;) < min{|r; — r;_1|;|rj+1 — rj|}. Moreover whenever I, € [rp11(ls),ri(ls)],
there are at least k£ G.S. with f.d.

Analogously assume 2* < [, < ¢*; then (1.4) admits no positive solutions either
regular or singular, whenever I, < €g(ly) + 2.. Moreover there is an increasing
sequence 7;(l,) — 2* such that (1.4) admits a S.G.S. with f.d. and infinitely many
G.S. with f.d. whenever [; = r;(l,,). Close to these values there are small windows
of amplitude ng(r;) > 0 such that if |l; —r;(l)| < ne(r;), then (1.4) admits at least
k G.S. with f.d. for any integer k£ > 0 (again ng(r;) < min{|r; —rj_1|; |rjr1 —r;[}).
Furthermore whenever s € [ry (1), 7k+1(lu)], there are at least k£ G.S. with f.d.

We see now briefly which are the consequences of our analysis for the Dirichlet
problem in the ball. Let us denote by wu(d,r) the regular solution of (1.4) with
u(d,0) = d. From the proof of Theorem 1.5 and Remark 2.5 it follows easily that
there is d, > 0 such that u(d, r) is a crossing solution for any 0 < d < d.. Moreover,
using Remark 2.5 and continuous dependence on initial data of (3.2) we can check
easily that the set

(3.5) C:={d>0]u(d,r) is a crossing solution }

is open. Denote by R(d) the first zero of u(d,r): using again Remark 2.5 and
continuous dependence on initial data we find that R(d) is continuous on C. Fur-
thermore from Remark 2.5 we get R(d) — 400 as d — 0. Let v(r) be the unique
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singular solution and R* its first zero (we set R* = +oo if v is a S.G.S.), then
R(d) — R* as d — +oo: this follows using Remark 2.5 and continuous dependence
of (3.2) from initial data.

Using these observations and the fact that if u(d*,r) is a G.S. then R(d) — +o0
as d — d*, we find the following.

3.12. Proposition. Consider (1.4) with f of type (1.2); there are pa > p1 > 1 such
that the Dirichlet problem in the ball of radius R admits no solutions whenever
0 < R < p1, at least two solutions for R € (p1,p2) and at least one for R > ps.
Moreover assume that there are exactly k G.S. with f.d. (or infinitely many of
them). Then there are 1 < py < p1 < p2 < ... < pr < 400 (respectively an
increasing sequence pi — o0), such that the Dirichlet problem in the ball of radius
R admits no solutions for 0 < R < pg, at least 2j + 1 solutions for any R > p; for
j=0,...,k (respectively no solutions for 0 < R < po, at least 2j + 1 solutions for
any R > p; for j € N).

Using Remark 2.5 and analyzing the proof of Corollary 1.9 we get the following.

3.13. Proposition. Consider (1.4) with f of type (1.2) and assume that §° €
(A", 3,) while §* = r;(5°), so that there is a G.S. with s.d. u(d,r), see Theorem
1.8 and Corollary 1.9. Then there is a sequence dj — d such that u(d;,r) is a G.S.
with f.d.

Analogously assume that §* € (X*,\*) and 6° = r;(0"), so that there is a S.G.S.
with f.d., see Theorem 1.8 and Corollary 1.9. Then there is a sequence d; — 400
such that u(d;,r) is a G.S. with f.d.

The proof easily follows observing that the points PJ defined in the proof of

Corollary 1.9 are such that P3 — P(l,) as j — +oo when a G.S. with s.d. exists,
and P — P(l,) as j — 400 when a S.G.S. with f.d. exists.
We stress that our analysis can be extended to slightly more general non-linearities
f. Ifu(r) is a solution of (1.4) with f of type (1.2), then @(r) = u(r)K ~/(4=2) with
K > 0 solves (1.4) where f is replaced by f = Kf. So all the Theorems continue
to hold.

Furthermore, thanks to the ¢-invariance property of the autonomous system
(2.3), if x(t) solves (3.2), then x(t—tg) solves the system (3.2) where (a(t), 8(t),v(t)) =
(auy, Bi,s,) if t < toand (a(t), B(t),¥(t) = (cu,, Bi.,vi.) if t > to. So we have
the following.

3.14. Remark. All the results proved for (1.4) with f of type (1.2) can be trivially
extended to functions f of the form

(r/ro)‘su if r <o
(r/ro)‘ss ifr>ry’

(3.6) flu,r) = Kulu|™? {

4. f oF TYPE (1.3)

In this section we discuss (1.4) when f is of type (1.3) using methods similar to
the one exploited in the previous section. First of all we introduce the following
non-autonomous system, applying (2.1) with I = ¢*, so that we pass from (1.4) to
the following:

(4.1) < i; > = ( s vi ) ( z: )*( —h“(g:T,t) )

where

o f) = w_ 2¢" =)
h*(z,t) = , o = 2 >0.

x|z]d 2 if > exp(oqut)
—2,6"t

x|z|e if z < exp(agut)
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Observe that h*(z,t) is continuous and locally Lipschitz in the z variable, uniformly
with respect to t for ¢ < 7 for any given 7 € R. It follows that local uniqueness of
the solutions of (3.2) is still ensured, and this allows us to establish the existence
of the unstable manifold. In [18, 21] it is proved that a non-autonomous system
such as (3.2) admits a local unstable Lipschitz manifolds, denoted by Wy 1 .(7),
whenever the equation is Lipschitz in the (z,y) variables and uniformly continuous
in the t-variable. More precisely the sets

W;”,loc(T) = {Q €0 ‘ t_l}I_IlOOX(t, T, Q) = 0}

are topological 1-dimensional manifolds and their intersections with a transversal
vary continuously in 7 (they inherit the smoothness of (3.2)), if O is a sufficiently
small neighborhood of the origin, see [18]. In fact the sets W, | .(7) are graph
of locally Lipschitz functions on the z axis (however for our purposes continuity is
enough), see [18].

Then using the flow it is possible to construct global manifolds, denoted by
Wi (T), as follows:

(4.2) Wi (r) :=={Q e R?| 3T < 7such that x(T,7;Q) € W ,..(T)}

q%,loc

The existence of these unstable sets can be proved also in a more standard way,
followed in [2, 11]. Let us add to (4.1) the extra variable z(t) = e®'t, in order
to obtain an autonomous system. The system obtained is locally Lipschitz and
the origin of the 3-dimensional system admits a 2-dimensional Lipschitz unstable
manifold, say W (again for Lipschitz manifold we mean a set which is locally the
graph of a Lipschitz function of 2 variables).

If we set Wi (1) :== {(z,y) | (z,y,e"7) € Wi} we obtain again the manifolds
defined through (4.2). This gives a simple explanation of the smooth dependence
on 7 of these sets. In order to construct the stable manifold we need to set [ = ¢*
in (2.1) to obtain

(43) (i )=C% )G )+ (o)

where

x|z|9"2et if o > exp(agst 2(q° — q*
B (o) o 4 AT e T 2 explag ) o= A0
x|z|? if x < exp(ayst) q°—2
Again h®(x,t) is continuous and locally Lipschitz in the 2 variable, uniformly with
respect to t for ¢ > 7 for any given 7 € R. Arguing as above we construct the sets

W;”,IOC(T) = {Q €D | tljinoox(t’,r; Q) = 0}

which are graph of locally Lipschitz functions from Ag* to R?, see [18]. Then we
define global stable sets as follows:

Wii(r) ={Q¢€ R? | 3T > 7 such that x, (T,7;Q) € Wi 10c(T)}

Again we might define W (7) by introducing a three dimensional autonomous
system, where we have added the extra variable z = exp(4°t), and proceeding as
above.

Then, using the diffeomorphism X, we can change variables from x+ to x; and
viceversa and define a stable manifold for (4.1) and an unstable manifold for (4.3).
More precisely we set

Wi (1) = R7, W5 (T) = {Qexp[—(ag — agu)T] €R* | Q € Wi (1)}

(44) w L NT w _ 2 u
Wi () == N0. Wi (1) = {Qexpl(ags —age)T] € R [ Q € Wii(T)}
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Observe that W, (7) and Wi (7) are bounded for any 7 € R but the former becomes
unbounded as 7 — —oo while the latter becomes unbounded as 7 — +o00.

It is straightforward to check that systems (4.1) and (4.3) inherit from (2.4) the
property described in Remark 2.1.

4.1. Remark. Trajectories x7(t,7; Q) of (4.1) correspond to regular solutions u(r)
of (1.4) if and only if Q € Wi (7), and to fast decay solutions if and only if
Q € Wpu(7).

Analogously trajectories x (t,7; Q) of (4.3) correspond to regular solutions of
(1.4) if and only if Q € Wi (7), and to fast decay solutions if and only if Q € W (7).
Moreover

Wéi (r) C Wé@ (1) := {Q [limy— 0% (¢, 75Q) = (0, 0)}
Wiu(r) C Wau () = {Q|limy— yoox7 (£, 7;Q) = (0,0) },

and from simple asymptotic estimates we see that Wi (7) = Wit (7) U {S} where

(4.5)

x1 (t,7;S) corresponds to the unique singular solution of (1.4), while Wp.(7) =
W3 (r) U{T} where x7(t,7; T) corresponds to the unique slow decay solution of
(1.4).

Also the analysis of this section is heavily based on the knowledge of the au-
tonomous system (2.4) and of its stable and unstable manifolds. In order to deal
with less cumbersome notation we set M;' := M (q) and M; := Mj(q). We set
Qu.(2) = (XU(2),Y"(2), and 7% = In(X*(2)/2)/agu, if 2* < ¢* < o*, and
" = In(Py(¢")/2)/agu if ¢* > o* (recall that from Remark 2.12 we know that
XU(k) = Py(0*) as ¢* — o*, for any k € N).

Let 2* < ¢" < 0" and Q = (Q, Qy) € M. where Q, > X*(2)/2, and consider
the trajectory xqu(t,7;Q) of (2.4) and the corresponding solution u(r) of (1.4).
Since u(e') is decreasing as long as xqu(t, 7; Q) € R it is easy to check that u(r)
is a regular solution and u(r) > 1 for r < e” and 7 < 7. Hence xqu(t, 7; Q) solves
(4.1), for any t <7 < 7%. It follows that Q € Wi (") as well. Thus

(4.6) M ={Q=(Qu,Qy)|QeEMY & Q,>X"(2)/2} C Wh(r").

Denote by Y = max{y| (z,y) € M"} and by R* = (X*(2)/2,Y): it follows that
I is a smooth path that joins R" with P(¢"). Follow W (7") from the origin
towards R2; we denote by 9% the branch of Wi (") between the origin and R".
Using the ideas of subsection 3.1 in [14] it can be proved that M* € AJ.; furthermore
using the fact that h(z,t) > x|z|?" 2 for any z,t we can show that M* lies below
M., see again [14]. In fact roughly speaking Wi (7) is just a slight deformation
of M. where the first small branch between the origin and R" has been pushed
downwards leaving unchanged the endpoints.

Now assume ¢“ > ¢*: it is easy to check that the argument still goes through
if we replace X“(2)/2 by Py(q")/2. The only difference is that 91* is not a spiral
but a graph on the x axis (see Remark 2.8).

Similarly set Qfls(l) = (X*(1),Y*(1)) and 7% := In(X*(1))/ags if 0, < ¢° < 2*
and 7° 1= In(P(q%))/ags if 2. < ¢° < 0. Note that for any Q = (Q.,Qy) € M.
we have Q, < Xs(l) when o, < ¢° < 2%, and Q, < P.(¢°) when 2, < ¢° < o,.
Consider the trajectory xqs(t,7; Q) of (2.4) and the corresponding solution v(r) of
(1.4): v(exp(t)) < 1for any t > 7 > 7°, s0 Xqs(t,7; Q) solves (4.3) for ¢t > 7 > 7°
as well. Therefore W, (1) = Mj.; for any 7 € R and Wi (1) = {x.(7,7%,Q) | Q €
M. } for any 7 < 7°. This in fact could be a simpler definition of W7, (7), however
we cannot do the same for Wi (7), so the non-autonomous invariant manifold
theory developed in [18] is in fact needed.
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Follow W, (7*) and W (%) from the origin towards R ; we denote by VNVQZ (")
the branch of W, (7") between the origin and ~qu(l), and by Wg.(7°) = M. (1)
the branch of Wy (7°) between the origin and Qgs(1).

Now fix ¢° € (2.,2) and ¢* € (2*,2* +¢1(q%)), for k € N, so that M. crosses 2k
times Ags. From the definition of €¢; we see that we can choose L*® < ¢® such that
M}, crosses 2k times AJ. too. Then we denote by Wg‘u(l,T“;Ls) the branch of
Wi (T") between the origin anvagu (1; L#®). In general we den?te by Wy (4, 7% L*®)
the branch of Wi (7%) between Qgu(j —1; L®) (excluded) and Qgu(j; L®) (included)
whenever j = 1,...,2k (recall that qu (0; L%) = (0,0) = QZS (0)).

Analogously fix ¢* > 2* and ¢° € (2* — €, (¢"),2*); by definition of ¢ we can
find L" > ¢" such that M. crosses 2k times A9%... We denote by VT/; (j, 7%, L") =
M;.(j; L*) the branch of W (7°) between Qgs(j — 1) (excluded) imnd Q5= (4) (in-
cluded) for j =1,...,2k. We stress that by construction we have Wi (j,7%; L*) =
M. (j; L®), whenever j = 2,...,2k, and W.(j,7% L") = M;.(j; L") whenever
j=1,...,2k,

Let Q" € Wi ("), Q° € W;.(7°) and denote by

T“(Q“) :=sup{r € R|x1(t,7*; Q") € A}, for any t < 7}
T5(Q®) :=inf {r € R|x, (t,7%; Q%) € Ay, for any t > 7}
In order to prove Theorem 1.10 we need the following Lemma.

4.2. Lemma. Fiz ¢° € (2,,2%) and consider (4.1) where | = g* € (2*,2* + €1(¢%)).
Choose L* < ¢° and ¢° — L® small enough so that ¢ € (2*,2* + €1(L®)). Then
T%(Q) is finite whenever Q € Wi (r"), and T(Q) > 7" for Q € W;ﬁ‘,(l,r“;Ls).
Moreover the function T : W () — R is continuous and Tu(Q) — —oo as
Q — P(¢*) and T*(Q) — +00 as Q — (0,0).

Analogously fix ¢* > 2* and consider (4.3) where l = ¢* € (2* — €1(q"),2%).
Choose L* > q* and L* — ¢* small enough so that ¢° € (2* — €1(L"*),2*). Then
T5(Q) is finite whenever Q € W2 (1°), and T5(Q) < 7 for Q € W;S(I,TS;L“).
Moreover the function T* : Wi (1) — R is continuous and T5(Q) — +00 as
Q — P(¢°) and T’S(Q) — —00 as Q — (0,0).

Proof. Fix ¢° € (24,2%) and ¢" € (2*,2" +€1(¢%)). Let Q € M. and consider the
trajectory xqu(t,7%; Q) of (2.4) and the corresponding regular solution u(d,r) of
(1.4). Observe that there is T{*(Q) such that xqu (¢, 7%; Q) € A}, for t < T(Q) and
xqu(T1(Q), 7% Q) € AY.. Moreover T{(Q) > 7 if and only if Q € M2 (1;L*).

Assume first d > 1; there is a unique value T§}'(Q) such that x4« (T3(Q), 7%; Q)
exp[—a T3 (Q)] = u(exp[T¢(Q)]) = 1. It is easy to check that T3'(Q) is continu-
ous.

If T¢(Q) > T1(Q), ie. u(e’) > 1 for any ¢ < exp[T1*(Q)], then xqu(t

solves (4.1) too, and xqu(t, 7%; Q) = x7(¢,7%; Q) for any ¢t < T1(Q) and T3
T%(Q). Note that
[Mg\ Mg(1,L%)] € {Q € My | T3 (Q) = T1(Q)} € Wi(r").

Now assume d < 1 so that in particular Q € M* = Wi (7%)\ W*. Set Q° =
Qexp[(ags — agu)T"], then the solution xqs (¢, 7%; Q%) of (2 4) with ¢ = ¢° solves
(4.3) as well, since u(d,r) < 1 until it becomes null, and Q® € Mé‘s. Therefore
from Remark 2.8 and (2.5), we find T¢(Q) such that xqs(t,7%; Q) € A}, for any
t < T3(Q) and it crosses A%, transversally at t = T¢(Q). Hence x7(¢,7%; Q) =
Xqo (£, 7% Q%) exp[(agu — rgs )t] whenever ¢ < T#(Q), and T%(Q) = T(Q).

™ Q)
Q) =
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From the t-invariance property of (2.4) where ¢ = ¢* and ¢ = ¢® it follows that
T(Q) is continuous respectively when 7%(Q) = T%(Q) and T%(Q) = T(Q).

Now we go back to the case d > 1 but we assume T¢#(Q) < T1(Q), so that
Xqu(t, 7; Q) solves (4.1) for t < T§(Q). Let us denote by Q" = xqu(T5(Q), 7%; Q)
and by Q° = NqTé;:l(IS) (Q") = Q" exp|(args — g )T (Q)]: observe that Q% € AL N
Wi (15'(Q)). Consider the trajectory xqs(t,7¢'(Q); Q%) of (2.4) where ¢ = ¢
from Remark 2.3 we find that there is T3(Q) such that x4s (¢, T3(Q); Q%) € Al
for t < T¢(Q) and it crosses Ad at t = T3(Q), and such a crossing is transversal.

Denote by Ngu(7*) the set of all the Q € Wi (7*) such that T/(Q) < T7'(Q) and
d > 1; then we set Nys(7") 1= Nyu(7") exp[(age — aqu)7"] C Wi (%), It is easy to
check that the closure of Ngs(7%) is contained in Aqi, and that there is 6 > 0 such
that |Q®%|+|Q%—P(¢°)| > 0 for any Q° € Ny=(7"). So, using a continuity argument,
we can find L° close enough to ¢° so that all the trajectories xqs (¢, 7%; Q®) cross
A9, transversally too, whenever Q% € N =(7%). Thus for any Q € Ny (7%) there is
T3(Q) slightly larger than T4 (Q) such that xs (t, T¢/(Q); Q) € Af. for t < T3(Q)
and it crosses AY, at t = TQU(Q), and such a crossing is transversal.

Using this property and the fact 7§j' is a continuous function of Q, we find that
T3(Q) is continuous too. Observe that by construction

w.g) = | Xar(t:T"Q), if t <T5(Q).
7@ = { e expln: — i, HT5(@) 1 < TH@.
Therefore x7(T2(Q),7*; Q) € A%, and T(Q) = T¥(Q); so T*(Q) inherits the
continuity of T%(Q). So we have proved that 7%(Q) is finite and continuous when-
ever Q € Wi (1),

From the previous argument it follows also that 7%(Q) = T#(Q) — —oco as
Q — P(q*) and T%(Q) = T3(Q) — +o0 as Q — (0,0).

The proof of claim concerning T‘S(Q) is easily obtained by repeating the argu-
ment developed for 7%(Q) (in fact just the cases T%(Q) = T*(Q) and T%(Q) =
73(Q)).- O

Let us define the functions ¢ : Wk (r%) — A9, and ¢* : Wi.(r°) — A%, as
P"(Q) =x7(1"(Q), 7 Q) and ¥*(Q) = x. (1*(Q), 7% Q). !

Observe that from the continuity of 7%(Q) and 7%(Q) it follows that " is well
defined and continuous whenever ¢* € (2,,2*) and ¢* € (2*,2* + ¢ (L*)), while ¢*
is well defined and continuous whenever ¢* > 2* and ¢° € (2* — ¢, (L"), 2*).

Furthermore, reasoning as in Lemma 4.2 we see that for any ¢" > 2* and 2, <
q® < 2* we can define the functions 7% : Wi (7") — R and T : W (7%) — R as
T(Q") :=sup{r € R|x7(t,7*; Q") € A}, for any t < 7},
T5(Q®) :=inf {7 € R|x, (t,7% Q") € A}, for any t > 7} .
If ¢° € (04,2%) we could also choose L° = ¢*; but if ¢°* < o, we need to choose
L# slightly smaller than ¢*, so that there is a unique point of intersection between
Mg, = M. and A%, say Q= (L?). Analogously if ¢* € (2%,0%) we could also
choose L" = ¢"; but if ¢" > 0™ we choose L" > ¢", so that Mg, = M;u intersects
A9, in a unique point denoted by qu (LY).

Reasoning as in Lemma 4.2 and using Remarks 2.3 and 2.4 we see that x+ (¢, 7%; Q")
crosses transversally A%, and x (t,7%; Q) crosses transversally A%.; so the con-
tinuity of 7% and T* follows. Thus the functions ¢* : Wk (%) — A%., ¢° :
W (~7'S) — AY., defined by v*(Q) = x 1 (T“(Q), 7"; Q exp|(ags —agu)7%]), ¥*(Q) =
x7(T°(Q), 7%; Qexp[(agn — ag=)7%]), are continuous too.
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Let us consider the 3-dimensional autonomous system obtained adding to (4.1)
the extra variable 7 = t. We introduce the following sets

B ={({"(Q), T"(Q)) | Q € Wi(r*)} = W*(1) N AL,
=0 ={(0"(Q), 1°(Q)) | Q € W,.(r")} := W3(1) N AL,

where A9, := A%, x R, W¥(1) = {(Q,7)|Q € Wx(L,m;L*)} and W5(1) =
{(Q,7)]Q € W;s(l,T; L*)}. Note that by construction 2% and Z° are connected
(they are images of continuous functions).

We observe that the maps T, T are surjective but a priori they might not be
injective. Such a phenomenon correspond to the appearance of tangencies between
A9, and the manifold W*(T) for T > 0, which is not a priori excluded. A similar
conclusion holds for Ts, T¢. Thus we cannot exclude the existence of certain T € R
such that 2" and =° intersect the plane 7 =T in more than one point or in whole
segments.

We stress that by construction if (Q*(7),7) € E* and (Q3(7),7) € E* we have
limy_, oo X7 (£, 7 Q*(7)) = (0,0) = lim;_, 1 oox7(t,7; Q%(7)). Analogously we de-
note by

[11¢

S ={(0*(Q), T°(Q)) | Q € Wi (%)} = W*(1) N A}
" ={("(Q),T"(Q)) | Q € Wi (%)} = W¥(1) N A,
where A%, = A%, x R, W5(1) = {(Q,7)|Q € Wx(1,7;L")} and W¥(1) =
{(Q,7)]Q € Wg‘u(l,T;L“)}. Again we have that lim,,_. x (t,7;Q%(7)) =

(0,0) = limy_, 1 oo (£, 7; Q%(7)) whenever (Q¥(7),7) € 2% and (Q%(7),7) € =.
We are ready to state the following Lemma.

[

4.3. Lemma. Fiz2, < ¢° < 2*, ¢" € (2*,2*4+¢€1(¢%)) and choose L*® < ¢° such that
q" € (2%,2* + €1 (L*)), too. Then for any T € R we can find Q*(t) and Q(7) such
that (Q“(7),7) € E* and (Q5(7),7) € Z5. Moreover there are T~ < T such that
H(Q%(1)) < 0 < Ho(Q3(7)) for any 7 < T~ and H.(Q%(1)) < 0 < H.(Q"(7))
for any T > TT+.

Fiz ¢* > 2*, ¢° € (2* — €1(¢"),2*) and choose L* > ¢* such that ¢° € (2* —

e1(L*),2%), too. Then for any 7 € R we can find Q*(1) and Q3(t) such that
(Q*(7),7) € 2% and (Q%(r),7) € Z5. Moreover there are T~ < Tt such that
H.(Q"(7)) < 0 < H(Q3(r)) for any 7 < T, H(Q3(7)) < 0 < H.(Q"(7)) for
any T >TT.
Proof. Let 2, < ¢° < 2%, ¢ € (2*,2" + €1(¢®)); we can choose L® such that
q“ € (2%,2* 4+ €1(L®)), see (2.11). Let us set Q(‘;u(l;Ls) = (X*(1),Y*(1)) and
T~ = In(X*“(1))/agu; by construction we find that the set {Q|(Q,7) € =%}
reduces to {Q}l‘u(l; L)} for 7 < T~ while it changes with 7 for 7 > T~. In fact
xT(t,T; qu(l; L#)) is such that the corresponding solution u(e!) of (1.4) satisfy
u(e!) > 1 for any t <7 < T, So x7(t, 75 QU (1; L*)) = Xqu(t, 75 QU (1; L*)) for
t <7 <%, and setting Q(7) := Q}l’u(l;LS) for 7 < T, we get (Q¥(7),7) € E¢
and H.(Q"(7)) < 0 for any 7 < T~, see Remark 2.8.

Analogously set Qfls(l;Ls) = (X*(1),Y*(1)) and T+ := In(X*(1))/aye; then
x1 (t,7; Q%6 (1; L)) = xqs (t, 73 Q% (1; L*)) for t > 7 > T+, Tt follows that

{(Q@(),n)|r=T == n{(Q7)|r =T},

if Q3(7) = Qfls(l; L#) exp|(agu —ag=)7]. Furthermore observe that H*(Qfls(l; L)) <
0; so from (2.8) we find that H,(Q®%(7)) < 0 whenever 7 > T+, too.

Q
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Consider now the solution u(1,7) of (1.4) where f(u,7) = ulu|? =2 and the
corresponding trajectory xq=(t) of (2.4). Then there is 71 such that xqs(7") =
Qgs(l;LS) € A%, and xs(t) € A}, for any t < 7+. Consider the trajectories
X (t,T;Qgs(l;Ls)) of (2.4) and the corresponding solutions w(d(7),r) of (1.4);
using the monotonicity property described in Remark 2.5 we find d(7) < 1 for any
7 > 7. Once again, since u(d(7),r) is decreasing in r for 0 < r < e” we find
u(d(r),r) < 1 for any r € [0,e7]. It follows that u(d(7),r) solves (1.4) with f
of type (1.3) too, for any r < e” and any 7 > 77; therefore xqs (¢, 7; Qgs(l;Ls))
solves (4.3) for t < 7 and 7 > 7+. Let us denote by Q¥(7) := X7, . QU (1;L%) =
Qgs(l; L#) exp|(agu — ags)7] for 7> 7; then (Q¥(7),7) € E* for any 7 > 7.

Since ¢° < 2* we have H*(Qgs(l; L#)) > 0; so from Remark 2.6 it follows that
H.(Q"(7)) > 0 for any 7 > 7, too.

Now choose Qg = (X, V%) € M;S(l;LS) and set 6 = X/.. Denote by 7o =
In(d)/cgs and consider the trajectory xqs(t, 70; Qgs) of (2.4) where ¢ = ¢°, and the
corresponding fast decay solution vs(r) of (1.4). Observe that vs(e™) = 1 hence
Xqs (t, 70; Qgs) = X1 (t, 705 Qgs) solves (4.3) for t > 7.

Let us denote by Q§u := Qs exp[(age — ays)7o] € Wpu(70) and consider the
trajectory Xqu(t, 7o; Qgu) of (2.4) where ¢ = ¢* and the corresponding solution
vyu(r) of (1.4). Observe that the z coordinate of Qgu is 5" =2)/(a"=2) and by
construction Qgu € Ay.. So, possibly choosing a smaller J so that

dam=2 < g2 < Ay (LF)
where A2, (L®) is defined in Remark 2.13, we find that Qgu € Ej.(L®). So there
isT = TS(QZu,LS) < 7p such that xqu(TS(Qzu,Ls),%o;Qzu) = Q3(1) € AY..
Furthermore we also get H,(Q3(7)) > 0.

Now observe that the function v(r) defined as v, (r) for e™ < r < e™ and as vy(r)
for r > In(7), solves (1.4) with f of type (1.3). It follows that (QS(r),7) € =*.
Letting § — 0 we have 79 — —o0o, thus 7 — —oo. Therefore there is 7~ such that
(Q5(7),7) € 2% and H,(Q%(7)) > 0 for any 7 < 7.

From the connectedness of 2% and =% we get that they both intersect the plane
z =17 for any 7 € R. So, setting T~ := min{r~, T} and T" := max{7+,Tt}, the
first part of the Lemma follows.

The proof in the case ¢* > 2* and ¢° € (2* — e1(g"),2*), is very similar and will
be omitted. O

Now we are ready to prove Theorem 1.10.

Proof of Theorem 1.10. Assume 2, < ¢° < 2%, g% € (2*,2* + €1(¢®)), and choose
L* < ¢ such that ¢“ € (2*,2* + €;(L®)). From Lemma 4.3 we know that =
divides the plane A2, into two disjoint open sets: 2" which contains the subset
{(z,y,7)|7 > T+ & x > X5(7)} and A~ which contains the subset {(z,y,7) |7 >
Tt & 0 <z < X5(1)}, where X*(7) is the z-coordinate of Q3(7).

From the continuity of H, and Lemma 4.3, for any 7 < T~ we can find Q“(T) €
2~ NZEY, while for any 7 > T there is Q“(T) € ATNE". Tt follows that there are 7
and Q* such that (Q*,7*) € E*NZ®. Consider the trajectory x7(t, 7*; Q*) of (4.1)
and the corresponding solution u(r) of (1.4). Since Q* € (Wé‘u (L7 L )NWa(7%)),
then u(r) is a regular solution and it has fast decay. Moreover x1 (¢, 7*; Q*) belongs
to A}, for t < 7%, to A7, for t > 7%, so it is in R3 for any ¢ € R, thus u(r) is a
monotone decreasing G.S. with f.d. O

In order to prove Theorem 1.11 we need some further auxiliary functions and sets.
Fix k € N, ¢° € (2,,2%), ¢ € (2%,2* + €1(¢®)) and choose L* < ¢® such that ¢* €
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(2%,2* + e, (L?)), too; we set QU (2k — 2; L) = (6%, —arz+6) and 7 = In(8) /argu.
We denote by Zgu (j) the unique intersection between z = 4;* and the manifold
M. (2§ — 1;L°) for j = 2,...,k; observe that Zgu(k) = qu(2k —2;L%). We
denote by M. (2j — 1; L*) the branch of M. between Zg.(j) and Qu.(2j —1;L%),
for j = 2,...,k, so that My (2j — 1;L°) C Myu(2j — L, L°) for j = 2,... .k — 1,
and M. (2k — 1; L®) = M. (2k — 1; L*). Moreover observe that M. (2j —1; L*) C
Wi (7¢), for any j = 2,..., k. Following Lemma 4.2 for any j = 2,...,k and any
Q € M. (2j — 1; L*) we denote by

(4.7) T(Q) = sup{T |x7(t, 7 Q) € A}. for 7! <t < T},

and we set Tf(vgu@j —1;L%)) = 7. Observe that the solution u(d(Q),r) of
(1.4) corresponding to x7(t,75; Q) is such that u(d(Q),r) > o} exp[—apuTy] =
1, whenever r < In(7{). So, repeating the reasoning of Lemma 4.2 (the cases
where d > 1) we see that the function T3 : My (2j — 1; L*) — [7}, +00) defined
by (4.7) and the function "7 : M;‘u(2j — 1;L%) — A9, defined by ¢"“7(Q) =

v

x7(17(Q), 7; Q) are continuous. We denote by

B = {(0"7(Q), T;(Q)) | Q € My (2) — L L)} U {(Qgu(2) — L;L%),7) |7 < 7!
£ ={(Q,7) | Qe Wi(r)NAY. ,x7(t,7;Q) crosses AY. 2j — 2 times for t < 7}.

for any j =2,...,k. By construction Ew is connected and E%J C 5‘”; moreover
H,(Qgu(2j — 1; L*)) <0, since ¢* > 2.

4.4. Lemma. Fir 2, < ¢° < 2%, k € N, k > 2. Then there are LY < ¢* fmd
er(q®) € (0,ex(L%)], T, < TjJr, QuI(7) and QS(7) such that (QI(7),7) € BEU
and (Q3(1),7) € E° for any T, <7< Tf, whenever ¢* € (2*,2* + €(¢°)), and
j=2,...,k. Moreover H*(Q“J(Tk_)) <0< H*(QS(T];)) and H*(Q“’j(Tj"’)) >
0> H*(QS(TJ*)), forany j=2,... k.

Proof. Fix 2, < ¢° < 2*, k € N, k > 2 and ¢* € (2*,2* + €x(¢°)); choose L* < ¢°
such that ¢“ € (2*,2* + ex(L*)), too. Setting Q™i(r) := qu(Zj — 1; L®) for any
7 < 7 and T;7 = min{#*, T~} we find H,(Q™(r)) < 0 < H.(Q3(r)) for any
7<T,,and any j = 2,...,k, see also Lemma 4.3.

Consider the trajectory x (¢, 7'; Zgu(j)) and the corresponding regular solution
u? (r) of (1.4) with f of type (1.3). Observe that u/[exp(7)] = 1sox7(t,7; Z3a(j)) =
Xqu(t, Ti'; Zgu(j)) for t < 7', Denote by Zg:(j) = Zgu(j) expl(ags — aqu)Ty] €
Wit (7); observe that the x coordinate of Zg.(j) is (61)(@"=2/(@"=2) and that
Z3.(j) € Af. for j=2,...,k—1 and Z2 (k) € A)..

Note that ;' is a continuous function of ¢* and that §; — 0 as ¢ — 2%, see
Remarks 2.8 and 2.9. So we can find ¢5,(¢°) < €,(L*) such that (§p)(@"=2)/(a"=2) <
o < Aye(L*), where Ag. (L®) is the constant defined in Remark 2.13; thus Zg.(j) €
Ey.(L?) forany j = 2,..., k. Sofrom Remark 2.13 we find that there is T;‘(ng () >
74 such that the trajectory xqs(t, 74'; Zgs(j)) of (2.4) where ¢ = ¢° is in Af, for
Fo< t < TH(Z3(j)), and it crosses A). in a point Q"J, such that H,(Q"J) > 0.
Denote by /() the solution of (1.4) corresponding to xqs(t, 7; Z4s (j)); the func-
tion w’(r) defined as w’(r) for r < exp[#¢] and as v/(r) for exp[#{] < r <
exp[T;‘(Z}l‘s (7))] is continuous and solves (1.4) with f of type (1.3). Therefore
XT(t, 7T Zigu (7)) = Xqs (8, 745 Zgs (7)) exp[(aqu — s )t] for any t € (%,:f,TJ“(ng ()-
Set QWi(1) = Q"I exp[(agu — ags)7], where 7 = T]”(ng(j)); by (2.8) we have
H.(Q"(7)) > 0. Furthermore note that, for any j = 2,...,k, TJ”(ZES(j)) —
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+oo as o — 0, i.e. ¢* — 2". Hence we can choose ;' small enough so that
+ . u u (; + s Au,j + + =u

T; = Tj (Zg=(j)) > T f?r any j = 2,...,k, so that (Q"I(T;"), T )VE E and

H.(Q™ (Tj"’)) >0 > H*(QS(T]*)). Thanks to the connectedness of E}' there is

(Qi(7),7) € EJ“ for any 7 € [T,;Tf] forany j =2,...,k. O

Now fix ¢“ > 2", k € N, k > 2, ¢° € (2* — ex(q"),2*), and choose L* > ¢* such
that ¢° € (2° — ex(L"),2"). Let Wg. :={(Q,7) | Q € Wy (7), T € R} and

&I ={(Q,7) e WENAL [ x1 (t,7;Q) crosses AY. exactly 2j — 2 times for ¢ > 7} .

Let us set Q3s (j; L*) = (X*(j), —ar«X*(j)), 70 := In(X*(2j — 1))/age, and TP :=
In(X*(2j — 2))/arge, so that T < 9. Consider the trajectory xqs(t,7}; Q}(Zj -
1; L)) of (2.4) where ¢ = ¢°, and the corresponding fast decay solution v?(r)
of (1.4). Observe that v/(r) < 1 for any r > exp[r}] and v/ (exp[7}]) = 1, so
Xgs(t, 75 Qfls(2j -1 L%) =x,(t,7; QZS(Q]' —1; L*)) for any ¢t > 7 > 70. Tt follows
that (st@j —1;L*),7) € £ for any T > 75

For any Q3= = (X*,Y*) € M;.(2j — 1; L"), there is a unique 77 = 77(Q%:) €

j
[TJQ,TJO], such that X° = expla,:7;]. Hence the trajectory x (¢,7;; Qgs) of (4.3)
coincides with xqs(t,77; Qgs) for t > 77.

We set T7(Qgs (27 —1; L*)) = 70 and for any Q8 € M. (25 — 1; L*)\ {Qg:(2j —
1; L")} we define

(4.8) T5(Q5s) == inf{T |x. (t,75(Q%:); QSs) € Ap. for any T < t < 75(Q5) }

Set Qgu = Qg exp[(agu — ay:)75] € Wy (77) and observe that by construction
X1 (8,75 Qgs) = Xqu(t, 753 Qgu) exp|(ags — aqu)t] for any T7(Qg:) <t < 77. More-
over from Remark 2.4 we see that xqu (t,%jS;Qflu) crosses A%, transversally at
t = T;(Qg) and that T7(Qg:) is bounded. Then reasoning as in Lemma 4.2
we see that the function 77 : Mg.(2j — 1; L") — R is continuous. Let us define
the function 1}5 : ]\;[;S(Qj -1 L“g — A%, as zﬂj(Q) = XL(T}-S(Q),?;V;Q); from the
continuity of (4.3) we find that ¢? is continuous. Therefore the set =S4 defined as
follows

= {($5(Q). T3(Q) | Q € M. (2] — L; L)} U{(Q5 (2 — L LY),7) [ 7 = 7))}

[1]¢
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is connected and 254 C €83, We stress that Q3 (r) := G 5s(2j—1;L¥) for 7 < 70 is
such that H,(Q%3(r),7) < 0 since ¢* < 2*. Now we are ready to state the following
result, analogous to Lemma 4.4.

4.5. Lemma. Fiz ¢* > 2*, k € N, k > 2. Then we can choose L* > q", L* — q"
small enough so that there are ex(q") € (0,ex(L")), T; < T, Q%i(7) and Q“(7)
such that (Q%4(7),7) € 2% and (Q*(7),7) € E* for any Ty <7< T,", whenever
q® € (2*—¢ex(q*),2*) and j =2, ..., k. Moreover H, (QSJ( 7)) >0> H, (Q“( )
and H,(Q¥(T;7)) <0 < H*(Q“(T,j)), forany j=2,.. .,k:.

Proof. Fix k € N, k > 2, ¢* > 2* and ¢° € (2* — €x(q%), 2*): we choose L* > ¢" so
that ¢° € (2* — ex(L™),2*) too, and we fix j € 2,..., k. We have just proved that
H.(Q%¥(1)) < 0 < H(QY(7)), for any 7 > T} := max{r), T*}.
Denote by 47(¢®) the z-coordinate of QS (25 — 2; L") and observe that 0 <
§(q®%) < 87 (q ) < 8(q®) for any ¢* € (2* —ex(L"),2%), 5 =2,...,k—2, and that
§%(g®) — 0 as ¢® — 2*. Set

s,j A\ s - u Qqu—0gs i (S qi;z j (S (157_2
Qe 1= QG (27 — 2 L)elow e = ([ (¢)] 77— [57(¢)]) )

and consider the trajectory xqu(t, TO7 Q ’J) of (2.4) where ¢ = ¢" and the corre-
sponding trajectory u?(r) of (1.4). We can find e (q%) < ex(L%) so that

k/ u # k/r u 2{1772 s u
[0%(q*)]7=2 < [6"(¢")] 7 < AGu(L")
where the constant Af.(L") has been defined in Remark 2.13. It follows that

Qflﬂ € Ep. (L") for any j = 2,...,k; so from Remark 2.13 we ﬁnd that there is

Ts( 3) < T) such that xqu (t,TJO, Pt 1) e A7, for any TS( )<t < Ty, and
Xqu (YJ;(Q ),TJO,Q u) = CJqu c A%, and H*‘(quu) > 0. Set qus = Cilu exp[( Qs
ozqu)TjS(Qqu)]. from (2.8) we find that H,.(Cys) > 0 too.
Moreover note that T]S(Qflﬂ) — —o0 as §/(q%) — 0, i.e. ¢“ — 2*; so we can
assume T, := TJ‘S( Zﬂ) < T~ for any j = 2,...,k and set Qs,j(ij) = Cf'qs

in order to get (Qs,j(ij)’ij) € =% and H*(QSJ(T;)) >0 > H*(Q“(T;))
Finally we also get that for any 7;” < 7 < T;F there are (Q%3(7),7) € E% and

(Q¥(7),7) € =%, since 28 and Z* are connected. O

Now we can easily prove Theorem 1.11.
Proof of Theorem 1.11. Fix 2, < ¢® < 2%, ¢°, and choose L* < ¢° and £(¢°) as
in Lemma 4.4. Following the proof of Theorem 1.10 we denote by 2~ and 2T the
two open sets in which Z° divides AQ,. From Lemma 4.4 we find that there are
(Q“’j(Tk_),Tk_) €A NE, (Q“’j(T;),Tf) eATNE™ forany j=2,....k and
from Lemma 4.3 we find (Q*(T~),T~) € A~NZ*, (Q*(TF),Tt) € ATNZ*. There-
fore there are 77 € (T} ,T;r) and QU (77) such that (Q“’j(T;),T;) € =%9 N E* for
any j =2,...,k and (Q(7f),77) € Z“ N E*. So the trajectory x(t, 7 Qui (7))
of (4.1) are homoclinic and correspond to a G.S. with f.d. u(d’,r) of (1.4) for any
Jj=1,...,k. Note that the trajectories x1(t,7}, Qui (7)) are distinct since they
rotates exactly j times around the critical point P(¢®). Thus we have k different
G.S. with f.d.

The proof for the case ¢* > 2* and 2* — e (¢*) < ¢° < 2* follows using Lemmas
4.3 and 4.5 and reasoning as above. [

Exploiting the ideas of Theorem 1.7 we can prove the analogous result in this
setting. Once again we prove the result replacing eg(¢*) and Ny(¢®) by the better
constants & (g*) and No(¢®) defined in (2.12).
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Proof of Theorem 1.12. Let ¢* > 2*, ¢° € (24,2« + &(¢")) so that S(¢°) <
U(¢*). Counsider a regular solution u(d,r) of (1.4) with f of type (1.3) and the
corresponding trajectories x4 () and x' () of (4.1) and (4.3) respectively.

Assume first d > 1 and denote by 7° the smallest positive value such that
u(exp[T?]) = 1: we set Qf = x%(7°), Qf = x4 (7°). Observe that x2(¢) =
Xqu(t, T Qy) € MY for any t < T°, while X} (t) = xqs(t, 7% Qf) for any t €
(T° In(R)), where R is the largest value (possibly +oc0) such that u(d,r) > 0 for
0<r<R

Then Qg € Mg C (Af; U AY), where U = U(q"), so Qf = Qg exp[(cgs —
agu)TO) € (Af; U AY) too. Since M. C (AgUAY) C Ay it follows that Qf & M. ;
hence u(d,r) cannot have fast decay. Moreover P(¢°) € AJ., so P(¢®) # Qf and
u(d,r) cannot have slow decay either; so it is a crossing solution. If d < 1, then
x'! (t) is directly a solution of (2.4) where ¢ = ¢°, so u(d,r) is a crossing solution,
too.

Now consider a fast decay solution v(r) of (1.4) with f of type (1.3) and the
corresponding trajectories x5-(¢) and x5 (¢) of (4.1) and (4.3) respectively. Again
denote by 79 the largest positive values such that v(exp[r°]) = 1, and set R? =
x5 (7Y), RY = x51(7°). Reasoning as above we see that RS € (Ag U AY%), while
(M2 U{P(¢")}) C AL. Hence RS & (MY U{P(¢q")}) so v(r) can be neither regular
nor singular. It follows that there are Re > Ry > 0 such that v/(R2) = 0 < v(Rz)
and v(Ry) = 0 < v'(Ry).

Reasoning as above we also find that there is p > 0 such that the unique singular
solution v(r) of (1.4) (corresponding to the critical point P(q%)) satisfies v(p) =
0 > v'(p), and for the unique slow decaying solution w(r) of (1.4) (corresponding
to the critical point P(¢®)) there are pa > p1 > 0 such that w'(p2) = 0 < w(p2)
and w(p1) =0 < w'(p1).

The proof for 2, < ¢° < 2*, and ¢* > Ny(¢*) is completely analogous so will be
omitted. O
From the previous proof we obtain in this context the analogous of Corollaries 3.4
and 3.5.

4.6. Corollary. Consider [ of type (1.3). Then (1.4) admits no positive solutions
either reqular or singular whenever 2, < ¢° < wf < 2" < W < ¢*, where w > o,
and w¥ < o* are defined in Remark 3.5.

Now we turn to the problem of existence of G.S. with s.d. and of S.G.S. with

f.d.
Proof of Theorem 1.13. Fix ¢° € (24,2*) and consider the critical point P(¢°) =
(Px(q®), Py(q®)) of (2.4), and denote by v(r) the corresponding slow decay solution
v(r) of (1.4), ie. v(r) = Py(¢°)r~**. We denote by T° = In(P,(q%))/cgs the
value such that v(exp(7°)) = 1, and by R(¢%,¢°) = P(¢®) exp[(aqu — ag=)T°] €
A).. Observe that the solution w(r) of (1.4) corresponding to the trajectory
x1(t, T R(q%, ¢°)) of (4.1) coincides with v(r) for r > R := exp(T?). Fix k € N
and consider the manifold M. for ¢ < 2" +€x(¢®): it intersects ASS in at least 2k
points. From Remark 2.8 and 2.9 we know that there is v (¢®) < €;(¢°) such that
¢ < H,(Q) <0 forany Q € Mé‘u (2k) whenever ¢* € (2*,2* +v1(¢®)). Consider the
bounded set B}J‘u (2k) enclosed by Mq“u (2k) and AD., and observe that R(q",¢*) is
in the interior of Bgu (2k).

From Theorem 1.12 and Remark 2.9 there is wy < ¢* such that B}I‘u(Zk) C
B}I‘u (2) C AZ., whenever w¥ < ¢" < o*, so that R(q%,¢°) € A(q)s lies in the ex-
terior of B};u (2k). So from Remark 2.9 we find that there is a value, denoted by
7%(¢*) such that R(r*(¢*),¢*) lies on the border of Bﬁk(qs)@k‘). Moreover, since
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R(r*(¢*),q¢°) € Ags and ¢° < 2* < rk(¢*), it follows that R(r*(¢*),¢°) & Agk(qs):
thus R(7*(¢%), ¢%) € M;‘u (2k). So consider the trajectory X, qs)(f, T R(r*(¢*), ¢*))
of (2.4) with ¢ = r¥(¢®) and the corresponding regular solution u(r) of (1.4). It
follows that the function w(r) defined as u(r) for 0 < r < exp(T?), and as v(r) for
r > exp(T?), solves (1.4) with f of type (1.3) and ¢* = r*(¢*) and it is a G.S. with
s.d.

For the arbitrariness of k we find a whole decreasing sequence of values 7*(¢*) —
2* as k — +oo such that (1.4) with f of type (1.3) and ¢* = r*(¢*) admits a G.S.
with s.d. We think it is worthwhile to stress that the slow decaying solution is
unique so the G.S. with s.d is the unique such solution if it exists.

Observe further that, if the functions Uy (I) were monotone, the values 7 (g*)
would be uniquely defined and decreasing in k. However we can always choose
7%(g*) to be decreasing in k, since Ux(l) < Ug,1(l) for any I. Moreover by con-
struction 7¥(¢®) — 2* as ¢° — 2,, for any k € N.

The proof of the existence of S.G.S. with f.d. is completely analogous and will
be omitted. O
Proof of Corollary 1.14. Here we wish to adapt to the context the ideas used
by Flores in [11], so we want to use Lemma 3.8 and Remark 3.9. We start by
assuming that (1.4) admits a G.S with s.d. u(d.,7) and ¢° € (04,2"). We recall
that Q%:(1) = (X*(1),Y*(1)) and 7° = In(X*(1))/ag:. Consider system (4.3)
and its stable manifold W2 (7%) = Mj.: W (%) is a C' spiral which joins the
origin and P(§*) and it rotates clockwise infinitely many times around P(g®), so it
can be parameterized by the function S(s) defined in (3.4), where P = P(§°) and
8(0) = +o0.

Observe that d, > 1, otherwise u(d.,r) solves (1.4) with f of type (1.5) and ¢ =
¢® to0o, so it is a crossing solution. Note that the trajectory of (4.3) corresponding
to u(ds,r) is given by x, (¢, 7%, P(¢*)). So there is a unique value 79 < 7° such that
u(dy,exp(1)) = 1. Hence x (¢, 75, P(¢%)) = P(¢°) for t > 19 and x, (¢, 75, P(¢°)) €
Wi (t) for any ¢ € R, since u(d., ) is a regular solution.

Therefore W () contains a 1-dimensional path, say W{;‘ (7) that joins the origin
and P(¢°®) with no self-intersections, for any 7 > 7. We parameterize W;i (1) as
a locally Lipschitz family of curves U(s, ) := P(§°) + R(s,7)e"(*7) such that
U(0,7) = P(¢°) and U(0,7) = (0,0) for 7 > 79. We can assume w.l.o.g. that
if Q = U(8,7) then x, (T,7;Q) = U(5,T) for any 79 < T < 7°. Observe that
U(4o00,7) = (0,0) = S(4+00) so w(+00,7) = O(+0c0) are fixed and can be assumed
to belong to (—m, ), for any 79 < 7 < 75,

It is easy to check that w(s, 79) < w(+00,79) < 7 for any s > 0. We claim that,
for any s > 0, w(s, 79) is uniformly bounded from below too.

We denote by BT := {(z,y) € R |z > exp[ag:To]} and by B~ := {(z,y) €
R% |z < explag=To]}, the sets corresponding to solutions u(r) of (1.4) such that
u(explag=7o]) > 1 and u(explag=7o]) < 1respectively. We set M (1) := {Q explags—
age)To] | Q € M. }. Note that P(¢°) € M*(70): we denote by M*(75) the branch of
M"(19) between the origin and P(§%). We stress that W: (10)NB* = M“(1)NB™,
and by construction W; (10) is connected.

It is easy to check that M"(7g) rotates a finite number of times around P(g*)
because it is not a spiral. Since P(4®) is on the line which separates B~ and B*,
the number of complete rotations of VAV;‘ (10) around P(§®) equals the number of
complete rotations of M*(ry) around P(¢*), so they are both finite and the claim
is proved.
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Now we want to show that w(s, 7%) is uniformly bounded for s > 0 small enough,
too. Given a value 0 < s < 1 we consider the trajectory x, (¢,7%; U(s,7°)) and the
corresponding regular solution u(d(s),r). We define the function T : (0,1) — R
that associates to s the first value ¢ = To(s) such that u(d(s),e’) = 1. Le. Tp(s) :=
inf{t € R|z 1 (t,70;U(s,70))exp[—agst] = 1}. From the continuity of the flow of
(4.3) it follows that Ty is continuous and %4(0) = 7.

Let v > 0 denote the imaginary part of the eigenvalues of the linearization of
(2.4) where ¢ = ¢°, around the critical point P(§®). Using the continuity of Ty and
approximating the flow of (2.4) with its linearization in Pg, we find that there is
0 > 0 such that

(1% — o)V

(4.9) |w(s, %) —w(s, 10)| < |w(s, %) —w(s,To(s))] + 1< o

+2,
for any s € (0,4). It follows that limsup,_,o+ w(s,7°%) < 7 and liminf, g+ w(s, 7%)
is bounded and the claim is proved.

So, choosing S(s) as parametrization of W*(7°) and U(s) = U(s, 7%), we can use
Lemma 3.8 and Remark 3.9 to conclude the existence of infinitely many points QX
(Wé‘ (T°) N WS, (7)), Q¥ — P(¢°) as k — oo. Then the trajectories x 1 (¢,7°, Q¥)
correspond to G.S. with f.d. for (1.4) with f of type (1.3) where ¢* = ¢* and
q¢° = ¢°. Furthermore, again from Lemma 3.8 and Remark 3.9 we see that finitely
many of these intersections persist under small perturbations of the parameters ¢*
and ¢°. Hence finitely many G.S. with f.d. persist, and the part of the Theorem
concerning the case in which a G.S. with s.d. exists is proved.

Now suppose that we have a S.G.S. with s.d. Then we can simply repeat the
proof but reversing the role of S(s) and U(s). Le. S(s) is the locally Lipschitz
parametrization of W, (7") which rotates infinitely many times around P(g"),
where 7% is the value fixed just before the proof of Theorem 1.10.

We denote by v(r) the unique S.G.S. with f.d., and by T° the values such
that v(exp(T°)) = 1. So we have x1(t,7%P(¢%)) = P(¢%) for t < T° and
x7(t, 7" P(¢")) € Wi.(t) for any ¢t € R, since v(r) has fast decay. Therefore
W.(7) contains a 1-dimensional path, say W(;u (1) that joins the origin and P(g")
with no self-intersections, for any 7 > T°. So we can parameterize Wgu (1) as the
locally Lipschitz family of curves U(s,7) := P(§%) + R(s, 7)e™(*7). Reasoning as
above we see that that lim sup,_, o+ w(s,7*) and liminf, .o+ w(s, 7%) are bounded,
w(4o00, %) = §(400) are bounded, while 8(0) = 4oc.

So we can use again Lemma 3.8 and Remark 3.9, to conclude the existence of
infinitely many points QX € (W;u (7)) N W (7)), Q¥ — P(¢") as k — oo. Then
the trajectories x7(t, 7%, QX) correspond to G.S. with f.d. for (1.4) with f of type
(1.3) where ¢* = ¢" and ¢°* = §°. Using again Lemma 3.8 and Remark 3.9 and
reasoning as above we also get the persistence of finitely many G.S. with f.d. under
small perturbations. [J

Reasoning as at the end of section 3 we can reprove Proposition 3.12 for (1.4)
and f of type (1.3). In fact the only difference is that the value p; is positive but
not necessarily larger than 1. Also in this context the Proposition follows from the
previous construction and Remark 2.5. Observe in fact that if u(d,r) is a regular
solution of (1.4) and d < 1, then it solves also (1.4) with f of type (1.5) and ¢° < 2*.
Hence it is a crossing solution and its first zero R(d) is such that R(d) — +oo as
d — 0, see Remark 2.5. If d > 1, then the corresponding trajectory xT(t) of (4.1)
is such that x(t) € M. until u(d, p(d)) = 1. Let us denote by 79(d) = In(p(d));
obviously p(1) =0, but R(1) — p(1) = R(1) > 0. Hence R(d) is uniformly positive
for d close to 1.

Denote by R(+00) < 400 the first zero of the unique singular solution of (1.4)
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with f of type (1.3). From the continuity of the flow of (4.1) and Remark 2.5 it
follows easily that R(d) is continuous and R(d) — R(+0o0) as d — +o0o. Assume for
contradiction that infg~¢ R(d) = 0, then there is D € (1, 400) such that R(D) = 0,
a contradiction. Thus infgs¢ R(d) = pg > 0. So we have the following.

4.7. Proposition. Proposition 3.12 holds for (1.4) with f of type (1.3), too.

Analyzing the proof of Corollary 1.14 we see that there is a sequence Qi €
Wu(r$) N W#(r%) such that QL — P(¢*). Exploiting this fact and using Remark
2.5 we obtain the analogous of Proposition 3.13.

4.8. Proposition. Consider (1.4) with f of type (1.3) and assume ¢° € (04, 2%)
while ¢* = 17(q*) > 2*, so that there is a G.S. with s.d. u(d,r), see Theorem 1.13
and Corollary 1.14. Then there is a sequence d; — d such that u(dj,r) is a G.S.
with f.d.

Analogously assume that ¢* € (2*,0*) and §° = ri(q%), so that there is a S.G.S.
with f.d., see Theorem 1.8 and Corollary 1.14. Then there is a sequence d; — +00
such that u(d;,r) is a G.S. with f.d.
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