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A DYNAMICAL APPROACH TO THE STUDY OF

RADIAL SOLUTIONS FOR P -LAPLACE EQUATION

Abstract. In this paper we give a survey of the results concern-
ing the existence of ground states and singular ground states for
equations of the following form:

∆pu + f(u, |x|) = 0

where ∆pu = div(|Du|p−2Du), p > 1 is the p-Laplace operator,
x ∈ Rn and f is continuous, and locally Lipschitz in the u variable.
We focus our attention mainly on radial solutions.

The main purpose is to illustrate a dynamical approach, which in-
volves the introduction of the so called Fowler transformation. This
technique turns to be particularly useful to analyze the problem,
when f is spatial dependent, critical or supercritical and to detect
singular ground states.

1. Introduction

Let ∆pu = div(|Du|p−2Du), p > 1 denote the p-Laplace operator. The aim of
this paper is to discuss the existence and the asymptotic behavior of positive
solutions of equation of the following family

(1) ∆pu + f(u, |x|) = 0

where ∆pu = div(|Du|p−2Du), p > 1, denotes the p-Laplace operator, x ∈ Rn

and f(u, |x|) is a continuous nonlinearity such that f(0, |x|) = 0. The interest
in equation of this type started from the classical Laplacian that is p = 2:

(2) ∆u + f(u, |x|) = 0

and is motivated by mathematical reasons, but also by the relevance of some
equations of this type as model to describe phenomena coming from applied area
of research. In particular Eq. (2) is important in quantum mechanic, astronomy
and chemistry, while (1) is connected to problems arising in theory of elasticity,
see e.g. [26]. Our purpose is to give a short, and not exhaustive, survey of the
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results which can be found in the wide literature concerning this argument, and
in particular to discuss a method which is suitable to study radial solutions.

We think is worthwhile to stress that Eq. (2) can be regarded as the
Euler equation of the following energy functional E : R×W 1,2(Rn) → R,

E(x, u,∇u) =
∫

Ω

( |∇u|2
2

− F (u, |x|))dx

where F (u, |x|) =
∫ u

0
f(s, |x|)ds. The p-Laplace operator arises naturally when

we want to extend this functional to W 1,p(Rn) functions. In fact (1) is the Euler
equation for the functional Ep : R×W 1,p(Rn) → R,

Ep(x, u,∇u) =
∫

Ω

( |∇u|p
p

− F (u, |x|))dx.

We will focus our attention mainly on radial solutions, hence we will reduce (1)
to the following singular O.D.E.

(u′|u′|p−2rn−1)′ + f(u, r)rn−1 = 0(3)

where r = |x| and we commit the following abuse of notation: we write u(r)
for u(x) when |x| = r and u has radial symmetry; here and later ′ denotes
derivation with respect to r. Observe that (3) is singular when r = 0 and when
u′ = 0, unless p = 2.

We introduce now some notation that will be in force throughout all the
paper. We will use the term “regular solution” to refer to a solution u(r) of
Eq. (3) satisfying u(0) = u0 > 0 and u′(0) = 0. We will use the term “singular
solution” to refer to a solution v(r) of Eq. (3) such that limr→0 v(r) = +∞.

A basic question in this kind of PDE is the existence and the asymp-
totic behaviour of ground states (G.S.), that are solutions u(x) of (1) which
are nonnegative for any x ∈ Rn and such that lim|x|→∞ u(x) = 0. We are
also interested in detecting singular ground states (S.G.S.), that is solutions
v(x) which are well defined and nonnegative for any x ∈ Rn\{0} and such that
lim|x|→∞ v(x) = 0 and lim|x|→0 u(x) = +∞. Other interesting family of solu-
tions for the radial equation (3) is the one of crossing solutions, that is regular
solutions u(r) which are positive for r smaller than a certain value R > 0 and
become null with nonzero slope at r = R. So they can also be regarded as so-
lutions of the Dirichlet problem in the ball of radius R. Finally we individuate
solutions u(r) of the Dirichlet problem in the exterior of the ball of radius R,
that is u(R) = 0, u(r) > 0 for r > R, and u(r) has fast decay. We say that a
positive solution u(r) of (3) has fast decay if limr→+∞u(r)r(n−p)/(p−1) < +∞
and that it has slow decay if limr→+∞u(r)r(n−p)/(p−1) = +∞.

This article has the following structure: in section 1 we introduce the
generalized Fowler transformation, and we apply it to a toy example, mainly
for illustrative purpose. In sections 2 and 3 we introduce the Pohozaev func-
tion, that is one of the main tool for the analysis of equation of type (1), and
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we consider the case where respectively f(u, r) = k(r)u|u|q−1 and f(u, r) =
k1(r)u|u|q1−1 + k2(r)u|u|q2−1 where q > p, q2 > q1 > p, the functions k(r),
k1(r), k2(r) are positive and continuous for r > 0. In both the cases we assume
that the corresponding Pohozaev functions have constant sign. In section 4 we
discuss the case f(u, r) = k(r)u|u|q−1 when the Pohozaev function changes sign,
stressing in particular the case q = p∗. In section 5 we explain briefly few results
concerning Eq. (2) when f(u, r) = u|u|q1−1 + u|u|q2−1, when p∗ < q1 < p∗ < q2

and p = 2. We remark that in this case there are still many open problems. In
section 6 we discuss the case f(u, r) = −k1(r)u|u|q1−1 + k2(r)u|u|q2−1, where
q1 < q2, and the functions k1 and k2 are positive and continuous for r > 0. Fi-
nally in the appendix we show how some more general equations can be reduced
to (3), and we explain the concept of natural dimension, introduced in [20].

2. Preliminary results and autonomous case.

The main purpose of this paper is to explain the method of investigation of pos-
itive solution of (3) which has been used in [1], [2], [3], [10], [11], [12], [13], [14],
[15], [16], [17]. The advantage in the use of this method lies essentially on the
fact that we can benefit of a phase portrait, and of the use of techniques typical
of dynamical systems theory, such as invariant manifold theory and Mel’nikov
functions. Moreover, restricting ourselves to the study of radial solutions, we
overcome the difficulties deriving from the lack of compactness of the critical
and supercritical case. With our method we can also naturally detect and clas-
sify singular solutions, which are not easily found by variational techniques or
by standard shooting arguments. The main fault of the method is that it can
just give information on radial solutions. However we wish to stress that, when
the domain has radial symmetry (e.g. it is the whole Rn), G.S. and solutions
of the Dirichlet problem, if they exist, are radial in many different situations,
which will be discussed in details in the following sections, see [5], [8], [42], [44].

Furthermore radial solutions play a key role also for many parabolic equa-
tions associated to (2). In fact in many cases the ω-limit set is made up of the
union of radial solutions, see e. g. [39], [25].

The first step in this analysis consists in applying the following change of
coordinates

αl = p
l−p , βl = p(l−1)

l−p − 1, γl = βl − (n− 1), l > p

xl = u(r)rαl yl = u′(r)|u′(r)|p−2rβl r = et(4)

where l > p is a parameter. This tool allows us to pass from (3) to the following
dynamical system:

(5)
(

ẋl

ẏl

)
=

(
αl 0
0 γl

)(
xl

yl

)
+

(
yl|yl|

2−p
p−1

−g(xl, t)

)
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Here and later “·” stands for d
dt , and

(6) gl(xl, t) := f(xl exp(−αlt), exp(t))eαl(l−1)t.

This transformation was introduced by Fowler in the 30s for the case p = 2, and
we generalized it to the case p > 1 just recently in [12], [13], [15] [14], [16], [17].
It will be useful to embed system (5), and in general all the dynamical systems
that will be introduced in the paper, in a one-parameter family as follows:

(7)
(

ẋl

ẏl

)
=

(
αl 0
0 γl

) (
xl

yl

)
+

(
yl|yl|

2−p
p−1

−gl(xl, t + τ)

)

We start from the special nonlinearity f(u, r) = k(r)u|u|q−2. In such a case,
setting l = q and φ(t) = k(et), system (5) reduces to the following:

(8)
(

ẋq

ẏq

)
=

(
αq 0
0 γq

) (
xq

yq

)
+

(
yq|yq|

2−p
p−1

−φ(t)xq|xq|q−2

)

At the beginning of this section we will also assume that k = φ > 0 is a constant,
both for illustrative purpose and because the results will be useful later on in
more difficult situations. We think it is worthwhile to recall that most of the
results are well known in this rather trivial situation; however our method gives
a new point of view on the problem and allows to to clarify and complete some
aspects concerning singular solutions even in this easy setting. A first advantage
in this change of coordinates consist in the fact that it allows us to pass from a
singular non-autonomous ODE to an autonomous dynamical system from which
the singularity has been removed (obviously this is not the case for every type
of nonlinearity). Moreover now we can apply to the problem techniques typical
of dynamical system theory, thus exploiting a different point of view.

We recall the value of two exponents that are critical for this equation.
When n > p, we denote by p∗ = np/(n − p) the Sobolev critical exponent and
by p∗ = pn−1

n−p ; when p ≥ n we set both p∗ and p∗ equal to +∞. Let Ω be
an open bounded domain with non-empty smooth boundary ∂Ω, then p∗ is the
largest q > p such that the embedding W 1,p(Ω) ⊂ Lq(Ω) holds, while p∗ is the
largest q such that the trace operator γ : W 1,p(Ω) → Lq(∂Ω) is continuous.

Remark 1. We stress that, whenever q > p, αq > 0, γq = − (p∗−q)(n−p)
q−p

has the same sign as p∗ − q, and αq + γq = p∗−q
(n−p)(q−p) , has the same sign as

p∗ − q. Also observe that (8) is C1 if and only if 1 < p ≤ 2 and q ≥ 2.

Notation.
In the whole paper we will use bold letters for vectorial objects. We

denote by u(d, r) a regular solution of (3) such that u(d, 0) = d and u′(d, 0) =
0. Moreover if ū(r) is solution of (3) we denote by x̄l(t) = (x̄l(t), ȳl(t)) the
corresponding trajectories of (5). For any Q∈ R2 we denote by xl(Q, t) =
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(xl(Q, t), yl(Q, t)) the trajectories of (5) passing through Q at t = 0, and by
xτ

l (Q, t) = (xτ
l (Q, t), yτ

l (Q, t)) the trajectory of (5) passing through Q at t = τ
or equivalently the trajectory of (7) passing through Q at t = 0. Finally we
denote by R2

+ the subset {(x, y), |x ≥ 0}.
In this section we will always assume q > p. From a straightforward

computation it is easy to observe that the system (8) admits three critical
points whenever q > p∗: the origin O, P= (Px, Py) and −P, where Px =
|γqα

p−1
q /k|1/(q−p), and Py = −|γq/kαq−1

q |(q−1)/(q−p). Note that the critical
point P is a center when q = p∗, it is asymptotically stable for q > p∗ and it is
asymptotically unstable for q < p∗.

Positive and decreasing solutions u(r) of (3) correspond to trajectories
such that yq(t) ≤ 0 < xq(t). Moreover, trajectories xq(t) which are bounded
and such that xq(t) is uniformly positive for t > 0 (resp. for t < 0) correspond
to solutions u(r) which have slow decay (resp. are singular for r = 0), that is
u(r)rαq is uniformly positive and bounded as r → ∞ (resp. as r → 0). Now
we want to give a rough picture of the phase portrait of (8), in the autonomous
case φ ≡ k > 0. For this purpose we need to introduce a function which plays
a key role in all our analysis. Let us denote by

Hq(x, y, t) :=
n− p

p
xy +

p− 1
p

|y| p
p−1 + φ(t)

|x|q
q

.(9)

This function is a translation in this dynamical context of the well known Po-
hozaev function

P (u, u′, r) = rn

[
n− p

p

uu′|u′|p−2

r
+

p− 1
p

|u′|p + k(r)
|u|q
q

]

which is one of the main tool in the analysis of equations of these type, see e.g.
[38], [34], [35]. Observe in fact that, if xp∗(t) = (xp∗(t), yp∗(t)) is the trajectory
of (8) corresponding to u(r), then

P (u(r), u′(r), r) = Hp∗(xp∗(t), yp∗(t), t) = Hq(xq(t), yq(t), t)e−(αq+γq)t .

When k is differentiable from a simple computation we get the following

d

dt
Hp∗(xp∗(t), yp∗(t), t) :=

d

dt

[
eαp∗ (q−p∗)tφ(t)

] |xp∗ |q(t)
q

.(10)

Note that the function Hp∗ does not depend explicitly on t, when k is a constant
and q = p∗; so in this case it is a first integral for the system. Therefore, using
some elementary argument, it is possible to draw each trajectory of the system,
see Lemma in [12], and to give a picture of the phase portrait see fig. 1.1. Then
we easily get a lot of information on the original equation (3).

We stress that in this easy situation we have an explicit formula for all
the regular solutions, that is

(11) u(d, r) = d

[
1 +

( p− 1
n− p

) p
p−1

( 1
2n

) 1
p−1 d

p2

(p−1)(n−p) r
p

p−1

]−n−p
p

k
−n−p

p2 .
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Figure 1.1: A sketch of the phase portrait for the autonomous system (8) when
φ ≡ k > 0, and q = p∗. The lines also represents the level curves for the function
Hq for t fixed, when gq(xq, t) = φ(t)xq|xq|q−2.

It can be shown easily that system (3) with q = p∗ and φ(t) ≡ k > 0 and with
q = s and φ(t) ≡ eαp∗ (p∗−s)tk, are topologically equivalent. In fact we can push
much further this kind of identification. This is done in the appendix where the
concept of natural dimension is introduced, see [20], [33].

We will see that an unstable set for (8) exists for any q > p, while a stable
set exists just when p∗ < q < p∗. It can be shown that the former existence
result is equivalent to the existence of regular solutions of (3), while the latter
is equivalent to the existence of solutions u(r) with fast decay.

From now on we will commit the following abuse of notation: we will
call stable and unstable sets (or manifolds) the branches which depart from
the origin and gets into R2

+, which correspond to the positive solutions u(r) of
(3) we are interested in. The existence of trajectories converging to the origin
either in the past or in the future can be inferred from invariant manifold theory,
whenever 1 < p ≤ 2 and q ≥ 2. In such a case we directly prove the existence
of a stable and an unstable manifold, denoted respectively by W s and by Wu,
see [12].

When these regularity hypotheses are not satisfied the proofs become
more difficult, due to the lack of local uniqueness of the trajectories crossing
the coordinate axes. But using Wazewski’s principle and the fact that the
trajectories we are interested in do not cross the coordinate axes, it is possible
to obtain a similar result. However, with this different proof, a priori Wu

and W s are just compact and connected sets. But in the autonomous case
k ≡ const > 0, we can exploit the invariance of the system with respect to t, to
conclude that W s and Wu are in fact graph of a trajectory having the origin
respectively as ω-limit set and α-limit set. Therefore, even in this case, they
are 1 dimensional manifolds, see [15], [17]. We think it is worth mentioning the
fact that, when the system is not Lipschitz, a priori the trajectories could reach
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Figure 1.2: A sketch of the phase portrait for the autonomous system (8) when
φ ≡ k > 0, 1 < p ≤ 2 and q ≥ 2. The figures show the stable manifold W s

(dotted line) and the unstable manifold Wu (dashed line). The solid curve S
indicates the set {(xq, yq) | xq ≥ 0 Hq(xq, yq) = 0}. Figure 1.2A refers to the
case q ≥ p∗ while 1.2B to the case p∗ < q < p∗.

the origin at some t = T finite, either in the past or in the future. However it
is easy to show that this possibility cannot take place when q ≥ p, see [17] for
a detailed proof.
Note that, if k > 0 is a constant, we also have that Hq(xq(t), yq(t), t) is increasing
along the trajectories if and only if p∗ < q < p∗, and it is decreasing if and only
if q > p∗. Moreover for any trajectory converging to the origin as t → ±∞,
we have limt→±∞Hp∗(xp∗(t), yp∗(t), t) = 0. Putting together all these results,
we can draw fig. 1.2, and classify positive solutions in one of the following
structures.

A All the regular solutions are monotone decreasing G.S. with slow decay.
There are uncountably many solutions of the Dirichlet problem in the
exterior of the ball. More precisely, for any R > 0 there is a solution v(r)
such that v(R) = 0, v(r) is positive for any r > R and it has fast decay.
There is at least one S.G.S. with slow decay.

B All the regular solutions u(d, r) are crossing solutions, and there are uncount-
ably many S.G.S. with fast decay v(r). There is at least one S.G.S. with
slow decay.

Namely, if q > p∗ positive solutions have structure A, while if p∗ < q < p∗ they
have structure B. In both the cases the S.G.S. with slow decay is unique and
can be explicitly computed. If q = p∗ we are in the border situation, so all the
regular solutions are G.S. with fast decay, see (11), there are uncountably many
S.G.S. with slow decay, and uncountably many oscillatory solutions, see [12].
When q ≤ p∗, it is easy to show that all the regular solutions u(r) of (3) are
crossing solutions.
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We conclude this section with some basic results concerning the existence
of regular solutions and positive fast decay solutions for (3) and a wide class
of functions f(u, r). First of all we recall that, if f(u, r) is continuous and
locally Lipschitz continuous in the u variable, the existence of regular solution
is ensured, and if f(d, 0) > 0 we also have local uniqueness of u(d, r). The
proof of this standard result can be found in [19] for the spatially independent
case, but the argument can be easily adapted to the general case, see [16], [17].
We give now a result concerning the asymptotic behaviour of positive solutions.
The proof of this result can be found in [19], [13], [17].

Proposition 1. Consider a solution u(r) of (3) such that u′(r) ≤ 0 ≤
u(r) for any r > R for a certain R > 0, and limr→+∞u(r) = 0.

A Assume that there are U > 0 and g(u) ∈ L1
loc such that |f(u, r)| < g(u) for

r ≥ 0 and 0 ≤ u ≤ U , and denote by G(u) =
∫ u

0
g(s)ds. Moreover assume

that
∫
0
|G(s)|−1/pds < ∞. Then the support of u(r) is bounded.

B Assume that there are C > 0, U > 0 and q1 ≥ p such that |f(u, r)| < Cuq1−1

for 0 ≤ u ≤ U and r ≥ 0. Then u(r) > 0 for r > R and the limit
limr→+∞u(r)r

n−p
p−1 = λ exists. Moreover, if f(u, r) > 0 for u small and r

large, then λ > 0, while if f(u, r) < 0 for u small and r large, then λ < ∞.

When Hypothesis B is satisfied we can go a bit further. Now we distin-
guish between the case in which f(u, r) is always positive and the case in which
it is negative for u small.

Corollary 1. Assume that Hypothesis B of the previous Proposition is
satisfied. First assume that f(u, r) > 0 for u small and r large.

1 If q1 ≤ p∗, and there are U > 0, c > 0 and Q1 ∈ (p, q1] such that f(u, r) >
cuQ1−1 for r large and 0 ≤ u < U . Then λ = ∞.

Assume now that f(u, r) < 0 for u small and r large.

2 If q1 > p∗, then λ > 0.

3 If q1 ≤ p∗, and there are U > 0, c > 0 and Q1 ∈ (p, q1] such that −f(u, r) >

cuQ1−1 for r large and 0 ≤ u < U . Then λ = 0 and lim supr→∞ u(r)r−
p

Q1−p <

∞. Furthermore if Q1 = p∗ we also have lim supr→0 u(r)r
n−p
p−1 | ln(r)|− n−p

p(p−1) <
∞.

4 Assume that the following limit exists is bounded and negative:

lim
r→+∞

f(ur−
p

Q1−p , r)∣∣∣ur−
p

Q1−p

∣∣∣
Q1−1

= −k(∞).
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If Q1 < p∗, then limr→∞ u(r)r−
p

Q1−p = Px > 0 where P= (Px, Py) is the
critical point of system (5) where l = q and g ≡ k(∞)x|x|q−2. If Q1 = p∗
then u(r)r

n−p
p−1 | ln(r)|− n−p

p(p−1) is uniformly positive and bounded for r large.

Exploiting the knowledge of the autonomous case (8) with φ ≡ k > 0, it
is possible to prove the existence of a local stable and unstable manifold also
for the non-autonomous system (5), under suitable hypotheses on gl(xl, t), or
equivalently on f(u, r).

Proposition 2. Assume that f(u, r) is continuous for r = 0 and con-
sider system (5) where l > p; then there is a local unstable set

W̃u(τ) := {Q ∈ R2
+ | xτ

l (Q, t) ∈ R2
+ for any t ≤ 0 and lim

t→−∞
xτ

l (Q, t) = O}.

This sets contains a closed connected component to which O belongs and whose
diameter is positive, uniformly in τ .

Assume that there are ν > 0 and q2 > p∗ such that, for any r ∈ [0, ν], we
have lim supu→∞

f(u,r)
uq2−1 < a(r) where 0 < a(r) < ∞. Moreover assume that one

of the following hypotheses are satisfied

• f(u, r) > 0 for r large and u > 0; moreover there is q1 > p∗ such that
f(u,r)
uq1−1 is bounded for u positive and small and r large.

• f(u, r) < 0 for r large and u > 0.

Then there is a local stable set

W̃ s(τ) := {Q ∈ R2
+ | xτ

q2
(Q, t) ∈ R2

+ for any t ≤ 0 and lim
t→−∞

xτ
q2

(Q, t) = O} .

This sets contains a closed connected component to which O belongs and whose
diameter is positive, uniformly in τ .

Proof. Consider first the case f(u, r) = k(r)u|u|q−2, and assume that k(r) is
uniformly continuous. Then the existence of these stable and unstable sets
follows from invariant manifold theory for non-autonomous system, see [28],
[30]. Moreover in such a case we also know that these sets are indeed smooth
manifolds which depend smoothly on τ . In the general case the existence of
the unstable set easily follows from the existence of regular solutions for (3).
The existence of the stable set is more complicated and can be proved through
Wazewski’s principle, see [15] and [17]. In [17] the proof is given for the case
f(u, r) < 0 for u small and r large, but the argument can be easily extended
also to the case f(u, r) < ku|u|q1−2 with q1 > p∗, for u small and r large.

We give now a result proved in [13] and [17] which explains the relation-
ship between stable and unstable sets of (5) and solutions of (3).
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Proposition 3. Consider system (5) and assume that gl(xl, t) is bounded
as t → −∞, for any xl > 0. Then each regular solution u(r) of (3) corresponds
to a trajectory xτ

l (Qu, t) such that Qu ∈ W̃u(τ), and viceversa. Moreover any
trajectory xτ (Qs, t) where Qs ∈ W̃ s(τ), corresponds to a solution u(r) of (3)
with fast decay.

Remark 2. Take f(u, r) = −k1(r)u|u|q1−2 + k2(r)u|u|q1−2, where q1 <
q2 and the functions ki(r) are continuous, uniformly positive and bounded as
r → ∞. Then if q1 < p we are in the Hypotheses of claim A of Proposition 1,
while if q1 ≥ p Hyp. B is satisfied. Moreover if q1 > p∗, then we are in Hyp.
2 of Corollary 1, while if p < q1 ≤ p∗ Hyp. 3 of Corollary 1 holds. To satisfy
Hyp. 4 we need to assume that p < q1 ≤ p∗ and limr→+∞k1(r) = k(∞) > 0.

We recall that, roughly speaking, positive solutions of (3) can have two
asymptotic behaviours, both as r → 0 and as r →∞. Obviously the asymptotic
behavior as r → 0 is influenced by the behaviour of f for u large and r small,
while their behavior as r → ∞ depends on the behaviour of f for u small and
r large. Generally speaking, when f is positive for u small, we have seen that
solutions with fast and slow decay may coexist, while when it is negative we can
have either solutions with fast decay or oscillatory solutions. Analogously when
f(u, r) is positive and supercritical with respect to p∗, for u large and r small,
we can have regular solutions u(d, r) such that u(d, 0) = d and u′(d, 0) = 0, and
singular solutions v(r) that are such that limr→0v(r) = +∞. More precisely

Proposition 4. Assume that there are s > p∗, ρ > 0 and positive func-
tions b(r) ≥ a(r) such that, for any 0 ≤ r ≤ ρ we have

0 < a(r) ≤ lim inf
u→+∞

f(u, r)
us−1

≤ lim sup
u→+∞

f(u, r)
us−1

≤ b(r) < ∞ .

If Q ∈ Wu(τ) then the solution u(r) corresponding to xτ
s (Q, t) is a regular

solution. Moreover any singular solution, if it exists, is such that u(r)rp/(s−p)

is bounded for r small and, if s 6= p∗, u(r)rp/(s−p) is uniformly positive, too.

Assume further that s 6= p∗ and that the limit limu→+∞
f(u,0)
us−1 = k(∞) >

0 exists and is finite. Then limr→+∞u(r)rp/(s−p) = Px > 0 where P= (Px, Py)
is the critical point of system (5) where l = q and g ≡ k(∞)x|x|s−2.

Assume that there are q > p∗, R > 0 and positive functions B(r) ≥ A(r)
such that, for any r > R we have

0 < A(r) ≤ lim inf
u→0

f(u, r)
uq−1

≤ lim sup
u→0

f(u, r)
uq−1

≤ B(r) < ∞ .

Then, if Q ∈ W̃ s(τ), the solution u(r) corresponding to xτ
q (Q, t) has fast decay,

that is the limit limr→+∞u(r)r(n−p)/(p−1) > 0 exists and is finite. A slow decay
solution (if it exists), is such that u(r)rp/(q−p) is bounded for r large; moreover
if q 6= p∗, u(r)rp/(q−p) is uniformly positive, too.
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Assume further that the limit limu→0
limr→+∞f(u,r)

uq−1 = k(∞) > 0 exists
and is finite. Then limr→+∞u(r)rp/(q−p) = Px > 0 where P= (Px, Py) is the
critical point of system (5) where l = q and g ≡ k(∞)x|x|q−2.

These results are proved in [12], [13], [17] using dynamical arguments.

3. When the Pohozaev function does not change sign

3.1. The case f(u, r) = k(r)u|u|q−2

In this subsection we discuss positive solutions of equation (3) in the case
f(u, r) = k(r)u|u|q−2 and q > p∗. This problem has been subject to rather deep
investigations in the ’90s also for the relevance it has in different applied areas.
First of all, when p = 2 eq. (1) can be regarded as a nonlinear Schroedinger
equation. Moreover, when q = p∗ and again p = 2, this equation is known
with the name of scalar curvature equation. In fact the existence of a G.S. u(x)
amounts to the existence of a metric g conformal to a standard metric g0 on
Rn (g = u

4
n−2 g0), whose scalar curvature is k(|x|). Furthermore, if the G.S.

has fast decay, the metric g gives rise, via the stereographic projection, to a
metric on the sphere deprived of a point Sn\ {a point} which is equivalent to
the standard metric.

Moreover when q > 1 and k(r) takes the form k(r) = rα

1+rβ eq. (2) is also
known as Matukuma equation and it was proposed as a model in astrophysics.
This problem will be investigated in details also in section 4, where we will
assume that the Pohozaev functions change their sign, so that positive solutions
have a richer structure.

We begin by some preliminary results concerning forward and backward
continuability and long time behaviour for positive solutions, in relation with
the Pohozaev function. These results can be proved using directly the Pohozaev
identity, or through a dynamical argument exploiting our knowledge of the level
sets of the function H(x, t), see [34] and [13].

Lemma 1. Let u(r) be a solution of (3), and xp∗(t) the corresponding
trajectory. Assume that lim inft→±∞H(xp∗(t), t) > 0, then xp∗(t) has to cross
the coordinate axes indefinitely as t → ±∞, respectively.

Assume that lim supt→±∞H(xp∗(t), t) < 0, then xp∗(t) cannot converge
to the origin or cross the coordinate axes.

When p = 2, the standard tool to understand the behaviour of solutions
with fast decay is the Kelvin transformation. Let us set

s = r−1 ũ(s) = rn−2u(r) K̃(s) = r2λK(r−1) λ =
(n + 2)(q − 2∗)

2
;(12)
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Then (3) is transformed into

(13) [ũs(s)sn−1]s + K̃(s)ũ|ũ|q−2(s)sn−1 = 0 .

Note that a regular solution u(d, r) of (3) is transformed into a fast decay so-
lutions ũ(s) of (13) such that limr→∞ ũ(r)r

n−p
p−1 = d, and viceversa. So we can

reduce the problem of discussing fast decay solutions to an analysis of regular
solutions for the transformed problem.

However we do not have an analogous result for the case p 6= 2, so we
need the following Lemma, that, when p = 2, is a trivial consequence of the
existence of the Kelvin inversion.

Lemma 2. Assume that f(u, r) > 0 for any u > 0 and consider a solution
u(r) which is positive and decreasing for any r > R. Then u(r)r

n−p
p−1 is increasing

for any r > R.

Proof. Consider system (8) where l = p∗ and the trajectory xp∗(t) corresponding
to u(r). Note that xp∗(t) = u(r)r

n−p
p−1 and that γl = 0; hence ẏp∗(t) < 0 whenever

xp∗(t) > 0. Assume for contradiction that there is t1 > T = ln(R) such that
ẋp∗(t1) < 0, then, from an elementary analysis on the phase portrait either
there is t2 > t1 such that xp∗(t2) < 0, or limt→+∞xp∗(t) = 0. Assume the
latter, then limr→+∞u(r)r

n−p
p−1 = limt→+∞xp∗(t) = 0; but from (3) it follows

that u′(r)
n−1
p−1 is decreasing and admits limit λ ≤ 0. Using de l’Hospital rule we

find that u′(r)
n−1
p−1 → p−1

n−pλ; so we get λ = 0 and u′(r) ≡ u(r) ≡ 0 for r > R, so
the claim is proved.

Recall that, when k(r) is differentiable, the Pohozaev identity can be
reformulated in this dynamical context as (10). Therefore we can think of
Hp∗ as an energy function, which is increasing along the trajectories when
φ(s)eαp∗ (p∗−q)t is increasing and decreasing when φ(s)eαp∗ (p∗−q)t is decreasing.
This observation can be refined combining it with the fact that all the regular
solutions u(r) are decreasing, and fast decay solutions are such that xp∗(t) is
increasing, whenever they are positive. For this purpose we define two auxiliary
functions, which are closely related to the Pohozaev identity, and which were
first introduced in [35]. In this subsection we will always assume (without men-
tioning) that entφ(t) ∈ L1

(
(−∞, 0]

)
and e(n−q n−p

p−1 )sφ(t) ∈ L1
(
[0,+∞)

)
, so that

we can define the following functions:

J+(t) :=
φ(t)ent

q
− n− p

p

∫ t

−∞
φ(s)ensds

J−(t) :=
φ(t)e(n−q n−p

p−1 )t

q
− n− p

p(p− 1)

∫ t

−∞
φ(s)e(n−q n−p

p−1 )sds

(14)

We will see, that the sign of these functions play a key role in determining the
structure of positive solutions for (3). When φ is differentiable we can rewrite
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J+ and J− in this form, from which we can more easily guess the sign:

J+(t) :=
1
q

∫ t

−∞

d

ds
[φ(s)eαp∗ (p∗−q)s]eαp∗qsds

J−(t) :=
1
q

∫ +∞

t

d

ds
[φ(s)eαp∗ (p∗−q)s]e−

(n−p)q
p(p−1) sds

(15)

Let u(r) be a solution of (3) and let x(t) be the corresponding trajectory of (8).
Using (10) and integrating by parts we easily find the following

Hp∗(xp∗(t), t) + lim
t→−∞

H(xp∗(t), t) = J+(t)
|u|q(et)

q
−

∫ t

−∞
J+(s)u′(es)u|u|q−2(es)ds

Hp∗(xp∗(t), t)− lim
t→+∞

Hp∗(xp∗(t), t) = J−(t)
|xp∗ |q(t)

q
+

∫ +∞

t

J−(s)ẋp∗(s)xp∗ |xp∗ |q−2(s)ds

(16)

From (16) we easily deduce the following useful result.

Remark 3. Assume that there is T such that J+(t) ≥ 0 (resp. J+(t) ≤
0), but J+(t) 6≡ 0 for any t ≤ T , and consider a regular solution u(r) which is
positive and decreasing for any 0 < r < R = ln(T ). Then Hp∗(xp∗(t), t) ≥ 0
(resp. Hp∗(xp∗(t), t) ≤ 0) for any t ≤ T .

Analogously assume that J−(t) ≥ 0 (resp. J−(t) ≤ 0) but J−(t) 6≡ 0
for any t ≥ T , and consider a solution u(r) which is positive and decreasing
for any r > R = ln(T ) and has fast decay. Then Hp∗(xp∗(t), t) ≥ 0 (resp.
Hp∗(xp∗(t), t) ≤ 0) for any t ≥ T .

Using Remark 3 and Lemma 1 we obtain the following result.

Theorem 1. Assume that either J+(r) ≥ 0 and J+(r) 6≡ 0, or J−(r) ≥ 0
and J−(r) 6≡ 0 for any r > 0. Then all the regular solutions are crossing
solutions and there exists uncountably many S.G.S. with fast decay.

Assume that either J+(r) ≤ 0 and J+(r) 6≡ 0 or J−(r) ≤ 0 and J−(r) 6≡
0 for any r > 0. Then all the regular solutions are G.S. with slow decay.
Moreover there are uncountably many solutions u(r) of the Dirichlet problem in
the exterior of a ball.

The proof of the result concerning regular solutions can be find in [34],
and involves just a shooting argument and the use of J+ and J− in relation with
the Pohozaev identity. Translating this argument in this dynamical context we
easily get a classification also of singular solutions, see also [12].

Proof. Assume that J+(r) ≤ 0 for any r > 0, but J+ 6≡ 0; consider a regular
solution u(r) which is positive and decreasing in the interval [0, R) and the corre-
sponding trajectory xp∗(t). Using (16) we easily deduce that Hp∗(xp∗(t), t) ≤ 0
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for any t < T = ln(R). From our assumption we easily get that there is l < p∗

such that g(xl, t) is uniformly positive for t large and limt→+∞Hl(xl(t), t) < 0.
It follows that xl(t) is forced to stay in a compact subset of the open 4th quad-
rant for t large, so u(r) is a G.S. with slow decay.

Analogously consider a trajectory x̄l(t) converging to O as t → +∞.
Then the corresponding solution ū(r) has fast decay, is positive and decreasing
for any r > R where R > 0 is a constant. Assume for contradiction that R = 0;
then from (16) we find that lim inft→−∞Hp∗(x̄p∗(t), t) > limt→+∞Hp∗(x̄p∗(t), t) =
0. Hence, from Lemma 1, we deduce that x̄p∗(t) has to cross the coordinate
axes indefinitely as t → −∞. Thus R > 0 and ū(r) is a solution of the Dirichlet
problem in the exterior of a ball.

The other claims can be proved reasoning in the same way, see again
[12].

Reasoning similarly we can complete the previous result proving the ex-
istence of S.G.S. with slow decay, to obtain the following Corollary.

Corollary 2. Assume that J−(r) ≥ 0 for any r but J−(r) 6≡ 0, and
that there is p∗ < m ≤ p∗ such that the limit limt→+∞φ(t)eαm(m−q)t = k(∞)
exists is positive and finite. Then positive solutions have a structure of type A.

Analogously assume that J+(r) ≤ 0 for any r but J+(r) 6≡ 0, and that
there is s ≥ p∗ such that the limit limt→−∞φ(t)eαs(s−q) = k(0) exists is positive
and finite. Then positive solutions have a structure of type B.

Note that if the limits limr→+∞k(r) = k(∞) and limr→0k(r) = k(0)
exist are positive and finite we can simply set m = q = s. In [12] there is
a condition sufficient to obtain the uniqueness of the S.G.S. with slow decay.
Roughly speaking this result is achieved respectively when s 6= p∗ and m 6= p∗.

We give some examples of application of Theorem 1 and Corollary 2.

Remark 4. Assume that k(r) is uniformly positive and bounded and that
the limit limr→+∞k(r) exists. Then, if q < p∗ and k(r) is nondecreasing, positive
solutions have a structure of type A, while if q > p∗ and k(r) is nonincreasing,
positive solutions have a structure of type B.

Consider the generalized Matukuma equation, that is (3) where f(u, r) =
1

1+rτ u|u|q−2. Then, if τ ≤ p positive solutions have a structure of type A when
p < q < p(n − τ)/(n − p), and of type B when q > p∗, see also [35]. The
remaining cases will be analyzed in section 4.



Radial solutions for p-Laplace equation 15

3.2. The generic case: f(u, r) = k1(r)f1(u) + k1(r)f2(u)

Now we try to extend the results of the previous subsection to a wider class of
functions f(u, r):

(17) f(u, r) =
N∑

i=1

ki(r)u|u|qi−2, p < q1 < q2 < · · · < qN

where N ≥ 1 and the functions ki(r), are continuous and positive. We will see
that, under natural conditions on the functions ki(r), when p∗ < q1 < qN ≤ p∗

positive solutions have a structure of type A, while when q1 ≥ p∗ they have
a structure of type B. The behavior of regular solutions have been classified
directly using Pohozaev identity in [35]. In [13] we have completed the results
by classifying the behaviour of singular solutions, using dynamical methods.
In fact we have followed the path paved by Johnson and Pan in [29], for the
analogous problem in the case p = 2.

In this paper we generalize slightly the techniques used in [34] and [13],
combining them with some ideas of [17], to obtain more general results. As
usual we set φi(t) = ki(et), and we always assume (without mentioning) that
entφi(t) ∈ L1

(
(−∞, 0]

)
and e(n−qi

n−p
p−1 )sφi(t) ∈ L1

(
[0, +∞)

)
for any i = 1, . . . , N ,

so that we can define functions similar to J± of the previous subsections:

J+
i (t) :=

φi(t)ent

qi
− n− p

p

∫ t

−∞
φi(s)ensds

J−i (t) :=
φi(t)e(n−qi

n−p
p−1 )t

q
− n− p

p(p− 1)

∫ +∞

t

φi(s)e(n−qi
n−p
p−1 )sds

Observe that, if f1(u) = u|u|q−1 and k = 1, the functions J±1 (t) defined in (3.2)
coincide with the functions J±(t) defined in section 3.1. As we did in section
3.1, if φi ∈ C1 we can rewrite the functions J±i in a form similar to (15) from
which we can more easily guess the sign. So we find the analogous of (16):

Hp∗(xp∗(t), t) + lim
t→−∞

Hp∗(xp∗(t), t) =
N∑

i=1

[
J+

i (t)
uqi(et)

qi
−

∫ t

−∞
J+

i (s)u′(es)uqi−1(es)ds
]

Hp∗(xp∗(t), t)− lim
t→+∞

Hp∗(xp∗(t), t) =
N∑

i=1

[
J−i (t)

xqi
p∗(t)
qi

+
∫ ∞

t

J−i (s)ẋp∗(t)x
qi−1
p∗ (s)

]
ds

Therefore we have a result analogous to Remark 3 and repeating the argument
of the proof of Theorem 1, we obtain the following generalization.

Theorem 2. Assume that either J+
i (t) ≥ 0 for any i and

∑N
i=1 J+

i (t) 6≡ 0
or J−i (t) ≥ 0 for any i and

∑N
i=1 J−i (t) 6≡ 0. Then all the regular solutions are

crossing solutions; moreover if q1 > p∗, and ki(r) is uniformly positive for r
large, there are uncountably many S.G.S. with fast decay.
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Assume that either J+
i (t) ≤ 0 for any i and

∑N
i=1 J+

i (t) 6≡ 0 or J−i (t) ≤ 0
for any i and

∑N
i=1 J−i (t) 6≡ 0. Then all the regular solutions are G.S. with slow

decay. Moreover there are uncountably many solutions u(r) of the Dirichlet
problem in the exterior of a ball.

This result is proved in [13] for the case 1 < p ≤ 2. However it can be
easily extended to the case p > 2 putting together the construction of a stable
set W̃ s(τ) developed in [17] (and quoted in Theorem 2), and the argument of
[13] concerning the function Hp∗ (that we have sketched in this section). In fact
the minimal requirement for the fast decay solution to exist, is that there are
c > 0 and m > p∗ such that g(xm(t), t) > cxm(t)|xm(t)|m−2 for t large.

Repeating the argument in Corollary 2 we easily obtain also this result:

Corollary 3. Assume that all the functions J−i (t) ≥ 0 for any r but∑N
i=1 J−i (t) 6≡ 0, and that there is p∗ < m ≤ p∗ such that the limit limt→+∞g(xm(t), t)/|xm(t)|m−1 =

km(∞) exists, is positive and finite. Then positive solutions have a structure of
type A.

Analogously assume that all the functions J+
i (t) ≤ 0 for any r but

∑N
i=1 J+

i (t) 6≡
0, and that there is s ≥ p∗ such that the limit g(xs(t), t)/|xs(t)|s−1 = ks(0) ex-
ists, is is positive and finite. Then positive solutions have a structure of type
B.

Once again if m 6= p∗ and s 6= p∗ respectively, and a further technical con-
dition is satisfied the S.G.S. with slow decay is unique, see [13]. From Theorem
2 and Corollary 3 we easily get the following.

Remark 5. Consider (3) where f is as in (17) and assume that the
functions ki(r) are uniformly positive and bounded. Then, if p∗ < q1 < qN ≤ p∗

and the functions ki(r) are nondecreasing, positive solutions have a structure
of type A, while if q1 ≥ p∗ and the functions ki(r) are nonincreasing, positive
solutions have a structure of type B.

4. When the Pohozaev function changes sign.

In this section we discuss equation (3) when f(u, r) = k(r)u|u|q−2, and we
assume that entφ(t) ∈ L1

(
(−∞, 0]

)
and e(n−q n−p

p−1 )sφ(t) ∈ L1
(
[0, +∞)

)
, so that

the functions J±(r) are well defined. We discuss now the case when J+(r) and
J−(r) change sign. In such a case positive solutions may exhibit the following
rich structure:

C There are uncountably many G.S. with slow decay and crossing solutions,
and at least one G.S. with fast decay. There are uncountably many S.G.S.
with fast decay, S.G.S. with slow decay, and solutions of the Dirichlet
problem in the exterior of the ball.
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Let us recall that, for n > 2 we denote by 2∗ = 2n/(n − 2) and by 2∗ =
2(n− 1)/(n− 2). We start from this interesting result proved by Bianchi in [5].

Theorem 3. Consider (2) and define g(r) = k(r)|r2 − c2| 2∗−q
2(n−2) ; assume

that there is c > 0 such that g(r) is non-increasing for 0 < r < c and non-
decreasing for r > c. Then all the G.S. and the S.G.S. are radial.

This fact gives more relevance to the study of radial solutions. Note
that, if q = 2∗ then the Theorem simply requires that there is c such that
k(r) is non-increasing for r < c and non-decreasing for r > c. In fact we
think that these results may be extended also to the case p 6= 2; but it cannot
be extended to any kind of potential k(r) in fact, modifying the nonnegative
potential K0 =

(
1 − (r/δ)ρ1

)
+

+
(
1 − (δr)ρ2

)
+
, where δ, ρ1, ρ2 > 0, Bianchi in

[5] constructed a positive potential k = k̄(r) so that (2) admits no radial G.S.
with fast decay, but it admits non-radial G.S. with fast decay. The potential
k̄(r) is obtained from a potential satisfying the hypotheses of Theorem 3 and
subtracting an arbitrarily small bump at r = 0 and at r = ∞.

For completeness we also quote the following result, borrowed from [4],
concerning potential k(x) which are not necessarily radial.

Theorem 4. Consider (2) where q = 2∗ and assume n ≥ 4. Choose two
points y, z ∈ Rn and two numbers Cy, Cz > 0. Then there is a positive potential
k = k̃(x) of the form

k̃(x) = Cy − ε|x− y|ρ for x in a neighborhood of y

k̃(x) = Cz − ε|x− z|ρ for x in a neighborhood of z
(18)

where ε > 0 is small enough and ρ = n − 2, such that (2) admits no G.S. with
fast decay.

In the same article Bianchi has also proved that a potential satisfying
condition (18), with ρ > n−2 and ε arbitrary chosen, and some further sufficient
conditions necessarily admits a G.S. with fast decay. This result shows how
sensitive to small changes in the potential k the behaviour of positive solutions
is.

Now we turn again to the case p 6= 2, and we focus our attention on
radial solutions. In order to find a G.S. with fast decay we need to find a
balance between the gain of energy, due to the values for which k(r)rp∗−q is
increasing, and the loss of energy, due to the values for which it is decreasing.
A first important result concerning the structure of positive solutions is the
following:

Theorem 5. Consider (3) and assume that there is R > 0 such that one
of the following conditions is satisfied
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J+(r) ≥ 0 for any 0 ≤ r ≤ R and it is decreasing for r ≥ R

J−(r) ≤ 0 for any r ≥ R and it is increasing for 0 ≤ r ≤ R.

Then regular solutions have one of the following structure.

1. They are all crossing solutions

2. They are all G.S. with slow decay

3. There is D > 0 such that u(d, r) is a crossing solution for d > D, it is a
G.S. with slow decay for d < D, and a G.S. with fast decay for d = D.

The result concerning J+(r) has been proved in [35], evaluating the Po-
hozaev function on regular solutions. The part concerning J−(r) is not explicitly
stated in [35], however it can be easily obtained as follows, see also [18]. We
can construct a stable set W̃ s(τ) through Proposition 2, and then deduce the
existence of solutions with fast decay. Then, applying the argument of [35] to
these solutions, we conclude. We think that one could easily reach a classifica-
tion result also for S.G.S. in this situation, combining the argument in [35] with
a dynamical argument. In fact, if we restrict to regular solutions, structure A
and B give back structure 1 and 2 respectively, and structure 3 is a special case
of C.

We have already seen that, when either J+(r) or J−(r) are positive for
any r > 0 we have structure A (so we are in the first case), while when they are
negative we have structure B (so we are in the second case). In order to derive
a sufficient condition for structure C to exist, we start from the case p = 2 and
following [43] we introduce the function:

(19) Z(t) := e−
(n−2)p

2 tJ+(t)− e
(n−2)p

2 tJ−(t)

Then we define ρ+ = inf{r ∈ (0,∞) |J+(r) < 0}, and ρ− = sup{r ∈ (0,∞) |J−(r) <
0}, setting ρ+ = ∞ if J+(r) ≥ 0 for any r > 0 and ρ− = 0 if J−(r) ≥ 0 for any
r > 0. Now we can state the following result proved in [43], using the Pohozaev
identity and the Kelvin transformation.

Theorem 6. Consider (3) where p = 2 and assume ρ+ > 0 and ρ− < ∞.
If Z(r1) > 0 for some r1 ∈ (0, ρ+] and Z(r2) > 0 for some r2 ∈ [ρ−,∞), there
is D > 0 such that u(D, r) is a G.S. with fast decay.

Let us set λ := (n−p)(q−p∗)
p ; following [43], we get the following more explicit

result.

Corollary 4. Consider (3) where p = 2 and suppose q 6= p∗ and that
k(r) is nonnegative and satisfies:

k(r) = Arσ + o(rσ) at r = 0 k(r) = Brl + o(rl) at r = ∞,
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where A,B > 0 and l < λ < σ, then there is a G.S. with fast decay.
Now assume q = p∗ and that k(r) satisfies

k(r) = A0 + A1r
σ + o(rσ) at r = 0 k(r) = B0 + B1r

l + o(rl) at r = ∞,

where A1, B1 > 0, A0, B0 > 0, −n < l < 0 < σ < n. Then there is a G.S. with
fast decay.

Note that the case q = p∗ is more delicate; we stress that the restriction
|l|, |σ| smaller than n is needed even if it was not required in [43]. However when
A0 = 0 we do not need the restriction on |l| and when B0 = 0 we do not need
the restriction on |σ|.

Using a similar argument Kabeya, Yanagida and Yotsutani, in [32] found
an analogous result for the case p 6= 2.

Theorem 7. Consider (3) where k(r) ≥ 0 for any r. Assume that either
lim infr→0

rk′(r)
k(r) > λ or k(r) = Arσ +o(rσ) at r = 0 for some A > 0 and σ > λ.

Moreover assume that either lim supr→∞
rk′(r)
k(r) < λ or k(r) = Brl + o(rl) at

r = 0 for some B > 0, l < λ. Then there is a strictly increasing sequence
dj > 0, j = 0, . . . ,∞, such that u(dj , r) has exactly j zeroes and has fast decay.
So in particular u(d0, r) is a G.S. with fast decay.

Note that the conditions of the previous Theorem at r = 0 (and at r = ∞)
are similar, but they do not imply each other. In fact the former is useful when
k(r) has a logarithmic term, e. g. k(r) = | ln(r)|rσ, and the latter when k(r)
behaves like a power at r = 0 (and at r = ∞). However, in both the cases,
when q = p∗ we have k(0) = k(∞) = 0.

We wish to mention that Bianchi and Egnell in [4], [6] have some other
sufficient conditions for the existence of G.S. with fast decay. Each condition, as
the ones of Corollary 4 and of Theorem 7, in some sense, requires a change in the
sign of the function J+(r) which is “sufficiently large to be detected”. We stress
that the situation becomes more delicate when q = p∗ and k(r) is uniformly
positive and bounded, see [4], [6], for a careful analysis. In fact, as suggested
from Theorem 8 stated below and borrowed from [6], we are convinced that the
condition on the smallness of |l|, |σ| of Corollary 4 is not technical.

Theorem 8. Consider (2) where q = 2∗ and take two numbers ρ1, ρ2 >
n(n− 2)/(n + 2), such that 1/ρ1 + 1/ρ2 ≥ 2/(n− 2). Then there is a function
k(r) such that k(r) = 1 −M1r

ρ1 near the origin and k(r) = 1 −M2r
−ρ2 near

∞, where M1,M2 are positive large constants so that (2) admits no radial G.S.
with fast decay.

We also stress that the previous result shows that the situation is much
more clear when J+(r) is positive for r small and negative for r large, than
when we are in the opposite situation.
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We introduce now some perturbative results, proved with dynamical tech-
niques, that help us to understand better also what happens to singular solu-
tions, and also which is the difference between the case in which we have a
subcritical behaviour for r small and supercritical for r large (easier situation),
and the opposite case (difficult situation). We focus on the case q = p∗: in the
autonomous case this is a border situation between a structure of type A and
B. So it is the best setting in order to have new phenomena as the existence of
G.S. with fast decay.

Let us assume that k(r) has one of the following two form:

k(r) = 1 + εK(r), where K is a bounded smooth function,

k(r) = K(rε), where K is a bounded smooth function, positive in some interval,

where ε > 0 is a small parameter and we assume K ∈ C2. In the former case
we say that k(r) is a regular perturbation of a constant (k changes little), in the
latter we say that it is a singular perturbation of a constant (k changes slowly).
It is worthwhile to note that, in the latter case k may change sign.

This problem was studied in the case p = 2 by Johnson, Pan and Yi in [30]
using the Fowler transformation, invariant manifold theory for non-autonomous
system and Mel’nikov theory. In both the cases they found a non-degeneracy
condition of Mel’nikov type, related to some kind of expansion in ε of the Po-
hozaev function, which is sufficient for the existence of G.S. with fast decay.
They also proved that when K(et) is periodic and the Mel’nikov condition is
satisfied, there is a Smale horseshoe for the associated dynamical system. Then
they inferred the existence of a Cantor set of S.G.S. with slow decay.

In the singular perturbation case the condition is easy to compute: there
is a G.S. with fast decay for each non-degenerate positive critical point of K(r).
These results have been completed by Battelli and Johnson in [1], [2], [3], and
eventually they proved the existence of a Smale horseshoe also in this case.
Thus they inferred again the existence of a Cantor set of S.G.S. with slow decay,
assuming that K(et) is periodic.

These results have been extended to the case 2n/(n + 2) ≤ p ≤ 2 in [14],
and completed to obtain a structure result for positive solutions. First we have
introduced a dynamical system of the form (8) through (4) with l = q = p∗. In
this section we will always set l = q = p∗ in (4) so we will leave the subscript
unsaid, to simplify the notation. Since (8) is C1 and uniformly continuous in the
t variable, O admits local unstable and stable manifolds, denoted respectively by
Wu

ε,loc(τ) and W s
ε,loc(τ), see [30], [14]. From Proposition 3 we know that, if Qu ∈

Wu
ε,loc(τ), then limt→−∞xτ (Qu, t) = O and the corresponding solution u(r) of

(3) is a regular solution, while if Qs ∈ W s
ε,loc(τ), then limt→+∞xτ (Qs, t) = O

and the corresponding solution v(r) of (3) is a solution with fast decay. Using
the flow it is possible to extend the local manifolds to global manifolds Wu

ε (τ)
and W s

ε (τ). As usual we commit the following abuse of notation: we denote
by Wu

ε (τ) and W s
ε (τ) just the branches of the manifolds that depart from the
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origin and get into R2
+. From [30] we also know that the leaves are C1 and

vary continuously in the C1 topology with respect to τ and ε. Observe that for
ε = 0, both in the regular and in the singular perturbation case, the manifold
Wu

ε (τ) and W s
ε (τ) coincide and are the image of the homoclinic trajectory. We

fix a segment L which is transversal to Wu
0 (τ) ≡ W s

0 (τ) and which intersects
it in a point, say U. Using a continuity argument, we deduce that, for ε > 0
small enough, Wu

ε (τ) and W s
ε (τ) continue to cross L transversally in points

ξs(τ, ε) and ξu(τ, ε) close to U. We want to find intersections Q between Wu
ε (τ)

and W s
ε (τ); then the trajectory xτ (Q, t) corresponds to a regular solution u(r)

having fast decay. Then it is easily proved that xτ (Q, t) ∈ R2
+ for any t so it is

a monotone decreasing G.S. with fast decay.
Let us rewrite (8) as ẋ = f(x, τ + t, ε). From now on we restrict our

attention to the singularly perturbed system since the other can be treated
similarly, see [30] and [14]. We define a Melnikov function which measures the
distance with sign between ξs(τ, ε) and ξu(τ, ε) along L.

M(τ) =
d

dε

[
ξ−(τ, ε)− ξ+(τ, ε)

] bε=0∧f(U, τ)

where “∧” denotes the standard wedge product in R2. Then define

h(τ, ε) =

{
M(τ) for ε = 0
ξ−(τ,ε)−ξ+(τ,ε)

ε ∧ f(U, τ) for ε 6= 0.

We point out that the vector ξ−(τ, ε)− ξ+(τ, ε) belongs to the transversal seg-
ment L, so we have h(τ, ε) = 0 ⇐⇒ ξ−(τ, ε)− ξ+(τ, ε) = 0 for ε 6= 0.

Suppose M(τ0) = 0 and M ′(τ0) 6= 0, then, using the implicit function
theorem, we construct a C1 function ε → τ(ε) defined on a neighborhood of ε =
0, such that τ(0) = τ0, for which we have ξ−(τ(ε), ε) = ξ+(τ(ε), ε). Therefore
we have a homoclinic solution of the system (8).

Following [30] and [14] we find that

(20) M(τ) = −φ′(τ)φ(τ)−
n
p

∫ +∞

−∞

|x1(t)|σ
σ

dt = −Cφ′(τ)φ(τ)−
n
p

where x1(t) = (x1(t), y1(t)) is a homoclinic trajectory of (8) where φ ≡ 1, so
C > 0 is a computable positive constant. Note that M(τ) is closely related
to the first term in the expansion in ε of the function Z(t) defined in (19). It
follows that for any positive non degenerate critical point of k(r) there is a
crossing between Wu

ε (τ(ε)) and W s
ε (τ(ε)), so we have a G.S. with fast decay.

Introducing a further Mel’nikov function depending on two parameters,
it can be proved that such a crossing is transversal, see [30], [1], [14]. In order
to use the Smale construction of the horseshoe, we need to prove that the
functions ξ±(ε, τ) are C2 even if the system is just C1. This has been done in
[3], using some fixed point theorems in weighted spaces, and observing that the
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first branch of Wu
ε (τ) and W s

ε (τ) cannot cross the coordinate axes, where part
of the regularity is lost.

Now we assume that φ is periodic and admits a non-degenerate positive
critical point. Using the previous Lemma we find a point Q(ε) ∈ Wu

ε (τ(ε)) ∩
W s

ε (τ(ε)). Then, using the Smale construction, we find a Cantor set Λ close to
the transversal crossing Q(ε), such that the trajectories xτ (P, t), where P ∈ Λ
are bounded, and do not converge to the origin. With some elementary analysis
on the phase portrait we can also show that xτ (P, t) ∈ R2

+ for any t ∈ R. So
we find the following, see [30], [1], [2], [3] [14] for the proof.

Theorem 9. Consider (3) where q = p∗, 2n/(n+2) ≤ p ≤ 2, and k ∈ C2

is a singular perturbation of a constant. Then there is a monotone decreasing
G.S. with fast decay for each positive non-degenerate critical point of k(r).

Moreover assume that k(et) is a periodic function and it admits a non
degenerate positive extremum. Then there is a Cantor-like set of monotone
decreasing S.G.S. with slow decay v(r). Moreover if k(r) is strictly positive, the
S.G.S. are monotone decreasing.

When k is a regular perturbation of a constant, we proceed in the same
way but we find a different Mel’nikov function:

M̄(τ) =
∫ +∞

−∞
φ′(t + τ)

|x1|p∗
p∗

dt , M̄ ′(τ) =
∫ +∞

−∞
φ′′(t + τ)

|x1|p∗
p∗

dt

Then, arguing as above we find the following.

Theorem 10. Assume that k(r) = 1 + εK(r) is a C2 function and ε > 0
is a sufficiently small parameter. Then equation (3) admits a G.S. with fast
decay for each non degenerate zero of M(τ). Assume in addition that K(et) is
a periodic function. Then equation (3) admits a Cantor-like set of monotone
decreasing S.G.S. with slow decay.

Following [14], we point out that now it is possible to get further infor-
mation on the structure of positive solutions, both regular and singular, with
a careful analysis of the phase portrait. The idea is to construct a barrier set
made up of branches of the manifolds Wu

ε (τ) and W s
ε (τ). We illustrate it with

an example, remanding to [14] for a detailed discussion. Let us assume that
k(r) admits 9 positive non degenerate critical points for r > 0, 5 maxima and 4
minima , see figure 1.3.

First observe that if Qτ ∈ Wu
ε (τ) ∩ W s

ε (τ) then xτ (Qτ , t) ∈ Wu
ε (τ +

t) ∩ W s
ε (τ + t) for any t. So the number of intersection between Wu

ε (τ) and
W s

ε (τ) does not depend on τ . Therefore there are 9 functions τi(ε) such that
ξu(τ(ε), ε) = ξs(τ(ε), ε) for i = 1, · · · , 9 and 9 points Ni(τ) of intersection
between stable and unstable manifolds. We denote by N1(τ), the first point
met following W s

ε (τ) from the origin towards R2
+, by N2(τ) the second, and

so on. Let us denote by B0(τ) the branch of W s
ε (τ) between the origin and
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Figure 1.3: A sketch of the set E(τ), when k(r) = K(rε) has 5 maxima and 4
minima. The solid line represents B(τ), and it is obtained joining segments of
Wu(τ) (dotted line), and of W s(τ) (dashed line).

N1(τ), by B1(τ) the branch of Wu
ε (τ) between N1(τ) and N2(τ), by B2(τ)

the branch of W s
ε (τ) between N2(τ) and N3(τ), and so on till the branch of

Wu
ε (τ) between N9(τ) and the origin which is denoted by B9(τ). Finally we

denote by B(τ) = ∪9
i=0B

i(τ), and by E(τ) the bounded open subset enclosed
by B(τ). The key observation is that B(τ) is contained in R2

+ for any τ , and in
{x | y < 0 < x} when φ is uniformly positive, see [14] for a detailed proof.

Observe that E(τ)\ (Wu
ε (τ)∪W s

ε (τ)) contains uncountably many points
and take Q in it. The trajectory xτ (Q, t) is forced to stay in the interior
of E(τ + t) for any t, therefore it corresponds to a S.G.S. with slow decay.
With a careful analysis on the phase portrait it is possible to find points Q ∈
B(τ)\ W s

ε (τ) such that xτ (Q, t) is forced to stay in the interior of E(τ + t) for
any t > 0, and P ∈ B(τ)\ W s

ε (τ) such that xτ (P, t) has to cross the y axis
for some t > 0. Therefore they correspond respectively to G.S. with slow decay
and to crossing solutions. Analogously we find Q,P ∈ B(τ)\ Wu

ε (τ) such that
xτ (Q, t) ∈ E(τ + t) for any t < 0 and xτ (P, t) has to cross the y axis for some
t < 0, which correspond respectively to S.G.S. with fast decay and to solutions
of the Dirichlet problem in the exterior of a ball, see [14] for more details. The
results can be summed up as follows. Let us introduce the following hypotheses:

M1 there exists ρ > 0 such that k(ρ) > 0 is a non degenerate maximum and
k(r) is uniformly positive and monotone increasing for 0 ≤ r ≤ ρ.

M2 there exists R > 0 such that k(R) > 0 is a non degenerate maximum and
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k(r) > 0 is uniformly positive and monotone decreasing for r ≥ R.

O1 k(r) is oscillatory as r → 0 and admits infinitely many positive non degen-
erate critical points.

O2 k(r) is oscillatory as r →∞ and admits infinitely many positive non degen-
erate critical points.

Then we have the following result:

Theorem 11. Consider equation (3) and assume that k(r) = K(rε) is
bounded. Then, for ε > 0 small enough, we have at least as many G.S. with fast
decay as the non degenerate critical points of k(r). Moreover

1. Assume that either M2 or O2 is satisfied. Then the there are uncountably
many G.S. with slow decay and uncountably many crossing solutions.

2. Assume that either M1 or O1 is satisfied. Then there are uncount-
ably many S.G.S. with fast decay and uncountably many solutions v(r)
of Dirichlet problem in the exterior of a ball.

3. Assume that both Hypotheses 1 and 2 are satisfied. Then the positive
solutions of equation (3) have a structure of type C.

Furthermore, if k(r) is uniformly positive, then G.S. and S.G.S. are decreasing.

Remark 6. Note that when k(r) is decreasing for r small and increasing
for r large, we are not able to state the existence of S.G.S. and of G.S. with slow
decay. This is due to the fact that, in such a case it is not possible to construct
a set B(τ) which is contained in R2

+ for any τ , so our argument fails. However
also in this case we are able to prove the existence of G.S. with fast decay.

Following [14] we can easily obtain an analogous result for the regularly
perturbed problem. The difference lies in the fact that the Melnikov condition
is a bit more complicated, so we have to replace the assumption that k(r) has
a positive critical point by the condition that M̄(τ) = 0 and M̄ ′(τ) 6= 0.

Now we want to extend some of these results to the “in the large” case,
so we want to see what happens when ε → 1. This in fact will shed some light
on the reason for which positive solutions exhibit the same structure, under two
completely different types of perturbation. The idea is to use our knowledge
of the autonomous case to understand the non-autonomous one, replacing the
Melnikov function by the energy function H. We will discuss the following
Hypotheses

M̄+
1 k(r) is increasing for r small and k′(r)r−n/(p−1) 6∈ L1(0, 1].

M̄−
1 k(r) is decreasing for r small and k′(r)r−n/(p−1) 6∈ L1(0, 1].
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M̄+
2 k(r) is increasing for r large and k′(r)rn 6∈ L1[1,∞).

M̄−
2 k(r) is decreasing for r large and k′(r)rn 6∈ L1[1,∞).

Now we can state the following theorem, see [18], [15].

Theorem 12. Consider (3) where q = p∗ and k(r) ∈ [a, b] for any r ≥ 0,
for some b > a > 0. Assume that either hypotheses M̄+

1 and M̄−
2 , or M̄−

1 and
M̄+

2 are satisfied. Then there is a G.S. with fast decay. Moreover

1. If M̄2
− is satisfied there are uncountably many G.S. with slow decay and

uncountably many crossing solutions.

2. If M̄+
1 is satisfied, there are uncountably many S.G.S. with fast decay and

uncountably many solutions of Dirichlet problem in the exterior of a ball.

3. If M̄+
1 and M̄2

− are satisfied positive solutions have structure C.

Proof. Consider the autonomous system (8) where q = p∗ and φ ≡ a, or φ ≡ b
respectively. Denote by xa(t) and xb(t) the trajectories of the former and the
latter system such that ẋa(0) = 0 = ẋb(0). Denote by A+ = {xa(t) |t ≤
0}, A− = {xa(t) |t ≥ 0}, B+ = {xb(t) |t ≤ 0}, B− = {xb(t) |t ≥ 0}, by
A = (Ax, Ay) = xa(0) and by B = (Bx, By) = xb(0). Let us denote by E+

(respectively E−) the bounded subsets enclosed by A+, B+ (resp. A−, B−)
and the isocline ẋ = 0.

Note that the flow of the non autonomous system (8) on A+ ∪B+ points
towards the interior of E+ while on A− ∪ B− points towards the exterior of
E−. So, using Wazewski’s principle, we can construct compact connected sets
as follows, see [15].

Wu(τ) :={Q ∈ E+ | lim
t→−∞

xτ (Q, t) = O and xτ (Q, t) ∈ E+ for t ≤ 0},
W s(τ) :={Q ∈ E− | lim

t→+∞
xτ (Q, t) = O and xτ (Q, t) ∈ E− for t ≥ 0}.

We denote by ξu(τ) and ξs(τ) the intersection of the isocline ẋ = 0 respectively
with Wu(τ) and W s(τ). In analogy to what we have done in the perturbative
case we want to measure the distance with sign of the compact non-empty sets
ξu(τ) and ξs(τ) evaluating the energy function H on these sets.

We wish to stress that we have committed a mistake in [15] in such
evaluation, but we can correct it as follows, see [18]. Let us denote by L the
line x = Bx, and by C+ the intersection of L with A+; finally let L+ be
the segment of L between C+ and B. Denote by xτ

a(t), the trajectory of the
autonomous system where φ ≡ a such that xτ

a(0) = C+, and by xτ
b (t), the

trajectory of the autonomous system where φ ≡ b such that xτ
b (0) = B. Re-

call that we have explicit formulas for xτ
a(t) and xτ

b (t) and that we can find
C > c such that p∗√ce

n−p
p t < xτ

b (t) < xτ
a(t) < p∗√Ce

n−p
p t for t ≤ 0. Con-

sider a trajectory xτ (Qu(τ), t) of the non-autonomous system (8) such that
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xτ (Qu(τ), 0) = Qu(τ) ∈ L+. It can be proved that

cent < |xτ
b (t)|p∗ ≤ |xτ (Qu(τ), t)|p∗ ≤ |xτ

a(t)|p∗ < Cent

for any t ≤ 0, see [18]. Denote by W̄u(τ) and W̄ s(τ) respectively the subset
of Wu(τ) and W s(τ) contained in {x | 0 < x < Lx}. It can be shown easily
that for any point Q ∈ W̄u(τ) we have c(Q)ent ≤ |xτ (Qu(τ), t)|p∗ ≤ C(Q)ent,
where C(Q)/C = K(Q) = c(Q)/c > 0.

Now assume that hypothesis M̄+
2 is satisfied; then there is T0 > 0 such

that φ̇(t) > 0 for any t > T0. Hence for any Q ∈ W̄u(τ) we have

Hp∗(Q, τ) =
∫ 0

−∞
φ̇(τ + t)

|xτ (Q; t)|p∗
p∗

dt ≥

≥ e−nτK(Q)
σ

[
C(φ(T0)− b)enT0 + c

∫ τ

T0

φ̇(ζ)enζdζ
](21)

Since φ̇(ζ)enζ 6∈ L1
[
[0,∞)

]
, we can find N+ > T0 such that Hp∗(Q, τ) > 0 for

any Q ∈ W̄u(τ) and τ > N+.
We denote by Φτ,t(Q) the diffeomorphism defined by the flow of (8),

precisely Φτ,t(Q) = xτ (Q; t). Note that for any Q ∈ W̄u(τ), where τ > N+,
and any t ≥ 0, we have H(Φτ,t(Q), t + τ) > H(Q, τ) > 0 since φ̇(s) > 0 for
s > τ > N+.

Observe that there is a unique t = Tu(Q) > 0 such that xτ (Q; t) ∈ E+

for any t < Tu(Q) and xτ (Q;Tu(Q)) ∈ ξu(Tu(Q) + τ). We choose T+
ω =

min{Tu(Q)+N+ |Q ∈ W̄u(N+)}; it follows that ΦN+,t[W̄u(N+)] ⊃ W̃u(N+ +
t), for any t ≥ T+

ω −N+. Hence H(Q, τ) > 0 for any Q ∈ W̃u(τ) for any τ > T+
ω .

Moreover, for any P ∈ W̃ s(τ) we have

Hp∗(P, τ) =−
∫ +∞

τ

φ̇(t + τ)
|xτ (P, t)|p∗

p∗
dt < 0 ,

since φ̇(t) > 0 for t + τ > T0. Therefore Hp∗(P, τ) < 0 < Hp∗(Q, τ) for any
P ∈ W̃ s(τ) and any Q ∈ W̃u(τ). Analogously if M̄−

1 is satisfied, we can find
T−α < 0 such that Hp∗(Q, τ) < 0 < Hp∗(P, τ) for any point P ∈ W̃ s(τ) and
Q ∈ W̃u(τ), for any τ < T−α . It follows that there is τ0 ∈ (T−α , T+

ω ) such that
ξs(τ0)∩ ξu(τ0) 6= ∅. So if Q0 ∈ ξs(τ0)∩ ξu(τ0) we have that the solution u(r) of
(3) corresponding to xτ0(Q0, t) is a G.S. with fast decay.

Then repeating the argument of the perturbative case we conclude the
proof of the Theorem.

This way we have proved structure results for positive solutions also in
the case p > 2 and corrected the corresponding results in [15]. However we
cannot correct the proof of the results concerning the existence of multiple G.S.
with fast decay, published in [15].
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Note that with this approach it is possible to prove the existence of G.S.
with fast decay also when M̄−

1 and M̄+
2 are satisfied, while the approach of

[43], [32] fails in that case. However the latter article is able to deal also with
the case q 6= p∗. We wish to stress that the condition on the integrability
of k′(r)rn and k′(r)r−n/(p−1) is in some sense optimal, in view of Theorem 8.
Moreover observe that we can combine the existence results for G.S. with fast
decay given in Theorem 6, 11, 12 with the structure result of Theorem 5 to
obtain uniqueness. Furthermore we have the following, see [18], [15].

Remark 7. Assume that hypotheses M̄+
1 and M̄−

2 are satisfied. Then
there are B ≥ A > 0 such that u(d, r) is a crossing solution for any d > B and
it is a G.S. with slow decay for 0 < d < A.

Assume that hypotheses M̄−
1 and M̄+

2 are satisfied. Then there are B ≥
A > 0 such that u(d, r) is a crossing solution for any d > B and any 0 < d < A.
Moreover there are R ≥ ρ > 0 such that the Dirichlet problem in the ball of
radius r admits 2 solutions for r > R and 0 solutions for 0 < r < ρ.

Roughly speaking, if k(r) ∈ C1 is uniformly positive and bounded, admits
just one critical point which is a maximum and it is not too flat for r small and
r large, regular solutions have structure 3 of Theorem 5 (and positive solutions
have structure C). But if the critical point is a minimum, the situation is more
complicated. We know from Theorem 12 a sufficient condition to have a G.S.
with fast decay. However we conjecture, that, in such a case, we may have
multiple G.S. with fast decay, perhaps even infinitely many.

Theorem 12 also helps to understand what happens in the perturbative
case. When we have a regular perturbation, the stripes E+ and E− are very
narrow. So, when we approximate the trajectory of the perturbed system with
a trajectory of the unperturbed one, we commit a small mistake. In the singular
perturbation case we have that φ varies slowly, so φ̇ has constant sign in long
intervals. Since the trajectory of the stable and unstable sets have an expo-
nential decay, the sign of the energy function H mainly depends on the sign
of φ(εt + τ)xp∗(t) evaluated when x(t) is far from the origin. Choose Q either
in ξs(τ) or in ξu(τ). The idea hidden in Theorem 11 is that, playing with the
values of the parameters τ and ε, we can make the sign of Hp∗(Q, τ) depend
just on the sign of φ̇ evaluated at t = τ .

5. f subcritical for u small and supercritical for u large.

In this section we collect few results about an equation for which even some
basic questions are still unsolved. We consider Eq. (1) where f(u) = u|u|q1−2 +
u|u|q2−2, and p∗ < q1 < p∗ < q2. In fact as far as we are aware there are only
two articles, [10] and [11], concerning the argument and they deal with the case
p = 2. Recall that 2∗ = 2n/(n− 2) and 2∗ = 2(n− 1)/(n− 2).

Zhou in [44] established that G.S. for (2), in this case have to be radial.
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So we can in fact consider directly an equation of the form (3) (with p = 2).
Flores et al. in [10] and [11] use the classical Fowler transformation

and change equation (3) into a dynamical system of the form (5). Then they
face the problem using dynamical techniques such as invariant manifold the-
ory. They set l = q2 in (4) and obtain a system of the form (5) such that
gq2(xq2 , t) is bounded as t → −∞, for any fixed xq2 . In fact they consider the
3-dimensional autonomous system obtained from (5) adding the extra variable
z = eξt, where ξ > 0. As usual this system admits 3 critical points: the origin O,
P(−∞) = (Px(−∞), Py(−∞) and −P(−∞), where Py(−∞) < 0 < Px(−∞).
In such a case regular solutions of the original problem correspond to trajec-
tories of the 2−dimensional unstable manifold of the origin, while the singular
solutions corresponds to the trajectory whose graph is the 1−dimensional un-
stable manifold of P(−∞). Then they consider the system obtained from (5)
with l = q1, adding the extra variable z = eξt, where ξ < 0, which again have
three critical points: O, P(+∞) = (Px(+∞), Py(+∞) and −P(+∞), where
Py(+∞) < 0 < Px(+∞). In this case O admits a 2 dimensional stable manifold
whose trajectories correspond to solutions with fast decay of (3), and P(+∞)
admits a 1−dimensional stable manifold made up of a trajectory corresponding
to a solution with slow decay. Then they use dynamical arguments in order
to find intersections between these objects, and this way in [10] they prove the
following very interesting results.

Theorem 13. a) Let q2 > 2∗ be fixed. Then, given an integer k ≥ 1,
there is a number sk < 2∗ such that if sk < q1 < 2∗, then (2) has at least
k radial G.S. with fast decay.

b) Let 2∗ < q1 < 2∗ be fixed. Then, given an integer k ≥ 1, there is a number
Sk < 2∗ such that if 2∗ < q2 < Sk, then (2) has at least k radial G.S. with
fast decay.

They have also found a non-existence counterpart, which shows how sen-
sitive to the variations of the exponents these existence results are.

Theorem 14. Let q2 > 2∗ be fixed. Then there is a number Q > 2∗ such
that if 1 < q1 < Q, then (2) admits no G.S neither S.G.S.

This non-existence result is in some sense optimal. In fact Lin and Ni
in [36] have constructed explicitly a G.S. with slow decay of the form u(r) =
A(B+r2)−1/(p−1), where A and B are suitable positive constants, in the special
case q2 = 2(q1−1) > 2∗ (note that 2∗ = 2(2∗−1)). However the existence of G.S.
with slow decay probably is not a generic phenomenon. In fact it corresponds
to the existence of 1 dimensional intersection of a 2−dimensional object with a
1−dimensional object in 3 dimensions.

Finally we have this result concerning S.G.S. and G.S. with slow decay.



Radial solutions for p-Laplace equation 29

Theorem 15. a) Given q2 > 2∗, there is an increasing sequence of num-
bers Qk → 2∗ such that if q1 = Qk then there is a radial S.G.S. of (2)
with either slow or fast decay.

b) Given 2∗ < q1 < 2∗, there is a decreasing sequence of numbers Sk → 2∗ such
that if q2 = Sk then (2) admits either a radial S.G.S. with slow decay or
a radial G.S. with slow decay.

Moreover, exploiting the existence of the G.S. with slow decay in the case
q2 = 2(q1 − 1) > 2∗, Flores was able to prove the following result in [11].

Theorem 16. Assume that 2∗ < q1 < 2∗ < q2 and q1 > 2N+2
√

N−1−2
N+2

√
N−1−4

.
Then, given any integer k ≥ 1, there is a number εk > 0 such that, if |q2 −
2(q1 − 1)| < εk, then there are at least k radial G.S. with fast decay for (2). In
particular if q2 = 2(q1 − 1) there are infinitely many G.S. with fast decay.

The condition q1 > 2N+2
√

N−1−2
N+2

√
N−1−4

guarantees that P(+∞) is a focus and
this point is crucial for the proof.

We think that all the Theorems of this section could be generalized to
the case p 6= 2 using the new change of coordinates (4). Moreover we think that
these techniques could be adapted to generalize Theorems 13, 14, 15 also to the
spatial dependent case, that is when f(u, r) = k1(r)u|u|q1−2 + kk(r)u|u|q2−2,
where k1 and k2 are actually functions. The last Theorem 16 crucially depends
on the existence of the G.S. with slow decay, that seems to be structurally
unstable. However we have been able to compute this solution also for the
corresponding equation (1). So perhaps also Theorem 16 can be extended to
the case p 6= 2.

Remark 8. Consider (1) where f(u, r) = u|u|q1−1 + u|u|q2−1, where
q2 = (q1−1)p

p−1 and p∗ < q1 < p∗ < q2. Then there is a radial G.S. with slow
decay

u(r) = A

(
1

B + r
p

p−1

) p−1
q1−p

where A =
[∣∣ p

q1−p

∣∣p−1(
n− p(q1−1)

q1−p

)] 1
q1−p and B =

(
n− p(q1−1)

q1−p

)
A

q1−1
p−1 .

6. f negative for u small and positive for u large.

In this section we will consider (3), assuming that f(u, r) is negative for u small
and positive for u large and r small. The prototypical non-linearity we are
interested in is the following

(22) f(u, r) = −k1(r)u|u|q1−2 + k2(r)u|u|q2−2

where the functions ki(r) are nonnegative and continuous. When p = q1 = 2 (2)
describes a Bose-Einstein condensate, and the G.S., if it exists, is the least energy
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solution. In order to have G.S. we need to have a balance between the gain of
energy due to the negative terms and the loss of energy due to the positive terms.
The strength of the contribution is proportional to the corresponding value of
|J+

i (r)|, so it depends strongly on the exponent qi. When f is as in (22) and
q1 < p∗ ≤ q2 the contribution given by the positive term is not strong enough,
while when q1 ≥ p∗ the contribution of the positive term is too strong. When
q1 < q2 < p∗ we expect to find a richer scenario, similar to the one depicted in
Theorem 5 (3), where G.S. with slow decay are replaced by oscillatory solutions.

Also in this situation, roughly speaking, solutions u(r) which are positive
for r large can have two different behaviour: either they converge to 0, usually
with fast decay (see Proposition 1 and Corollary 1), or they are uniformly pos-
itive, and typically they oscillate indefinitely between two values c2, c1 where
0 < c1 < c2 < ∞.

Also in this case radial solutions are particularly important, since in many
cases G.S. in the whole Rn, S.G.S. and solutions of the Dirichlet problem in the
ball for (1) have to be radial. This fact was proved when p = 2 and f is as
in (22) and the functions −k1(r) and k2(r) are decreasing by Gidas, Ni, Niren-
berg in [23], [24] using the moving plane method and the maximum principle.
Afterwards this results have been extended to the case 1 < p ≤ 2 in [8], [9],
and finally in [42] to the case p > 1, and to more general spatial independent
nonlinearities f(u): they simply assume that f(0) = 0, f is negative in a right
neighborhood of u = 0 and it is positive for u large.

Once again the Pohozaev identity proves to be an important tool to face
the problem of looking for positive solutions. In fact it was used by Ni and
Serrin in [38] to construct obstructions for the existence of G.S. in the spatial
independent case.

Theorem 17. Consider (3) where f has the following form

(23) f(u) = −
N∑

i=1

kiu|u|qi−2 +
M∑

i=N+1

kiu|u|qi−2 qi < qi+1

where ki > 0 are constants for any i = 1, . . . ,M , qN+1 ≥ p∗, M > N ≥ 1.
Then there are no crossing solutions neither G.S.

Note that when N = 1 and M = 2 (23) reduces to (22). Recall that in
such a case all the G.S. of (1) and also all the solutions of the Dirichlet problem
in a ball have to be radial. Therefore the non existence result holds globally for
the PDE (1).

When ki(r) behave like powers at r = 0 or at r = ∞, using the concept
of natural dimension explained in the appendix (see [20] and [17]), it is possible
to reduce the problem to an equivalent one in which the functions are uniformly
positive and bounded either for r small, or for r large, or for both.

In [13] we have discussed a problem similar to the one of Theorem 17, but
in the spatial dependent framework, using again dynamical techniques combined
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with the Pohozaev identity. In [13] we have analyzed functions f of the form
(22), but the proofs work also when f is as in (23) and satisfies:

F0 qN ≤ p∗ ≤ qN+1; ki(r) is a positive, continuous function for r > 0, for any
i ≤ M . J+

j (t) ≤ 0 ≤ J+
i (t) for any t and j ≤ N < i and

∑M
i=1 |J+

i (t)| 6≡ 0.

Remark 9. Assume that F0 holds and that there is s ≥ p∗ such that the
limits limt→−∞φi(t)eαs(p∗−qi)t = Ai ≥ 0 exists and are finite for i ≤ M , and
that

∑M
i=N+1 Ai > 0. Then there is at least one singular solution v(r) of (3).

Theorem 18. Consider (3) where f satisfies F0. Moreover assume that
there are positive constants Ci and cj such that ki(r) > Ci and kj(r) < Cj for
r large and i ≤ N and j > N . Then all the regular and singular solutions are
defined and positive for any r ≥ 0 and lim supr→∞ u(d, r) > 0 for any d > 0.

Assume further that −ki(r) and kj(r) are decreasing and bounded for r
large and i ≤ N and j > N , then there is is a computable constant b∗, such that
all the regular solutions u(r) (and the singular, if they exist) are such that

0 < lim inf
r→∞

u(r) ≤ lim inf
r→∞

u(r) < b∗

Remark 10. The Hypotheses of Theorem 18 are satisfied for example if
we take f as in (22), q1 ≤ p∗ ≤ q2, q1 < q2, and the functions ki(r) uniformly
positive, bounded and −k1(r) and k2(r) are decreasing.

It is possible to give some ad hoc condition for the existence of G.S. even in the
case q1 ≤ p∗ ≤ q2 and q2 > q1. In fact we have to lower the contribution given by
the negative term −k1(r)u|u|q1−2, taking a strongly decreasing function k1(r),
see [13]. More precisely

Theorem 19. Assume F0, and that the limits limt→+∞φi(t)eαp∗ (p∗−qi)t =
Bi ≥ 0 exist and are finite for i ≤ M , and that

∑M
i=N+1 Bi > 0.

Then all the regular solutions u(r) are G.S. with slow decay. Finally, if there is
a singular solution it is a S.G.S. with slow decay.

Remark 11. The Hypotheses of Theorem 19 and Remark 9 are satisfied
for example if we take f as in (22), q1 = p∗ < q2, k1(r) uniformly positive,
bounded and increasing, k2(r) = a + brαp∗ (q2−p∗) where a, b > 0; or if we take
q1 < p∗ = q2, k2(r) uniformly positive, bounded and increasing, and k1(r) =
a/(1 + brαp∗ (p∗−q1)), where a, b > 0.

As we said at the beginning of the section, the situation becomes more
interesting when f is subcritical both as u → 0 and as u →∞. A first important
step to understand equation (2) in this setting was made in [24], where the
authors proved the existence of a G.S. in the case p = 2 and assuming that
f(u, r) is as in (22), q1 = 2 < q2 < 2∗ and −k1(r) and k2(r) non-increasing.
These results have been extended to more general operators, including the p-
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Laplacian for p > 1, in [19] and to a wider class of nonlinearities f . They just
require that there is A > 0 such that F (u) < 0 for 0 < u < A, F (A) = 0 and
f(A) > 0, where F (u) :=

∫ u

0
f(s)ds.

In [19] the non-linearity f is assumed to be spatially independent and sub-
halflinear, namely either there is b > A such that f(b) = 0, or lim infu→∞

F (u)
up <

∞. If we consider the prototypical case (22) the assumptions of [19] reduce to
1 < q1 < q2 < p, k1 ≡ 1 ≡ k2. They also proved the uniqueness of the G.S., and
they have given good estimates of the asymptotic behaviour. The question of
uniqueness has been discussed in many papers, see e.g. [19], [20], [7], but it is
beyond the purpose of this survey. Roughly speaking radial G.S. for the spatial
independent equation are unique. This is usually proved with an argument
involving the moving plane method or the maximum principle. We think that
G.S. are unique also when −k1(r) and k2(r) are decreasing, but we believe that
a clever choice of the functions ki(r) could produce multiple G.S. However the
question is still open as far as we are aware.

Gazzola, Serrin and Tang in [22] managed to extend the existence results
to a wider class of spatial independent non-linearities. In particular, when f is
as in (22), they proved that there is a G.S. when, either n ≤ p and q1 > 0, or
n > p and 0 < q1 < q2 < p∗, moreover the G.S. is always positive if and only
if q1 > p. They have also found out that if n = p, there are functions f with
exponential growth in the u variable for which (3) admits G.S.

However, also in [22], f does not depend explicitly on r. In [16] we
have extended the existence result to the spatial dependent case, under suitable
Hypotheses on the functions ki(r), and assuming 1 < p ≤ 2, q1 ≥ 2 and p∗ <
q1 < q2 < p∗. But the main contribution of that paper was the proof of the
existence of uncountably many S.G.S., which as far as we are aware had not been
detected previously even in the original problem with p = 2 and k1 ≡ 1 ≡ k2.
Then in [17] we have been able to discuss also the case p > 2, and to prove
the existence of G.S. and S.G.S. for different type of non-linearity f , satisfying
some of the following hypotheses:

F1





• The function f(u, r) is continuous in R2 and locally Lipschitz in
the u variable for any u, r > 0; f(0, r) = 0 for any r ≥ 0.

• There are ν > 0 and p < q < p∗ such that, for any 0 ≤ r ≤ ν

limu→∞
f(u,r)
|u|q−1 = a0(r) > 0 and a0(r) is continuous.

F2 There are positive constants A ≥ a > 0 and ρ > 0 such that
f(u, r) < 0 for r > ρ and 0 < u < a
F (A, 0) = 0 and f(u, 0) > 0 for u ≥ A.

F3 f(u, 0) ≥ f(u, r) for any 0 < u ≤ A and any r ≥ 0.

F4 The exponent q in Hyp. F1 is such that q > p∗.
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Theorem 20. Assume that Hyp. F1, F2, F3 are satisfied. Then there
exists D > A such that u(D, r) is a monotone decreasing G.S.

Remark 12. Note that if f is as in (22) and q1 ≥ p, G.S. and S.G.S. are
positive for any r > 0, while if q1 < p their support is bounded, see Proposition
1. This means that there is R > 0 such that u(r) > 0 for 0 < r < R, u(R) =
u′(R) = 0 and u(r) ≡ 0 for r > R. Also note that if limr→+∞u(r) = 0, u has
fast decay, in view of Corollary 1.

Using a standard continuity argument we can also prove the following.

Corollary 5. Assume that Hyp. F1, F2, F3 are satisfied. Then
u(d, r) is a crossing solution for any d > D and its first zero R1(d) is such
that limd→∞R1(d) = 0. Furthermore assume that we are in the Hypotheses
of Proposition 1 B, then we also have that limd→D R1(d) = ∞. Therefore the
Dirichlet problem in the ball of radius R > 0 for equation (3) admits at least
one solution for any R > 0.

Theorem 21. Assume that Hyp. F1, F2 and F4 are satisfied, then (3)
admits uncountably many S.G.S.

Remark 13. Assume that f is as in (23), that the functions ki(r) are
uniformly positive and bounded for any r ≥ 0 and p < qM < p∗. Then hy-
potheses F1 and F2 are satisfied. Moreover if −ki(r) and kj(r) are decreasing
for any r > 0, 1 ≤ i ≤ N and N < j ≤ M , hypothesis F3 is satisfied; finally if
qM > p∗ F4 holds.

The proof of Theorem 20 can be found in [17] and follows, with some
minor changes, the scheme introduced in [24] and then used in [19], [22] and
[16].

When Hyp. F1 and F2 are satisfied the initial value problem (3), with
u(0) = d > 0, u′(0) = 0 admits at least a solution. Moreover such a solution,
denoted by u(d, r) is unique for any d ≥ A and u′(r) ≤ 0 for r small. All these
solutions can be continued in J(d) = (0, Rd) = {r > 0 |u′(r) < 0 < u(r)}, where
Rd can also be infinite. This was proved for the spatial independent problem
in [19] and then adapted with some trivial changes to the spatial dependent
problem in [17]. Since u(d, r) is positive and decreasing for r < Rd, the limit
limr→Rd

u(d, r) exists and is nonnegative, so we can define the following set:

I := {d ≥ A | lim
r→Rd

u′(d, r) < 0}

Using an energy analysis we can prove that A 6∈ I, when F1, F2 and F3 are
satisfied. Moreover using a continuity argument on the auxiliary system (5), we
prove that I is open in [A,∞) whenever F1 and F2 hold, see [17]. The difficult
part of the proof is to show that I 6= ∅. In fact we show that, if F1 and F2 are
satisfied there is D 6∈ I such that (D,∞) ⊂ I.
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For this purpose we introduce a dynamical system of the form (5), using
(4) with l = q, where q is the parameter defined in [12]. Then we show that
for r small and u large we can approximate our system with an autonomous
subcritical system of type (8). Through a careful analysis of the phase portrait
we are able to construct a barrier set Eτ ⊂ {(x, y) ∈ R2 | y ≤ 0 ≤ x}. Then,
using Wazewski’s principle, we show that there are M > 0 and δ > 0 such that,
for any τ < −M , there is an unstable set W̃u(τ) ⊂ Eτ , which intersects the
y negative semi-axis in a compact connected set, say ζ(τ). It follows that the
trajectories xτ

q (Qu(τ), t) ∈ Eτ for any t < 0 and that limt→−∞xτ
q (Qu(τ), t) =

O. So they correspond to regular solutions u(d(τ), r), that are positive and
decreasing for r ≤ exp(τ) and they become null with nonzero slope at r =
exp(τ), so they are crossing solutions.

It follows that if F1, F2 and F3 hold there is D > A, such that (D,∞) ∈
I, but D 6∈ I. Then we show that u(D, r) is a monotone decreasing G.S. using
a continuity argument on (5), and Theorem 20 and Corollary 5 follow.

To prove the existence of S.G.S. we have to consider system (7) and to
construct a stable set W̃ s(τ) through Proposition 2. We choose τ < −M , so
that W̃u(τ) crosses the y negative semi-axis, in view of Corollary 5. We denote
by B(τ) the bounded set enclosed by W̃u(τ) and the y negative semi-axis. We
choose one of the uncountably many points in W̃ s(τ) ∩ B(τ), say Qs, and we
follow backwards in t the trajectories xτ

q (Qs, t) where Qs ∈ W̃ s(τ). We show
that xτ

q (Qs, t) is forced to stay in B(t + τ) for any t < 0 and we conclude that
xτ

q (Qs, t) is uniformly positive as t → −∞. Then, from Proposition 3 we deduce
that the corresponding solutions v(r) of (3) are monotone decreasing S.G.S.

7. Appendix: reduction of div(g(|x|)∇u|∇u|p−2)+f(u, |x|) = 0 and nat-
ural dimension.

In this subsection we want to show how we can pass from the analysis of radial
solutions of an equation of the following class

(24) div(g(|x|)∇u|∇u|p−2) + f̄(u, |x|) = 0

to the analysis of solutions of an equation of the form (3). Here again x ∈ Rn

and g(|x|) ≥ 0 for |x| ≥ 0.
We repeat the argument developed in Appendix B of [17]. In fact we

exploit here an idea already used in [33] and [20], and we follow quite closely
the latter paper, in which the concept of natural dimension is introduced. First
of all observe that a radial solutions u(r) of (24) satisfy the following ODE:

(25) (rn−1g(r)u′|u′|p−2)′ + rn−1f̄(u, r) = 0.

Set a(r) = rn−1g(r) and assume that one of the Hypotheses below is satisfied

H1 a−1/(p−1) ∈ L1[1,∞]\ L1[0, 1]
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H2 a−1/(p−1) ∈ L1[0, 1]\L1[1,∞)

Then we make the following change of variables borrowed from [20]. Let N >
p be a constant and assume that Hyp. H1 is satisfied; we define s(r) =(∫∞

r
a(τ)−1/(p−1)dτ

)−p+1
N−p . Obviously s : R+

0 → R+
0 , s(0) = 0, s(∞) = ∞ and

s(r) is a diffeomorphism of R+
0 into itself with inverse r = r(s) for s ≥ 0. If u(r)

is a solution of (25), v(s) = u(r(s)) is a solution of the following transformed
equation

(26) (sN−1vs|vs|p−2)s + sN−1h(s)f(v, s) = 0,

where f(v, s) = f̄(v, r(s)) and

h(s) =
(

N − p

p− 1

)p (
g(r(s))1/pr(s)n−1

sN−1

)p/(p−1)

.

If we replace Hyp. H1 by Hyp. H2 we can define s(r) as follows s(r) =(∫ r

0
a(τ)−1/(p−1)dτ

) p−1
N−p and obtain again (26) from (25), with the same expres-

sion for h. We denote by f(v, s) = h(s)f̄(v, r(s)) and obtain (3) from (26), with
r replaced by s.

Remark 14. Note that, if for any fixed v > 0, f̄(v, r) grows like either a
positive or a negative power in r for r small, we can play with the parameter N
in order to have that, for any fixed u > 0, f(u, 0) is positive and bounded. E.g.,
if g(r) ≡ 1 and f̄(u, r) = rlu|u|q−1, we can set N = p(n+l)−n

p+l−1 , so that, switching
from r to s as independent variable (26) takes the form

(27) [sN−1vs|vs|p−2]s + CsN−1v|v|q−1 = 0 ,

where C =
∣∣N−p

p−1

∣∣p
∣∣∣ p−1
N−1

∣∣∣
n−1
N−p p

> 0. So we can directly study the spatial in-
dependent equation (27), recalling that the natural dimension is N and this
changes the values of the critical exponents and the asymptotic behaviors of
positive solutions as r → 0 and as r →∞.

Observe that N does not need to be an integer and that in literature such
an assumption is not really used to prove the results. Thus all the theorems
obtained for (3) can be trivially extended to an equation of the form (25), where
g satisfies either H1 or H2.
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