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1 Introduction

In this paper we study the properties of positive radial solutions of the following
equation:

∆pu(x) + K(|x|)u(x)|u(x)|σ−2 = 0 (1.1)

where x ∈ R
n, n > p > 1 and σ = np

n−p , where σ is the so called Sobolev critical
exponent, and K(|x|) is a function which is assumed to be C

2. Since we only deal
with radial solutions we will in fact consider the following equation:

(u′(r)|u′(r)|p−2)′ +
n − 1

r
u′(r)|u′(r)|p−2 + K(r)u(r)|u(r)|σ−2 = 0 (1.2)

where r = |x|.
We will call “regular” the solutions u(r) of (1.2) satisfying the following initial

condition
u(0) = u0 > 0 u′(0) = 0

and “singular” the positive solutions v(r) of (1.2) such that

lim
r→0

v(r) = +∞.

We are mainly interested in the existence of ground states (G.S.), singular ground
states (S.G.S.), and crossing solutions. A G. S. is a solution u(r) of (1.2) defined
and positive for r ≥ 0 and such that limr→∞u(r) = 0. A S.G.S. v(r) is a solution
defined and positive for r > 0 which satisfies

lim
r→0

v(r) = +∞ and lim
r→∞v(r) = 0.

A crossing solution is a regular solution u(r) of (1.2) such that there exists R > 0
with the property that u(r) > 0 for any 0 ≤ r < R and u(R) = 0, so it can also
be regarded as a solution of the Dirichlet problem in the ball of radius R. This
equation has been studied by many authors, especially when p = 2. Let us observe
that, even though only positive solutions are of interest, it will be convenient to
consider solutions which a priori may have negative values; hence we write u|u|σ−2

instead of uσ−1 in (1.1).
We will use the following terminology: we write v(r) ∼ r−d as r → c to mean that

both lim supr→c v(r)rd and lim infr→c v(r)rd are positive and finite. Throughout all
the paper c is a generic positive constant whose value may change from line to line.
We recall that, if certain generic hypotheses are satisfied, positive solutions u(r)
can only have two asymptotic behaviors as r → 0: regular that is u(0) = u0 > 0,
or singular that is u(r) ∼ r−

n−p
p . Analogously only two asymptotic behaviors are

possible for positive solutions as r → ∞: fast decay that is u(r) ∼ r−
n−p
p−1 and slow

decay that is u(r) ∼ r−
n−p

p . This result is already known, see [12], but we give a
new proof in Proposition 2.2. If K(r) oscillates indefinitely the estimates become
less precise, see Proposition 2.5, but we will use the same terminology.
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Kawano, Ni and Yotsutani in [12] have given a structure result for positive radial
solutions, depending on the sign of the following function:

G(r) =
∫ r

0

K ′(s)snds.

The results have been refined in [6] where one finds a complete classification of all
positive solutions, depending also on the sign of

J(r) =
∫ ∞

r

K ′(s)snds.

However an additional technical assumption on limr→0K
′(r) and limr→∞K ′(r) is

needed. In particular it is proved that if G(r) > 0 for any r > 0, then each regular
solution u(r) is a crossing solution, while if G(r) < 0 then for any r > 0 each
u(r) is a G.S. with fast decay. Moreover, if 2n

n+2 ≤ p ≤ 2, we have that if K(r) is
monotone increasing, there exists at least one S.G.S. with slow decay and infinitely
many S.G.S. with fast decay, while if K(r) is monotone decreasing there exists at
least one S.G.S. with slow decay. In both cases, there are no other solutions which
are positive for r small. Moreover, Kawano, Yanagida and Yotsutani have proved in
[13] that, if there exists R > 0 such that G(r) > 0 for any 0 < r < R and K ′(r) ≤ 0,
for r > R, then positive regular solutions must have one of the following structures:

• they are all G.S. with slow decay (this holds if G(r) ≤ 0 for any r > 0)

• they are all crossing solutions (this holds if G(r) ≥ 0 for any r > 0)

• there exist infinitely many G.S. with slow decay, infinitely many crossing so-
lutions and exactly one G.S. with fast decay separating the other two families
of solutions.

One of the main purposes of this paper is to extend to the p-Laplacean the
results proved for the Laplacean in [10], [1], [2], [3]. In particular we assume that
K(r) is a perturbation of a positive constant; namely, if ε > 0 is a small constant,
we assume

1 K(r) = 1 + εk(r), where k(r) is a bounded function.

2 K(r) = k(rε), where k(r) is a bounded function, positive in some interval.

Note that if we are dealing with a function of the second type, we are allowing K(r)
to have a wide range of variation; in fact it can take negative values (but must vary
slowly).

We will use techniques taken from dynamical systems theory, concerning in
particular invariant manifolds and Melnikov functions. The first step in our analysis
is to introduce the following Fowler inversion, taken from [6]:

x1 = u(r)rα x2 = u′(r)|u′(r)|p−2rβ r = et Φ(t) = K(et)
where α = n−p

p and β = n(p−1)
p

(1.3)
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which transforms equation (1.2) in the following dynamical system:(
ẋ1

ẋ2

)
=

(
α 0
0 −α

)(
x1

x2

)
+

(
x2|x2|

2−p
p−1

−Φ(t)x1|x1|σ−2

)
. (1.4)

Here and below we write “ · ” for d
dt and “ ′ ” for d

dr . Note that the right hand
side of equation (1.2) is C

1 if and only if 2n
2+n ≤ p ≤ 2. In fact if this hypothesis is

not satisfied the system is only Hoelder continuous on the coordinate axes, so that
local uniqueness of the solutions is not a priori ensured; thus this hypothesis will
be in force throughout the whole paper.

We will also maintain the following hypothesis without any further comment:

Hypothesis H
There exists M > 0 such that

lim sup
r→0

|K ′(r)r| ≤ M lim sup
r→∞

|K ′(r)r| ≤ M.

Note that if K(r) is Lipschitz continuous, strictly positive and bounded, and
monotone as r → ∞ the preceding hypothesis is always satisfied. Hypothesis H gives
a sufficient condition for the uniform continuity of Φ(t), which is the condition which
is really needed. In any case note that, if we are assuming that K(r) is continuous
for r = 0, we can drop the assumption in Hypothesis H concerning the behaviour
as r → 0. In fact, in that case K(r) is uniformly continuous and this implies the
uniform continuity of Φ(t) for t → −∞.

We need to assume that Φ(t) is uniformly continuous, in order to apply invari-
ant manifold theory for non-autonomous systems. In fact we will show that the
unstable manifold, departing from the origin of (1.4), is made up of all and only
the trajectories corresponding to regular solutions u(r) of (1.2), while the stable
manifold is made up of trajectories corresponding to solutions u(r) with fast decay.
Using Melnikov theory, we will prove that, for each non degenerate positive criti-
cal point of a singularly perturbed potential Φ(t), we have a G.S. with fast decay,
corresponding to a crossing of stable and unstable manifolds, Theorem 3.2.

Moreover, assuming that Φ(t) is periodic, we will find that system (1.2) exhibits
chaotic behavior. In particular we will prove the existence of a Cantor like set of
solutions (a dense subset of which are periodic) corresponding to a set of S.G.S.
with slow decay, Theorem 3.6 and Theorem 3.8. An analogous statement holds for
regularly perturbed potentials, but the sufficient condition is a bit more complicated.
The proof of this claim follows closely the analogous reasoning developed in [10] for
the Laplacean and exploits the framework developed in [1] and [2]. In particular it
is worthwhile to note that the theorems regarding Melnikov theory hold, even if we
are dealing with a singularly perturbed potential K(r) which changes sign.

We also give results which are of a new type. We need to introduce the following
notation: we say that f(r) is oscillatory as r → c, if it has infinitely many local
maxima and minima in a neighborhood of r = c. Assume that K(r) is bounded
and that it is a perturbation of a constant as already specified. We will consider
the following hypotheses:
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Hypotheses

M1 there exists ρ > 0 such that K(ρ) > 0 is a non degenerate maximum and K(r)
is strictly positive and monotone increasing for 0 ≤ r ≤ ρ.

M2 there exists R > 0 such that K(R) > 0 is a non degenerate maximum and
K(r) > 0 is strictly positive and monotone decreasing for r ≥ R.

O1 K(r) is oscillatory as r → 0 and admits infinitely many positive non degenerate
maxima.

O2 K(r) is oscillatory as r → ∞ and admits infinitely many positive non degenerate
maxima.

We will give a structure result for positive solutions. It is convenient to distin-
guish the following situations for equation (1.2):

A • There exist uncountably many monotone decreasing G.S. with slow decay.

• There exist uncountably many crossing solutions.

• There exist uncountably many solutions u(r) of the Dirichlet problem in
exterior domains; that is, there exists R > 0 such that u(R) = 0, u(r) > 0
for any r > R and u(r) = O(r−

n−p
p−1 ), as r → ∞, that is u(r) has fast decay.

• There exists a non empty set of monotone decreasing G.S. with fast decay
disconnecting the other two sets in a sense that will be made precise later
(see the proof of Theorem 4.1).

B • There exist uncountably many crossing solutions.

• There exist uncountably many monotone decreasing S.G.S. with fast decay.

• There exists a non empty set of monotone decreasing G.S. with fast decay
disconnecting the last two sets.

C • All the existence results at the points A and B are valid.

• There exist infinitely many monotone decreasing S.G.S. with slow decay;
no other solutions u(r), well defined and positive for all r > 0, can exist.

In Theorem 4.1 and in the Corollaries 4.2 and 4.3 we will prove that, if either
hypothesis M1 or O1 is satisfied, then positive solutions have a structure of type B.
If either hypothesis M2 or O2 is satisfied, then positive solutions have a structure of
type A. Moreover if M1 or O1 holds and M2 or O2 holds then positive solutions have
a structure of type C. Note that the results do not apply to functions K(r) = k(rε)
where K(r) is periodic, because in such a case Φ is not uniformly continuous.
However they apply to functions Φ which are uniformly continuous and oscillate
indefinitely, even if they have no recurrence properties. We also have a result
concerning solutions of the Dirichlet problem in the interior and in the exterior of
a ball, see Theorem 4.4.

We can prove an analogous statement for regularly perturbed potentials K(r),
i. e. for the so called Kazdan-Warner problem, if the sufficient condition for the
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existence of G.S. with fast decay is satisfied. Since the proofs are rather similar to
the ones given for the singular perturbed problem we will just sketch them.

The paper is organized as follows. In section 2 we introduce the Fowler transform
for the Laplacean and recall some known results concerning the autonomous case.
In section 3 we extend to the p-Laplacean the results obtained in [10], [1], [2], [3]
for the Laplacean in the singularly perturbed case. In section 4 we give a geometric
construction which enables us to prove Theorems 4.1 and 4.4, and Corollaries 4.2
and 4.3 which contain results which are new even in the case p = 2. In section 5 we
consider the regularly perturbed case obtaining results analogous to those explained
in sections 3 and 4.

2 Preliminaries

We begin by recalling some known results about the asymptotic behavior of the
solutions and about the autonomous case. Recall that given a system of the form

ẋ = f(x, t)

and a solution x(t), the α-limit set of x(t) is the set

A =
{
P | ∃tn → −∞ such that lim

n→∞x(tn) = P
}
,

while the ω-limit set is the set

W =
{
P | ∃tn → +∞ such that lim

n→∞x(tn) = P
}
.

One can show that, if x(t) is bounded on R, then these sets are compact. Moreover,
if the system is autonomous, these sets are invariant for the flow generated by the
system. If the system is non-autonomous they are no longer invariant; however we
will see that they are still useful for our present purposes.

Proposition 2.1 Consider system (1.4) and assume that Φ(t) is bounded. Then a
solution u(r) of (1.2) is regular as r → 0 if and only if the corresponding trajectory
of system (1.4) has the origin as α-limit point.
Moreover u(r) ∼ r−

n−p
p−1 as r → ∞ if and only if the corresponding trajectory of

system (1.4) has the origin as ω-limit point.

Proof. In both the cases one implication is obvious, the other is a consequence of
Lemma 2.10 and Observation 3.17 in [6]. �

In [6] the following statement is also proved.

Proposition 2.2 Assume that K(r) is strictly positive and bounded; moreover as-
sume that K(r) is monotone for r ∈ (0, R), for some R > 0; then we can have one
of the following asymptotic behaviors as r → 0:

0 < u(0) < ∞ (regular) or u(r) ∼ r−
n−p

p (singular).
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Analogously assume that K(r) is monotone in r ∈ (R,∞) for some R > 0. Then
positive solutions can only have the following asymptotic behaviors as r → ∞:

u(r) ∼ r−
n−p
p−1 (fast decay) or u(r) ∼ r−

n−p
p (slow decay).

In the former case, both as r → 0 and as r → ∞, the corresponding trajectories
converge to the origin, respectively as t → −∞ and as t → ∞, while in the latter
the corresponding trajectories are bounded and bounded away from the x1 and x2

axes.
Now we recall some known results about the autonomous equation and give their

interpretation in terms of the dynamical system (1.4).

Proposition 2.3 Consider system (1.4) when K ≡ const > 0.

• All the regular solutions u(r) of equation (1.2) are monotone decreasing G.S.
with fast decay, and they correspond to a unique homoclinic trajectory of (1.4),
which is contained in the closed 4th quadrant.
Any trajectory of (1.4) which is not homoclinic to (0, 0) and which is not an
equilibrium point, is defined by a periodic solution of (1.4) with positive period.

• There exist infinitely many monotone decreasing S.G.S. with slow decay v(r)
of equation (1.2), corresponding to periodic trajectories, contained in the open
4th quadrant.

• There exist infinitely many oscillating solutions v(r) of equation (1.2), which
have infinitely many positive maxima and negative minima both in a neigh-
borhood of r = 0 and of r = ∞. They correspond to periodic trajectories of
(1.4) which cross the x1 and x2 axes.

Now we give some notations that will be used throughout the paper; the quantity
ẋ1 is defined by system (1.4):

A+ := {x ∈ R
2 | ẋ1 > 0} and A− := {x ∈ R

2 | ẋ1 < 0}
L := {x ∈ R

2 | ẋ1 = 0}
Note that we know the exact expression of the homoclinic trajectories U(t), see for
example [7].

U(t) =


 K−α

p

(e−t + De
t

p−1 )−α
,

−(2αe−t)p−1∣∣∣K(e−t + De
t

p−1 )
∣∣∣β


 (2.1)

where D = (p− 1)(n− p)n
1

p−1 is a positive constant. Observe that the autonomous
system is invariant for translations in t. Therefore U(τ, t) = U(t + τ) is still a
homoclinic trajectory. To have consistent notation, we set U(0, t) = U(t); note that
U(0, 0) ∈ L. Note that the homoclinic trajectories U(τ, ·) all have the same graph
and that U(τ, t) = U(0, t + τ).
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Lemma 2.4 Consider equation (1.2) and the corresponding system (1.4), where
K(r) is strictly positive and bounded. Then, if x(t) is unbounded, it rotates clockwise
crossing infinitely many times the x1 and x2 axes.

Proof. By assumption there exists N > 0 such that 1
N < K(r) < N for any r.

Consider a trajectory x(t) which becomes unbounded as t → c where c can also be
∞. We will assume that x(t) is well defined for t < c: the proof in the case of a
trajectory that becomes unbounded going backwards in t is analogous.

Fix t0 and the corresponding point P = x(t0) in R
2. Assume that P ∈ A+.

Consider at first system (1.4), where Φ(t) ≡ N . Recall that the solutions of (1.4)
which are not homoclinic to (0, 0) and which do not coincide with equilibria are
periodic, hence the corresponding trajectories define closed curves in R

2. We choose
a periodic trajectory x̂(t) of (1.4) which crosses the coordinate axes and such that P
lies in the exterior of the disc D̂ enclosed by x̂(·). Such a choice is always possible,
since we can choose |P | as large as we wish, since we are assuming that x(t) is
unbounded. In a similar way, consider system (1.4), where Φ(t) ≡ 1

N . We choose
a periodic solution x̆(t) of (1.4) which crosses the coordinate axes and such that P
lies in the open disc D̆ enclosed by x̆(·). We can choose D̆ and D̂ in such a way
that P ∈ D̆ ⊃ D̂. Let ∂D̆ and ∂D̂ denote the boundary of D̆ respectively D̂. Let
us denote with R+ := D̆ − D̂ and with ∂R+ its boundary.

We return to the non-autonomous system (1.4). Note that the flow on ∂R+∩A+

is always going towards the interior of R+ and that P ∈ R+∩A+. Consider now the
unbounded trajectory x(t). Note that it lies in R+ ∩ A+ for t ≥ t0, until it crosses
the isocline L in a point P1. Thus there exists t1 > t0 such that x(t1) = P1 ∈ c and
x(t) enters A− for t ≥ t1.

Once again we consider the autonomous system where Φ(t) ≡ 1
N . We choose a

periodic solution x̆1(t) of (1.4) which crosses the coordinate axes and such that P1

lies in the exterior of the open disc D̆1 enclosed by x̆(·). In a similar way, we choose
a periodic solution x̂(t) of (1.4) where Φ(t) ≡ N which crosses the coordinate axes,
and such that P1 lies in the open disc D̂1 enclosed by x̂(·). We choose D̆1 and D̂1

in such a way that D̆1 ⊂ D̂1 and define R−
1 := D̆1 − D̂1. Now we return again

to the non-autonomous system (1.4). Observe that x(t) ∈ R−
1 , for all t > t1 such

that x(t) ∈ A−. Recalling that x(t) is unbounded we conclude that there exists
t2 > t1 such that x(t2) ∈ L. Therefore x(t) rotates clockwise crossing the x2 and
x1 negative semi-axes, then it enters A+ for t > t2.

Iterating the reasoning we obtain that x(t) must cross the coordinate axes in-
finitely many times. �

Now, putting together Proposition 2.1 and Lemma 2.4, we can give a result con-
cerning the asymptotic behaviour of positive solutions, removing the monotonicity
hypotheses. However the estimates are not as sharp as in Proposition 2.2.

Proposition 2.5 Assume that K(r) is strictly positive and bounded, then a positive
solution can only have one of the following asymptotic behaviors as r → 0

0 < u(0) < ∞ (regular behavior) or

c1 ≤ u(r) ≤ c2r
−n−p

p (singular behavior).
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Analogously a positive solution can only have one of the following asymptotic be-
haviors as r → ∞:

u(r) ∼ r−
n−p
p−1 (fast decay) or

c1r
−n−p

p−1 ≤ u(r) ≤ c2r
−n−p

p (slow decay).

Here c1, c2 are positive constants.

Remark 2.6 We will use the terminology “singular solution” and “solution with
slow decay” with different meaning according to the fact that K(r) is monotone
or oscillates indefinitely for r small and r large, see Propositions 2.2 and 2.5. The
only exception is Theorem 3.6 in which we manage to prove the existence of S.G.S.
with slow decay satisfying the estimates given in Proposition 2.2, even if K(r) is
oscillatory.

3 Singularly perturbed systems and Melnikov
functions

Now we review some facts about invariant manifold theory for non-autonomous
systems. We refer to [10] and [9] for a discussion of this topic in a general framework.
We will combine elements of this theory with the use of Melnikov functions. Since
we will follow rather closely the reasoning developed in [10] and [1], we will just
suggest the main ideas. Moreover we will consider only the singular perturbation
problem, since the abstract framework of the regular one is very similar; see [10]
and [1] for details.

Consider a system of the form

ẋ = f(x, τ + εt) (3.1)

where x =
(

x1

x2

)
∈ R

2. Assume that f(x, τ + εt) = Ax + F (x, τ + εt) where A is

a 2 × 2 real matrix with eigenvalues λ− < 0 < λ+ and F is of class C
1 on R

2 × R

with F (0, τ) = Fx(0, τ) = 0. Furthermore assume that both the functions F (x, ·)
and Fx(x, ·) are uniformly continuous in Q × R for all compact subsets Q ⊂ R

2.
Moreover assume that the frozen equation

ẋ = f(x, τ)

admits a homoclinic solution U(τ, t) for any τ .
It is now useful to introduce the extended system

ẋ = f(x, τ), τ̇ = ε, ε̇ = 0. (3.2)

Denote by E a neighborhood of ε = 0 in R. We denote by V ± ⊂ R
2 respectively the

eigenspaces corresponding to the positive and the negative eigenvalues of A. Let



10 M. Franca, R. Johnson

V ±
0 be neighborhoods of the origin in V ±, then if E and V ±

0 are sufficiently small,
the following result holds, see [9] and [10].

There are C
1 maps ψ± : R × E × V ∓

0 → V ±
0 such that the submanifolds

N± = {(τ, ε, ρ + ψ±(τ, ε, ρ)) : τ ∈ R, ε ∈ E, ρ ∈ V ∓
0 } ⊂ R × E × R

2

are locally invariant under the flow defined by (3.2). Note that N+ and N− are
respectively the local center-stable and center-unstable manifolds of (3.2). Let P =
Pε,τ be the plane in the four dimensional (τ, ε, x)-space obtained by fixing the values
of τ and ε. We can now define the local stable and unstable leaves Wu,s

ε,loc(τ) =
Pε,τ

⋂
N±.

These leaves are of class C
1 and vary continuously with respect to τ and ε, in

the C
1 topology. Moreover, by transversality, they are one-dimensional and tangent

in the origin to N±. In the case we are considering this means that, for ε small
and any τ , the manifolds Wu,s

ε,loc(τ), in the origin, are tangent respectively to the
negative x2 semiaxis and to the positive x1 semiaxis. Moreover it is important to
remark that the contribution of the non-linear and non-autonomous terms deflects
these manifolds towards the interior of the 4th quadrant, whenever K(τ) is positive.
We will usually commit an abuse of notation, calling stable and unstable manifolds
these connected components Wu

ε (τ) and W s
ε (τ). Since we are mainly interested

in positive solutions u(r) of (1.2), we will consider only trajectories x(t) such that
x1(t) > 0. Thus we will restrict our attention to R

2
+, that is the semiplane of R

2

where x1 ≥ 0.
Now we use the semiflow defined by (3.2) to give a characterization of the global

stable and unstable leaves Wu,s
ε (τ) ⊂ R

2. Namely, if we call z(t, z0; τ, ε) the solution
of (3.1) with z(0, z0; τ, ε) = z0, we have

Wu
ε (τ) =

⋃
{z(t, z0; τ − εt, ε) : z0 ∈ Wu

ε,loc(τ − εt)}

where we have left unsaid that t is in the domain of existence of z. An analogous
characterization holds for W s

ε (τ), see [10], pp. 1063-1065, for more details. Note
that if ε = 0 the set {U(τ, t) | t ∈ R} defined by the homoclinic orbit is a subset of
both Wu

0 (τ) and W s
0 (τ); to be more precise it is the connected component belonging

to R
2
+.

Now let τ0 ∈ R and let L ⊂ R
2 be a line segment which contains U(τ0, 0) in

its interior and which is not parallel to f(U(τ0, 0), τ0). Such a segment is called
a transversal. Note that, perhaps reparametrizing the homoclinic orbits U(τ, t)
we can assume that U(τ, 0) ∈ L, for τ near τ0. In our problem we will use as a
transversal the curvilinear segment defined by the isocline ẋ1 = 0.

Exploiting the fact that W s,u
ε (τ) is C

1 close to W s,u
0 (τ) for ε small, we can

determine “initial” branches W̃ s,u
ε (τ) of the stable and unstable leaves which depart

from the origin and cross transversally the isocline. We will call these first points
of intersection respectively ξ−(τ, ε) and ξ+(τ, ε). By transversality we know that
ξ±(τ, ε) are C

1 functions of (τ, ε); we will prove in Lemma 3.4 that they actually
have the same regularity as K(r), so we can assume that they are C

2.
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We now define and study a Melnikov function for equation (3.1). This function
allows us to measure the distance between ξ+(τ, ε) and ξ−(τ, ε). Thus it will give
us a condition for the crossing of the stable and unstable leaves W̃u,s

ε (τ), which in
fact means a sufficient condition for the existence of a homoclinic solution for the
system. Such a trajectory corresponds to a G.S. with fast decay of equation (1.2),
see Proposition 2.1.

Define now

M(τ) =
d

dε

[
ξ−(τ, ε) − ξ+(τ, ε)

] �ε=0∧f(U(τ, 0), τ)

where “∧” denotes the standard wedge product in R
2. Then define

h(τ, ε) =

{
M(τ) for ε = 0
ξ−(τ,ε)−ξ+(τ,ε)

ε ∧ f(U(τ, 0), τ) for ε �= 0.

We point out that the vector ξ−(τ, ε) − ξ+(τ, ε) belongs to the transversal segment
L, so we have

h(τ, ε) = 0 ⇐⇒ ξ−(τ, ε) − ξ+(τ, ε) = 0 for ε �= 0.

Lemma 3.1 Suppose M(τ0) = 0 and M ′(τ0) �= 0, then there exists a C
1 function

ε → τ(ε) defined on a neighborhood of ε = 0, such that τ(0) = τ0, for which we have
ξ−(τ(ε), ε) = ξ+(τ(ε), ε). Therefore we have a homoclinic solution of the system
(1.4).

Proof. To prove the proposition it is enough to apply the implicit function theorem
to h(τ, ε) for (τ, ε) near (τ0, 0). �

Now we want to compute explicitly the functions M(τ) and M ′(τ) for our sys-
tem, in order to give a simple sufficient condition for the existence of the homoclinic
trajectory. The first step is to recall Theorem 3.2 of [10], page 1054, which gives
the following formula for the Melnikov function:

M(τ) =
∫ +∞

−∞
e−

∫ t
0 trfx(U(τ,σ),τ)dσtfτ (U(τ, t), τ) ∧ f(U(τ, t), τ)dt. (3.3)

Now we consider our singularly perturbed problem K(r) = k(rε) and we introduce
the dynamical system exploiting the Fowler transform:(

ẋ1

ẋ2

)
=

(
α 0
0 −α

) (
x1

x2

)
+

(
x2|x2|

2−p
p−1

−φ(τ + εt)x1|x1|σ−2

)
. (3.4)

Here φ(εt) = k(eεt) = Φ(t) = K(et) and τ is a translation parameter. Now, if we
apply it to our system, recalling that φ(τ) = K(eτ ), we can rewrite (3.3) in the
following way:

M(τ) =
∫ +∞

−∞
t

(
0

−φ′(τ)Xφ(τ)|Xφ(τ)|σ−2

)
∧

(
Ẋφ(τ)

Ẏφ(τ)

)
dt
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where we have denoted

U(τ, t) = (Xφ(τ)(t), Yφ(τ)(t)) and
dU(τ, t)

dt
= (Ẋφ(τ)(t), Ẏφ(τ)(t)),

so M(τ) is in fact a computable function. We observe now that

Xφ(τ)(t) = φ(τ)−
α
p X1(t) =

(
e−t + De

t
p−1

)−α

φ(τ)−
α
p ,

where X1 is the homoclinic solution of the frozen equation (3.4) with φ(t) ≡ 1.
Therefore

M(τ) = −φ′(τ)φ(τ)−
n
p

∫ +∞

−∞
tX1|X1|σ−2Ẋ1dt.

Integrating by parts we obtain

M(τ) = −φ′(τ)φ(τ)−
n
p

∫ +∞

−∞

|X1(t)|σ
σ

dt = −Cφ′(τ)φ(τ)−
n
p (3.5)

where C > 0 is a positive constant deriving from the value of the integral, so it can
be explicitly computed. Differentiating with respect to τ , we get

M ′(τ) =
(
−φ′′(τ)φ(τ)−

n
p − n

p
φ′(τ)2φ(τ)−

n+p
p

)
C. (3.6)

Thus, applying Lemma 3.1 to the system we are considering, we obtain the theorem
that follows. As in [10], we use the uniform continuity of φ to prove that the leaves
Wu,s

ε (τ) have diameter uniformly bounded above zero; see [10], p. 1063. The
Hypothesis H - which is in force throughout the paper - implies that φ is uniformly
continuous.

Theorem 3.2 Suppose that there exists τ̄ such that φ′(τ̄) = 0 and φ′′(τ̄) �= 0; then
there exists a C

1 function ε → τ(ε), defined for |ε| small, such that τ(0) = τ̄ and the
system (3.4) admits a homoclinic trajectory for τ = τ(ε), corresponding to a G.S.
with fast decay of (1.2). Moreover there exists at least one such homoclinic solution
for any positive critical point of the function φ.

Remark 3.3 We do not need φ(t), and hence K(r), to be always positive. We just
need that it admit a positive critical point.

This is a rather amazing feature, already observed by Battelli and Johnson in [2].
It may be explained observing that trajectories belonging to W s

ε (τ) converge to the
origin exponentially fast, and the same holds for trajectories belonging to Wu

ε (τ).
This fact can easily be observed using invariant manifold theory. Now, recalling that
the influence of the potential is due to the term xσ(t)φ(τ + εt), we conclude that
this contribution becomes exponentially small as t → ±∞ for trajectories belonging
to W s,u

ε (τ). So, the principal factor of this term is influenced just by the dynamics
in compact intervals of t. Thus, assuming that φ(t) varies slowly, we can find some
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solutions which are influenced just from the intervals in which φ(t) is positive. For
a more detailed analysis of the phenomenon see [3].

Now we want to prove that Wu
ε (τ(ε)) and W s

ε (τ(ε)) intersect transversally. In
fact, if this is the case, there exists a transversal homoclinic point; therefore, if we
assume that φ(t) is periodic, we can deduce the existence of chaotic behavior, using
the classical Smale horseshoe construction. Furthermore, we will prove that, from
this fact, we can deduce the existence of a Cantor like set of S.G.S. with slow decay.

Here we follow rather closely the analogous analysis derived for the correspond-
ing problem with the Laplacean in [1], [2], [3]. Now we need the following lemma:

Lemma 3.4 Assume that the function φ(t) is C
r and strictly positive. Then the

function (τ, ε) → ξ±(τ, ε) is C
r as well.

Proof. For this proof we have to exploit the analysis derived in [3], modifying
it slightly for our purposes. In that paper one considers a non-autonomous two-
dimensional dynamical system that is C

r apart from the x2 axis in which it is just
C

1. Moreover, it is assumed that the frozen system always admits a homoclinic
trajectory U(t, τ) belonging to a closed subsector of R

2
+. Furthermore, some esti-

mates on the behavior of the functions of the right hand side of the system and
their derivatives are needed. Then using the tool of exponential dichotomy and a
technique involving the introduction of suitable Banach spaces, the authors prove
the higher regularity of ξ±(τ, ε).

The proof is developed in an abstract framework, so we will simply apply it to
our problem. We just have to point out some facts: first of all we note that we are
working only in the 4th quadrant and that the system is only C

1 in both the axes.
Furthermore, to obtain ξ±(τ, ε), we are intersecting the stable and unstable leaves
W̃ s,u

ε (τ) with a curvilinear segment L, but we maintain the essential assumption of
the transversality, so the proof still works.

The main difference is the following: in [3] the authors require that the homo-
clinic orbit of the frozen system is contained in a sector R, so that the trajectory
cannot be tangent to the x2 axis, where we have less regularity. Such an assump-
tion does not hold in our case. However what is really needed in the proof is that
the trajectories departing from points of the stable and unstable leaves W s,u

ε (τ) do
not cross these “non regular” sets. But this holds also in our case, therefore we
can still apply the theorem. Let us prove this. Note that the leaf W s

ε,loc(τ) is C
1

close to W s
0,loc(τ), when we are close to the origin. Assume for contradiction that

there exists a trajectory x(τ, ε; t) = (x1(τ, ε; t), x2(τ, ε; t)) departing from a point in
W s

ε,loc(τ), and such that limt→∞x(τ, ε; t) = (0, 0) and x1(τ, ε; 0) = 0, x2(τ, ε; 0) < 0.
Recalling that on the axes the flow rotates clockwise, we see that x(τ, ε; t) rotates
clockwise through all the quadrants. Now we can argue that there exists τ̄ > τ such
that W s

ε (τ̄) crosses the negative x1 semiaxis and then rotates towards the origin.
But then it cannot be C

1 close to W s
0 (τ̄). Thus we can drop the hypothesis on the

angular distance of the homoclinic orbits from the axes, exploiting the fact that the
flow always rotates clockwise on the coordinate axes. �

Now we want to prove that the crossing between the leaves W s
ε (τ(ε)) and

Wu
ε (τ(ε)) is transversal. Here we will follow the main ideas of [1], adapting them to
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our problem. For the convenience of the reader we will repeat briefly the main steps
of the proofs carried out in that article. The basic idea is to introduce the vectors
tangent to W s

ε (τ) and Wu
ε (τ) near ξ±(τ, ε). Then we introduce a new version of

the Melnikov function, in order to measure the angular distance between these two
vectors. We will find out that this distance is different from 0 for ε �= 0, so we can
conclude that the manifolds have a transversal crossing.

First of all we introduce some notations: let us call y+(t; τ, ε) the trajectory
at time t of system (3.4), such that y+(0; τ, ε) = ξ+(τ, ε), and analogously define
y−(t; τ, ε) in order to have y−(0; τ, ε) = ξ−(τ, ε). First of all observe that

y±(a; τ − εa, ε) ∈ Wu,s
ε (τ)

and that
d

da
y±(a; τ − εa, ε)�a=0= f(ξ±(τ, ε), τ) − ε

∂y±

∂τ
(0, τ, ε)

does not vanish for ε small. Therefore d
day±(a; τ−εa, ε)�a=0 are respectively tangent

vectors to Wu,s
ε (τ) in ξ±(τ, ε).

Now we introduce a Melnikov-like function, in order to prove that these vectors
are not parallel. As in [1], we define

M̃(ε, a) = [y−(a; τ(ε) − εa, ε) − y+(a; τ(ε) − εa, ε)] ∧ f(U(τ0, 0), τ0).

Then differentiating, we get:

∂M̃

∂a
(ε, a) = εT (ε) = ε

[
∂y−

∂τ
(0, τ(ε), ε) − ∂y+

∂τ
(0, τ(ε), ε)

]
∧ f(U(τ0, 0), τ0).

Observe that ∂M̃
∂a (0, 0) = 0; in fact, for ε = 0 we have a smooth homoclinic orbit. If

we manage to prove that for ε �= 0 we have T ′(ε) �= 0 and hence ∂M̃
∂a (ε, a) �= 0, we

are done.
It is convenient to denote the derivatives with respect to x, ε and τ with sub-

scripts. First of all, following [1], we have

T ′(0) = [y−
τε(0; τ0, 0) − y+

τε(0; τ0, 0)] ∧ f(U(τ0, t), τ0).

Then recalling Lemma 2.4 on page 150 in [1], after some manipulations, we get

T ′(0) =
∫ ∞

−∞
e−

∫ t
0 trfx(U(τ,σ),τ)dσ{fxxUτ [yε − Uττ ′(0)]+

+fxτ [yε − Uττ ′(0)] + t[fxτUτ + fττ ]} ∧ fdt

and finally, applying once again Lemma 2.4 in [1], we conclude that T ′(0) = M ′(τ0).
See ([1], pages 150-152) for details. Hence we can conclude the following.

Proposition 3.5 Consider system (3.4); assume that φ is strictly positive and
bounded and that there exists τ for which φ(τ) admits a non degenerate extremum.
Then there exists a function ε → τ(ε), of class C

1, such that the unstable and stable
leaves Wu

ε (τ(ε)) and W s
ε (τ(ε)) cross transversally.
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Now applying the Smale horseshoe construction we can conclude that, if φ(t) is
periodic of period T , the system exhibits chaotic behavior. To be more precise, let
us denote by Ψt the flow defined by system (3.4). Then there exists a Cantor-like
set ∧ which is invariant for the flow, and there are integers k ≥ 2 and N ≥ 1, such
that the discrete dynamical system, made up of ∧ and the map ΨNT

ε
, is conjugated

to the Bernoulli shift on the set of sequences of k symbols. In particular there
exists a Cantor-like set of periodic orbits. We will see that these orbits correspond
to S.G.S. with slow decay v(r) satisfying v(r) ∼ r−α both as r → 0 and as r → ∞.

The proof can be obtained repeating step by step the proof developed in Theorem
5.4 in [10]. However we can also give a new proof, based on similar reasoning.
Consider system (3.4). In section 4 we will construct a topological circle which is
denoted by H(τ), made up joining branches of the stable and unstable manifolds
Wu

ε (τ) and W s
ε (τ). If φ is strictly positive H(τ) is contained in the 4th quadrant,

otherwise it is contained in R
2
+. Consider now system (4.2); letting τ takes values

in the whole of R we obtain a topological surface H. We can arrange ∧ to be in the
bounded subset enclosed by H(τ).

Note that the trajectory departing from the periodic points cannot have the
origin as α or Ω limit set, thus cannot cross Wu

ε (τ) and W s
ε (τ); therefore they are

forced to stay in the set enclosed by H for any t, thus they correspond to positive
solutions v(r) of (1.2). Furthermore, since these trajectories x̂(t) are periodic, we
have that x̂1(t) is strictly positive and bounded, therefore the corresponding v(r) is
a S.G.S. with slow decay satisfying v(r) ∼ r−α both as r → 0 and as r → ∞.

Theorem 3.6 Assume that φ(t) is a C
2 periodic function which is strictly positive

and admits non degenerate extrema, then equation (1.2) admits a Cantor-like set of
monotone decreasing S.G.S. with slow decay v(r), satisfying v(r) = O(r−α) both as
r → 0 and as r → ∞. Thus we have proved the following theorem.

Remark 3.7 Recall that the critical points of φ(t) correspond to critical point of
K(r), since K(r) = φ(εlog(r)). But if φ(t) is periodic K(r) is not, moreover K(r)
will not even be well defined near the origin as r → 0.

Note that when p = 2, Theorem 3.6 works even when K(r) changes sign, but admits
positive non degenerate maxima, see [1], [2] and [3]. We are not able to extend this
result to the case p �= 2, since in the sign changing case the trajectories y+(τ ; t)
may cross the x1 axis for t < 0; thus the construction developed in Lemma 3.4
fails. However when φ admits positive maxima it can be easily seen that there is
a topological crossing between Wu

ε (τ) and W s
ε (τ). Thus following the construction

developed by Burns and Weiss in [4], in the periodic case we can still prove the
existence of a horseshoe factor. Therefore there exist integers k and N , and a set
∧́ such that the action of the map Ψ(NT

ε ) on ∧́ is semiconjugated to the Bernoulli
shift on the sequence of k symbols. In particular, there exists an infinite set ∧ of
distinct periodic points; thus we can repeat the proof of the previous theorem. The
only difference is that H(τ) can intersect the x1 axis, but it is in R

2
+. Therefore the

S.G.S. v(r) are not a priori monotone.
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Theorem 3.8 Assume that φ(t) is a C
1 periodic function which admits positive

maxima, then equation (1.2) admits a Cantor-like set of S.G.S. with slow decay
v(r), satisfying v(r) ∼ r−α both as r → 0 and as r → ∞.

4 Geometrical analysis of singularly perturbed
systems

In the previous sections, we have essentially extended to the p-Laplacean the results
known for the Laplacean and exposed in [10], [1], [2] and [3]. Now we will give some
results of a new type, the proofs of which are based on the same geometrical ap-
proach. We will discuss the case of functions K(r) which are singular perturbations
of a constant, but these techniques apply also to the regular perturbation problem.

It is already well known (see [13] and [6]) that, if K(r) (and hence φ(t)) is
monotone increasing, then positive solutions v(r) of (1.2) can be classified as follows:
all the regular solutions are crossing solutions, and there exists at least one S.G.S.
with slow decay and infinitely many S.G.S. with fast decay; no other solutions
v(r) positive for r > 0 can exist. On the other hand, if K(r) (and hence φ(t)) is
monotone decreasing, all the regular solutions are G.S. with slow decay and there
exists at least one S.G.S. with slow decay.

Furthermore, when K(r) is a constant then all the regular solutions are G.S.
with fast decay and there exist infinitely many S.G.S. with slow decay. This last
situation can be considered as lying at the border between the increasing and the
decreasing cases. We want to prove now that if φ(t) is oscillatory we have the
coexistence of all of these solution types. Furthermore in the previous section we
have seen that, in any case, the number of G.S. with fast decay is greater or equal
to the number of non degenerate positive critical points of K(r). Now we can state
the following result:

Theorem 4.1 Consider equation (1.2) and assume that K(r) is a C
2 function

which is strictly positive and bounded, and that it is a singular perturbation of a
constant as already specified. Moreover assume either that K(r) satisfies Hypothesis
M1 or O1 as r → 0 and either Hypothesis M2 or O2 as r → ∞. Furthermore assume
that at least one of the maxima is non degenerate; then the positive solutions have
a structure of type C (see the classification given in the introduction).

Proof. Consider system (1.4): we introduce now the extra variables τ and ε, to
obtain the following autonomous dynamical system:

ẋ1 = αx1 + x2|x2|
2−p
p−1

ẋ2 = −αx2 − φ(τ)x1|x1|σ−2

τ̇ = ε

ε̇ = 0.

(4.1)

Note that the origin is a critical point for the system which admits a center-stable
and a center-unstable manifold. Moreover note that these manifolds have dimension
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3 and they are both transversal to the planes P (τ̄ , ε̄) = {τ = τ̄ ε = ε̄}, where |ε̄| > 0
is small and τ̄ ∈ R.

It is convenient to introduce the variable x3 = τ
ε for each fixed non-zero value

of ε; then the equations (4.1) take the equivalent form

ẋ1 = αx1 + x2|x2|
2−p
p−1

ẋ2 = −αx2 − φ(x3)x1|x1|σ−2

ẋ3 = 1.

(4.2)

Note that the x3 axis is a center manifold and that there exist a two dimensional
center-unstable manifold Wu

ε and a two dimensional center-stable manifold W s
ε .

Note that the leaves Wu
ε (τ) can be obtained intersecting Wu

ε with the plane x3 = τ .
We have already proved that there is a transversal crossing between Wu

ε (τ(ε)) and
W s

ε (τ(ε)). Therefore we have a transversal crossing between the center-unstable
Wu

ε and the center-stable manifold W s
ε , of system (4.2).

Consider the curves (x1(t), x2(t)) obtained by dropping the x3-coordinate of
the trajectories belonging to Wu

ε . We want to follow them forward in t and to
prove that some of them will cross the negative x2-semiaxis (so they correspond
to crossing solutions of (1.2)), while some others are forced to stay in a bounded
subset of the open 4th quadrant (so they correspond to G.S. with slow decay of
(1.2)). These trajectories (x1(t), x2(t)) make up two subsets which are disconnected
by the homoclinic trajectories in the following sense. If we consider the set of the
crossing solutions and the set of the G.S. with slow decay in Wu

ε , we find that they
are open. The topological border of each of these two sets is the union of all the
homoclinic trajectories.

Analogously, following backwards in t the curves (x1(t), x2(t)) obtained from
W s

ε , we find a set of curves which cross the positive x1-semiaxis (so they correspond
to solutions of the Dirichlet problem in exterior domains described in the conclusions
of Theorem 4.1), and a set of trajectories which are forced to stay in a bounded
subset of the open 4th quadrant (so they correspond to S.G.S. with fast decay of
(1.2)). Again these two sets are disconnected by the homoclinic trajectories in the
sense that they are open in W s

ε , and the set of all the homoclinic trajectories is
their topological border.

We will analyze only Wu
ε , since W s

ε can be studied in a completely analogous
way. Observe that both Wu

ε (τ) and W s
ε (τ) have a first crossing with the isocline

ẋ1 = 0. We will consider this isocline as the transversal for the Melnikov function.
Observe now that, by assumption, we have a sequence of non degenerate extrema,
which could be either finite or infinite in number. Assume at first that this number is
finite and equals n ∈ N. Using Theorem 3.2 we can say that there exists a sequence
of values τ1(ε), τ2(ε), ... , τk(ε) or simply τ1, τ2, ... , τk for which h(τ, ε) = 0,
here 1 ≤ k ≤ n; thus for these values we have a crossing between W s

ε (τ) and
Wu

ε (τ). Suppose that, for k odd, φ(τk(0)) is a minimum and that for k even, it is a
maximum. Note that whenever τ ∈ (τ2k, τ2k+1), ξ−(τ, ε) is on the left with respect
to ξ+(τ, ε), while whenever τ ∈ (τ2k−1, τ2k) ξ−(τ, ε) is on the right with respect to
ξ+(τ, ε). Here we are thinking of the x1 axis as horizontal and of the x2 axis as
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O X

Y

N

W u(τ)

W s(τ)

ξ−(τ)

ξ+(τ)

L

Figure 1: A sketch of the phase portrait in the plane x3 = τ , when K(r) admits
only one critical point which is a maximum. The curve H(τ) is contained in the 4th

quadrant.

vertical.
Let us define the following surfaces for system (4.2):

L := {(x1, x2, x3) | ẋ1 = 0 and x1 ≥ 0}
W̃u

ε := {(x1, x2, x3) | (x1, x2) ∈ W̃u
ε (τ) and x3 = τ, −∞ < τ < ∞}

W̃ s
ε := {(x1, x2, x3) | (x1, x2) ∈ W̃ s

ε (τ) and x3 = τ, −∞ < τ < ∞}.
We recall that y±(t; τ, ε) is the trajectory of system (3.4) departing at t = 0 from
ξ±(τ, ε).

We will use the following notation: let us call Y ±
τ (t) := (y±(t; τ, ε), xτ

3(t)) the
trajectory of system (4.2) departing at t = 0, from (ξ±(τ, ε), τ). We have already
seen that the trajectories y+(t; τk(ε), ε) are homoclinic.

Consider the trajectories Y +
τ (t) of system (4.2), where τ ∈ (τ2k−1, τ2k). Follow-

ing them forward in time for t > 0 we note that they must lie in the exterior of
the set delimited by the surfaces L and W̃ s

ε . Note now that d
dt x̄1(t) ≤ 0 and that

| d
dt x̄1(t)|+ | d

dt x̄2(t)| is strictly positive for any t > 0. Thus Y +
τ (t) (τ ∈ (τ2k−1, τ2k))

is forced to enter the subset where x1 ≤ 0 in finite time. Therefore the correspond-
ing solutions u(r) of (1.2) are crossing solutions. Analogously, following backwards
in t the trajectories Y −

τ (t) where τ ∈ (τ2k, τ2k+1), we note that they must lie in
the exterior of the set enclosed by L and Su. Thus they correspond to solutions
of the Dirichlet problem in exterior domains of (1.2), like the ones described in the
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conclusion of Theorem 4.1. Assume now that we have an infinite number of critical
points of φ. We can still denote with an even subscript the maxima and with an odd
subscript the minima. Furthermore, we can repeat the proof and arrive at exactly
the same conclusions.

We denote with Nk(τ) the intersection with the trajectories Y +
τk

(t) of system
(4.2) and the plane x3 = τ ; as before k is an index of the critical points of φ.
See Figures 1, 2 and 3. Let us fix τ ; let us call Uk,k+1

τ (s), where s ∈ [k, k + 1], a
parameterization of the segment of Wu

ε (τ), joining Nk(τ) and Nk+1(τ), such that
Uk,k+1

τ (k) = Nk(τ), and Uk,k+1
τ (k + 1) = Nk+1(τ). Analogously, define Sk,k+1

τ (s)
to be a parameterization of the segment of Wu

ε (τ), joining Nk(τ) and Nk+1(τ).
Assume at first that Hypotheses O1 and O2 are satisfied. Then we can define the
following curve:

H̃(τ, s) :=

{
Sk,k+1

τ (s) s ∈ [k, k + 1] if k is odd,

Uk,k+1
τ (s) s ∈ [k, k + 1] if k is even.

Fixing τ , we get a curve H̃(τ, ·) such that lims→±∞ H̃(τ, s) = (0, 0). Let us call
H(τ) the topological manifold H(τ) = {H̃(τ, s) | s ∈ R}⋃

(0, 0), which is home-
omorphic to a circle. Let us call D(τ) the disc delimited by H(τ). Assume now

Y

O X

N

W u(τ)

W s(τ)

ξ−(τ) ξ+(τ)

L

Figure 2: A sketch of the phase portrait in the plane x3 = τ , when K(r) admits
only one critical point which is a minimum. The curve H(τ) may cross the x2 axis.

that Hypothesis M1 and M2 are satisfied, then there exist a minimum τ1 and a
maximum τm in the sequence τk. We define U−∞,1

τ to be the segment of Wu(τ)
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joining the origin to N1(τ) and Sm
τ to be the segment of W s(τ) joining Nm(τ)

to the origin. We can define now a parameterization U−∞,1
τ (s) of U−∞,1

τ , where
s ∈ (−∞, 1], such that lims→−∞ U0,1

τ (s) = (0, 0) and U−∞,1
τ (1) = N1(τ). Anal-

ogously, we define a parameterization Sm,∞
τ (s) of Sm,∞

τ , where s ∈ [m,∞), such
that Sm,∞

τ (m) = Nm(τ) and lims→∞ Sm,∞
τ (s) = (0, 0). Then we can define the

following curve:

H̃(τ, s) :=




U−∞,1
τ (s) s ∈ (−∞, 1],

Sk,k+1
τ (s) s ∈ [k, k + 1] if 1 ≤ k ≤ m − 1 is odd,

Uk,k+1
τ (s) s ∈ [k, k + 1] if 1 ≤ k ≤ m − 1 is even,

Sm,∞
τ (s) s ∈ [m,+∞).

Once again we define the curve H(τ) = {H̃(τ, s) | s ∈ R}⋃
(0, 0), see Figure 3.

We can define H(τ) in the same way if either Hypotheses M1 and O2 or Hypotheses
M2 and O1 are satisfied.

Let us call R(τ) the curve made up by joining W̃u(τ), the origin, W̃ s(τ) and the
segment of the isocline L joining ξ−(τ, ε) to ξ+(τ, ε). Assume that either Hypothesis
O1 or M1 is satisfied and moreover assume that either Hypothesis O2 or M2 is
satisfied. Observe that R(τ) belongs to the 4th quadrant for any τ , and that H(τ) is
contained in the interior of R(τ). In fact, the criterion of selection used to construct
H̃(τ, s), ensures that each segment of H̃(τ, s) lies on R(τ) or in the bounded subset
enclosed in R(τ). Note that if such Hypotheses are not satisfied, then the surface
H(τ) lies outside R(τ) and the construction fails, see Figures 1 and 2.

We now define the following set, observing that it contains infinitely many points

E(τ) := D(τ) − {Wu
ε (τ) ∪ Wu

ε (τ)}.
Letting τ take values in R, we have that

⋃{H(τ) | τ ∈ R} defines a topological
manifold of dimension 2, which is homeomorphic to a cylinder and which cannot be
crossed by any trajectory x̆(t) departing from Q ∈ E(τ). Thus each x̆(t) corresponds
to a monotone decreasing S.G.S. with slow decay.

Let us assume that either Hypothesis M2 or O2 is satisfied. We want to prove
the existence of infinitely many G.S. with slow decay. Let us fix a value τj(ε) such
that j is even. Let us define Sj,∞

τ to be the segment of W s(τ) joining N j(τ) to the
origin. We can define now a parameterization Sj,∞

τ (s) of Sj,∞
τ , where s ∈ [j,+∞),

such that Sj,∞
τ (j) = N j(τ) and lims→∞ Sj,∞

τ (s) = (0, 0). We need to define the
following function of s for τ ≥ τj(ε)

H̃j(τ, s) :=

{
H̃(τ, s) s ∈ (−∞, j]
Sj,∞

τ (s) s ∈ [j,+∞).

Then we define Hj(τ) by adjoining the origin. Observe that the topological manifold
Hj(τ) lies in R

2
+ for any τ ≥ τj(ε). In fact Sj,∞

τ (s) ⊂ W̃ s(τ) for any s > j.
Furthermore note that, for any s < j the segments of H̃(τ, s) are contained either
in R(τ), or in the bounded subset enclosed in R(τ). We now define Dj(τ) to be
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the subset of system (1.4) enclosed in Hj(τ), and Dj the subset of system (4.2)
enclosed in the topological surface Hj . We recall now that ξ+(τ, ε) lies on the left of
ξ−(τ, ε), for τ ∈ (τj , τj+1). Let us fix now δ > 0 small enough: we can find infinitely
many values τ ∈ (τj , τj + δ) such that ξ+(τ, ε) ∈ Wu(τ) − W s(τ). Let us consider
the trajectory Y +

τ (t) of system (4.2) departing from one of these points. Observe
that it lies in the interior of the set bounded by the surface W̃ s

ε and L, for t > 0
small. If it lies in this set for any t > 0 we are done. Thus suppose that there
exists a time T (τ) such that Y +

τ (T (τ)) ∈ L+, where L+ is the subset of L where
x1 > 0 and ẋ2 > 0. Note that L+ ⊂ Dj , thus Y +

τ (T (τ)) ∈ Dj . Recalling that Y +
τ (t)

cannot cross Hj for any t > 0, we have that Y τ (t) ∈ Dj for any t > 0. Thus Y +
τ (t)

corresponds to a G.S. with slow decay. To prove the existence of S.G.S. with fast
decay we have to follow backwards in t, the trajectories Y −

τ (t) and to repeat the
analysis just explained.

O

Y

X

W u(τ)

W s(τ)

N1

N2

N3

N4

N5

N6

N7

N8

N9

H(τ)

ξ−(τ)

ξ+(τ)

L

Figure 3: A sketch of the phase portrait in the plane x3 = τ , when K(r) have 5
maxima and 4 minima. The curve H(τ, s), represented with a solid line, is obtained
joining segments of the curve Wu(τ) (dotted line), and segments of the curve W s(τ)
(dashed line).
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The non existence result is a consequence of Lemma 2.4. In fact we have de-
scribed the behavior of the bounded trajectories and Lemma 2.4 describes the be-
havior of the unbounded ones. �

We can combine the techniques used in Theorem (4.1) to conclude the following:

Corollary 4.2 Consider equation (1.2) and assume that K(r) is strictly positive
and bounded and that it is a singular perturbation of a constant in the sense already
specified. Then we have at least as many G.S. with fast decay as the non degenerate
critical points of K(r). Moreover

1. Assume that either Hypothesis M2 or Hypothesis O2 is satisfied. Then the
positive solutions of equation (1.2) have a structure of type A.

2. Assume that either Hypothesis M1 or Hypothesis O1 is satisfied. Then the
positive solutions of equation (1.2) have a structure of type B.

3. Assume that both Hypotheses 1 and 2 are satisfied. Then the positive solutions
of equation (1.2) have a structure of type C.

Notice that we can weaken the hypotheses of the theorem as follows. In this corollary
we will commit the following abuse of notation: we will say that we have a structure
of type A, B, or C, even if the monotonicity of the solutions is not anymore
ensured.

Corollary 4.3 Consider equation (1.2) and assume that K(r) is a singular pertur-
bation of a constant, but that it may change its sign.

1. Assume that either Hypothesis M2 or Hypothesis O2 is satisfied. Then the
positive solutions of equation (1.2) have a structure of type A (aside form the
fact that the monotonicity of the solutions is not any more ensured).

2. Assume that either Hypothesis M1 or Hypothesis O1 is satisfied. Then the
positive solutions of equation (1.2) have a structure of type B.

3. Assume that both Hypotheses 1 and 2 are satisfied. Then the positive solutions
of equation (1.2) have a structure of type C, apart from the non-existence
result. That is there exist infinitely many crossing solutions, G.S. with slow
decay, S.G.S. with fast and slow decay, and solutions of the Dirichlet problem
in exterior domains. Furthermore, the number of G.S. with fast decay is
greater than or equal to the number of positive non degenerate critical points
of φ. But the situation is even more rich, thus we cannot exclude the existence
of other families of positive solutions.

Proof. We want to adapt the proof of Theorem 4.1 to this case. We have to reprove
the existence of ξ±(τ, ε) and that W̃u

ε (τ) and W̃ s
ε (τ) belong to R

2
+ for any τ . Another

difficulty will be that the transversality of the crossing between W̃u
ε (τ) and W̃ s

ε (τ)
is not anymore ensured. However, what is really needed in the proof of Theorem 4.1
is that we can find points belonging to W̃u

ε (τ)−W s
ε (τ) and in W̃ s

ε (τ)−Wu
ε (τ). But
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this easily follows observing that the manifolds Wu
ε (τ) and W s

ε (τ) do not coincide
and from some elementary topological reasoning.

Consider system (1.4): first of all observe that, if φ(t) changes sign, the flow
continues to rotate clockwise on the x2 axis. Assume that Hypothesis 1 is satis-
fied; then the existence of a crossing between Wu,s

ε (τ) and the isocline L, is en-
sured if φ(τ) > 0. But when φ(τ) > 0 we can also affirm that W̃u(τ) ⊂ A+ and
W̃ s(τ) ⊂ A−. Furthermore, applying Theorem 3.2, from the existence of positive
non degenerate critical points, we can deduce the existence of homoclinic trajec-
tories belonging to R

2
+. Let us call N1(τ), ..., Nk(τ) the intersections between

such trajectories and the plane x3 = τ . Let us call τ1, ..., τk, the values for which
N j(τj) ∈ L, that is the values for which we have a crossing between W̃u

ε (τj) and
W̃ s

ε (τj). Let us call U−∞,j(τ) the submanifold of Wu(τ) connecting the origin and
N j(τ); analogously we define Sj,∞(τ) to be the submanifold of W s(τ) connecting
the origin and N j(τ). Note that these submanifolds are connected and in fact are
C

1 embedded curves in R
2. Note that, for any τ < τk, Nk(τ) ∈ A+, thus we have

that there exists ξ−(τ, ε) = W̃ s(τ) ∩ L, for any τ < τk. Analogously for any τ > τ1

there exists ξ+(τ, ε) = W̃u(τ) ∩ L; see Figure 4.

O

Y

X

ξ+(τ)

Nj(τ)

U−∞,j(τ)

L

Figure 4: Existence of the points ξ+(τ, ε) = W̃u(τ)∩L. The solid line represents the
curve U−∞,j(τ) while the dotted line represents the homoclinic trajectory departing
from N j(τ). The dashed line is the isocline L.

We want to prove now that U−∞,j(τ) is contained in A+ for any τ < τj . Assume
for contradiction that there exists τ̄ < τj such that U−∞,j(τ̄) crosses the negative x2

semiaxis in a point P (τ̄). We call z(x0, τ ;T ) the solution of system (3.4) departing
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at t = 0 from x0 ∈ R
2, evaluated at t = T . Let us fix τ = τ̄ and consider system

(3.4). Let us call θ(x, 0) the angular coordinate of x ∈ R
2− (0, 0) and let θ(x0, t) be

the continuous function such that θ(x0, t) = θ(z(x0, τ̄ ; t), 0). Let us call Ψ(x, t) the
evolution map of system (3.4). Observe that Ψ(U−∞,j(τ̄), τj − τ̄) = U−∞,j(τj) ∈
R

2
+ ∩ A+ . In particular, there is a point P (τj) = z(P (τ̄), τ̄ ; τj − τ̄) ∈ U−∞,j(τj).

We recall that θ(P (τ̄), 0) = −π
2 ; note that the flow of the solutions on the x2

axis always rotates clockwise. Now noticing that P (τj) is in the 4th quadrant we
get that θ(P (τ̄), τj − τ̄) < −2π. Observe now that θ(N j(τ̄), τj − τ̄) > −π

2 since
the trajectory through N j(τ̄) is homoclinic. We observe now that the function
θ(·, τj − τ̄), evaluated along the continuous path U−∞,j(τ̄) has a jump discontinuity
between P (τ̄) and N j(τ̄). Thus we have found a contradiction and we have proved
that U−∞,j(τ) ⊂ A+ ∩ R

2
+ for any τ < τj .

Let us consider y+(τ ; t). Note that y+(τ ; t) ∈ W̃u(τ + εt). Thus, for any τ < τj

we have y+(τ ; t) ∈ A+ ∩ R
2
+, for any t < 0. Assume that there exists τ̂ such that

φ(τ̂) is a maximum and φ(τ) is strictly positive, for any τ ≥ τ̂ . Then we can apply
the reasoning developed in the proof of Theorem 4.1, restricting our attention to the
trajectories y+(τ ; t), where τ > τ̂ . This way we can prove that there exist infinitely
many trajectories y+(τ ; t), departing from the origin and contained in R

2
+ for any

t, thus corresponding to G.S. with slow decay of equation (1.2). The proof of the
existence of crossing solutions is analogous.

Now assume that K(r) is oscillatory as r → ∞. Then there exists a sequence τk

of values of τ such that W̃u
ε (τk)∩W̃ s

ε (τk) �= ∅. Therefore we also have a correspond-
ing sequence of points Nk(τ) just like the ones described previously. Reasoning as
above we can prove the existence of the points ξ+(τ, ε) and ξ+(τ, ε). Then we can
apply the construction described in the proof of Theorem 4.1 and conclude the proof
of Claim 1 of the Corollary. Claim 2 and 3 can be proved in the same way. �

Theorem 4.4 Let K(r) = k(rε) ∈ C
2(R) be a singular perturbation of a constant

as described above and consider equation (1.1).

A. Assume that there exists R such that K(R) is a positive non degenerate mini-
mum, and that K(r) is monotone increasing for any r > R. Then there exists
R∗ such that the Dirichlet problem corresponding to (1.1) admits a positive ra-
dial solution in any ball of radius r > R∗.

B. Assume that there exists ρ such that K(ρ) is a positive non degenerate maxi-
mum, and that K(r) is positive and monotone decreasing for any 0 ≤ r < ρ.

Then there exists R∗ such that the Dirichlet problem corresponding to (1.1)
admits a positive radial solution u(r) in the exterior of any ball of radius R <
R∗, that is there is a solution u(r) of (1.1) such that u(R) = 0, u(r) > 0 for
r > R and u(r) ∼ r−

n−p
p−1 as r → ∞.

Proof. Consider system (3.4); we have already observed that there exists τ(ε),
such that Wu

ε (τ(ε)) and W s
ε (τ(ε)) cross. Assume that Hypothesis A is satisfied,

then, for any τ > τ(ε), we have that ξ+(τ, ε) lies on the right with respect to
ξ−(τ, ε), thus the corresponding solution u(r) can only be a G.S with fast decay
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or a crossing solution, see Theorem 4.1. First of all we want to prove that the
first case can be excluded. Suppose for contradiction that the trajectory y+(τ, ε; t)
departing from some ξ+(τ̄ , ε), where τ̄ > τ(ε), represents a G.S with fast decay.
Then ξ+(τ̄ , ε) ∈ W s(τ̄). Recall now that ξ+(τ̄ , ε) cannot belong to W̃ s(τ̄), since
otherwise we would have another crossing in ξ−(τ̄ , ε) = ξ+(τ̄ , ε), for τ̄ > τ(ε). Thus
ξ+(τ̄ , ε) ∈ W s(τ̄)−W̃ s(τ̄). Consider the trajectory Y +

τ̄ (t) = (x+
1 (t), x+

2 (t), x+
3 (t)) of

system (4.2), departing at t = 0 from (ξ+(τ̄ , ε), τ̄). Note that ẋτ̄
1 < 0 for any t > 0,

until the trajectory reaches the isocline L. But, since Y + cannot cross the manifold
W̃ s

ε , it cannot reach the isocline L. So there exists T (τ̄) such that x+
1 (T (τ̄)) = 0.

This contradicts the assumption that the trajectory Y +
τ̄ (t) represents a G.S. Thus

the corresponding u(r) is a radial positive solution of the Dirichlet problem in the
ball of radius R∗ = exp(εT (τ̄) + τ̄).

We have proved for any τ ∈ (τ(ε),+∞), the trajectories y+(τ, ε; t) represent
crossing solutions. Thus, using a continuity argument and the fact that T (τ) is
always positive, we can conclude that the Dirichlet problem (1.2) in any ball of
radius R > R∗.

Claim B is obtained in the same way, following backwards in t the trajectories
y−(τ ; t). It can be proved that there exists τ̄ such that, for any τ < τ̄ , there exist
T1(τ) < 0 such that y−(τ ;T1(τ)) crosses the positive x1 semi-axis and T2(τ) < T1(τ)
such that y−(τ ;T2(τ)) crosses the positive x1 semi-axis. �

5 Regularly perturbed systems

Now we want to apply to the regular perturbation problem the techniques we have
developed for the singular one. Therefore we consider a function K(r) = 1 + εk(r),
where ε > 0 is small and k is a bounded function.

We follow the general framework developed in [10]. Let us consider a family of
system of the form

ẋ = f(x) + εh(x, t + τ),

where ε > 0 is a small parameter, x ∈ R
2 and f, h ∈ C

1(R2, R2). Assume that the
autonomous system obtained setting ε = 0 admits a family of homoclinic solution
U(τ, t). Now consider the non-autonomous system; arguing as in section 2, for any
τ we can find a stable leaf W s

ε (τ) and an unstable leaf Wu
ε (τ). Following [10] we

can construct a Melnikov function which measures the distance between W s
ε (τ) and

Wu
ε (τ) along a transversal L which can be computed as follows, see [10], page 1055:

M̄(τ) =
∫ +∞

−∞
f(U(τ, t − τ)) ∧ h(U(τ, t − τ), t)dt. (5.1)

Now we go back to our problem, therefore we apply to (1.2) the change of variables
(1.3), obtaining the following one parameter family of systems

(
ẋ1

ẋ2

)
=

(
α 0
0 −α

) (
x1

x2

)
+

(
x2|x2|

2−p
p−1

−1 + εg(τ + t)x1|x1|σ−2

)
. (5.2)
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Note that we have set Φ(t) = 1 + εg(t), so that we will deal with g(t) = k(et).
Thus applying (5.1) to our problem we find the following

M̄(τ) = −
∫ +∞

−∞
X1|X1|σ−2(t)Ẋ1(t)g(t + τ)dt

where U(τ, t) = (X1(t), Y1(t)) is the homoclinic solution of the frozen system (1.4)
with K(r) ≡ 1. Then, integrating by parts, we get:

M̄(τ) =
∫ +∞

−∞
g′(t + τ)

|X1|σ
σ

dt

and hence

M̄ ′(τ) =
∫ +∞

−∞
g′′(t + τ)

|X1|σ
σ

dt.

Remark 5.1 We recall that X1 =
(
e−t + De

t
p−1

)−α

and g(t) = k(et), therefore

the function M̄(τ) and its derivative M̄ ′(τ) can be explicitly computed.

We will see that, when M̄(τ) = 0 and M̄ ′(τ) �= 0, we can apply the construction
already used for the singularly perturbed system. Now, reasoning as in Theorem
3.2, we can construct a function h(ε, τ), analogous to the one used in section 3.
Then, using the implicit function theorem, we deduce that the manifolds Wu

ε (τ)
and W s

ε (τ) have a crossing. Moreover, reasoning as in [10], page 1057, we can
conclude that such a crossing is transversal.

We give a sketch of the proof of the transversality for the convenience of the
reader. Consider equation (3.1). We can construct a segment L(a), parallel to the
transversal L, containing the point U(τ, a) in its interior. Thus we can deduce the
existence of the points ξ+(τ, ε, a) and ξ−(τ, ε, a) which are the intersection points
of Wu,s

ε (τ) with L(a), respectively.
Now we construct the following modified Melnikov function

M̃(τ, a) =
d

dε

[
ξ−(τ, ε, a) − ξ+(τ, ε, a)

] �ε=0∧f(U(τ, a)) = M̄(τ − a).

Now observe that

∂

∂a
M̃(τ, a)(τ(ε), a)�a=0= −M̄ ′(τ(ε)) �= 0.

Thus we can deduce the transversality of the vectors

∂

∂a
ξ−(τ(ε), ε, a) and

∂

∂a
ξ+(τ(ε), ε, a),

which are tangent respectively to W s
ε (τ(ε)) and Wu

ε (τ(ε)). Thus, applying the
Smale horseshoe construction we can state the following theorem:
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Theorem 5.2 Assume that K(r) = 1 + εk(r) is a C
2 function which is a regular

perturbation of a constant. Then equation (1.2) admits a G.S. with fast decay
for each non degenerate zero of M(τ). Assume in addition that g ∈ C

2(R, R) is
a periodic function. Then equation (1.2) admits a Cantor-like set of monotone
decreasing S.G.S. with slow decay.

Moreover, repeating the analysis drawn in section 4, we can get the following:

Theorem 5.3 Consider equation (1.2), where K(r) = 1 + εk(r), |ε| is small and
k(r) is a bounded function of class C

2.

1. Assume either that there exists T̀ for which M̄ has a non degenerate zero and
M̄(τ) < 0 for any τ > T̀ , or that M̄(τ) oscillates indefinitely as τ → ∞.
Then the positive solutions of equation (1.2) have a structure of type A.

2. Assume either that there exists T́ for which M̄ has a non degenerate zero and
M̄(τ) > 0 for any τ < T́ , or that M̄(τ) oscillates indefinitely as τ → −∞.
Then the positive solutions of equation (1.2) have a structure of type B.

3. Assume that both Hypotheses 1 and 2 are satisfied; then the positive solutions
of equation (1.2) have a structure of type C.

The proof is completely analogous to the one given for the singular perturbation
problem in Theorem 4.1. The only difference comes from the fact that we are not
able to reformulate the conditions on the Melnikov function M̄(τ) in a simpler way.
Now we reformulate in the regular setting the result given in Theorem (4.4).

Theorem 5.4 Let K(r) = 1+εk(r) ∈ C
2(R) be a regular perturbation of a constant

and consider equation (1.1).

• Assume that there exists τ̄ such that M̄(τ) > 0 for any τ > τ̄ . Then there
exists R∗ such that the Dirichlet problem corresponding to (1.1) admits a
positive radial solution in any ball of radius r > R∗.

• Assume that there exists τ̂ such that M̄(τ) > 0 for any τ < τ̂ . Then there
exists R∗ such that the Dirichlet problem corresponding to (1.1) admits a
positive radial solution u(r) in the exterior of any ball of radius R < R∗, that
is there is a solution u(r) of (1.1) such that u(R) = 0, u(r) > 0 for r > R

and u(r) ∼ r−
n−p
p−1 as r → ∞.

Proof. The proof is completely analogous to the one given for Theorem 4.4, at the
end of section 4. �
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