
FOWLER TRANSFORMATION AND RADIAL SOLUTIONS FOR
QUASILINEAR ELLIPTIC EQUATIONS.

PART 2: NONLINEARITIES OF MIXED TYPE.

Abstract. We discuss the existence and the asymptotic behavior of positive
radial solutions for the following equation:

∆pu(x) + f(u, |x|) = 0,

where ∆pu = div(|Du|p−2Du), x ∈ Rn, n > p > 1, and we assume that f ≥ 0
is subcritical for u large and |x| small and supercritical for u small and |x|
large, with respect to the Sobolev critical exponent.

We give sufficient conditions for the existence of ground states with fast
decay. As a corollary we also prove the existence of ground states with slow
decay and of singular ground states with fast and slow decay.

For the proofs we use a Fowler transformation that enables us to use dy-
namical arguments. This approach allows to unify the study of different types
of nonlinearities and to complete the results already appeared in literature
with the analysis of singular solutions.

1. Introduction

The purpose of this paper is to investigate positive radial solutions of the follow-
ing quasi-linear elliptic equation

(1.1) ∆pu(x) + f(u, |x|) = 0,

where ∆pu = div(|Du|p−2Du) is the so called p-Laplacian, x ∈ Rn, n > p > 1,
and f(u, |x|) is a continuous function which is positive and locally Lipschitz in the
u variable for u > 0 and it is null for u = 0. We also assume f to be super-half
linear, see hypotheses F0 and G0 below. The prototypical nonlinearities we are
interested in are

(1.2) f(u, |x|) = k(|x|)u|u|q−2,

where q > p and k is positive and continuous, and

(1.3) f(u, |x|) = k2(|x|) u|u|q2−2

1 + k1(|x|)u|u|q1−2
,

where q2 > q1 > 0, q2 − q1 > p − 1 and the functions k1(|x|) and k2(|x|) are
nonnegative and continuous. Another function f that matches the hypothesis is

(1.4) f(u, |x|) = k(|x|)×
{

u|u|q1−2, if |u| ≥ 1;
u|u|q2−2, if |u| ≤ 1

We consider just radial solutions and we commit the following abuse of notation:
we write u(r) for u(x) where |x| = r. Since we only deal with radial solutions we
will in fact consider the following singular O.D.E.

(u′|u′|p−2)′ +
n− 1

r
u′|u′|p−2 + f(u, r) = 0.(1.5)

Here ′ denotes the derivative with respect to r. We call “regular” the positive
solutions u(d, r) of (1.5) satisfying the following initial condition

(1.6) u(0) = d > 0 u′(0) = 0.
1
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We call “singular” the positive solutions u(r) which are singular in the origin, that
is limr→0 u(r) = +∞.

In particular we focus our attention on the problem of existence of ground states
(G.S.), of singular ground states (S.G.S.) and of crossing solutions. By G.S. we mean
a positive regular solution u(r) defined for any r ≥ 0 such that limr→∞ u(r) = 0. A
S.G.S. of equation (1.1) is a singular positive solution v(r) such that lim|r|→0 v(r) =
+∞ and lim|r|→+∞ v(r) = 0. Crossing solutions are radial solutions u(r) such that
u(r) > 0 for any 0 ≤ r < R and u(R) = 0 for a certain R > 0, so they can be
considered as solutions of the Dirichlet problem in the ball of radius R.

It is possible to prove in a very general context, see Lemma 2.2 below, that
the limit limr→+∞u(r)r

n−p
p−1 = L exists and it is positive for all the solutions u(r)

which are positive for r large. If L is finite we say that u(r) has fast decay, while
if L = +∞ we say that it has slow decay.

Let us denote by F (u, r) =
∫ u

0
f(s, r)ds and by F(u, r) = f(u, r)/|u|p−1. We will

usually consider functions f satisfying the following:
F0: There are M > 0 and R > 0 such that F(u, r) is increasing in u whenever

(u, r) ∈ (
[M, +∞)× (0, 1/R]

) ∪ (
(0, 1/M ]× [R, +∞)

)
.

In fact we will consider a slightly more general assumption introduced in [16], which
will be stated precisely in the next section. When f is of type (1.2) it matches our
hypothesis whenever q > p. It is well known that in this case the structure of
positive solutions changes drastically when the parameter q is larger or smaller
than some critical values: p∗ := np

n−p the Sobolev critical exponent and σ = pn−1
n−p

see e.g. [13, 25].
In the last 20 years this family of equations has received a lot of interest, both

for the intrinsic mathematical interest and for the applications it has in different
areas such as astrophysics, differential geometry for p = 2, and elasticity theory
and the study of non Newtonian fluids for p 6= 2, see [3, 5, 16, 18, 22]. We wish
to point out also that radially symmetric solutions are particularly important for
these problems. In fact when the domain has radial symmetry it is known that,
for a large family of spatial independent nonlinearities f , G.S. and solutions of the
Dirichlet problem in balls have to be radially symmetric. This fact has been proved
using moving plane techniques in [8, 9, 32, 34]. The same result has been proved
when p = 2, f is of type (1.2) and it is subcritical for u small and supercritical for
u large, see [3], and it is a general characteristic of solutions of (1.1), even if there
are some interesting counterexamples, see [3]. Moreover the α-limit and the ω-limit
set of certain parabolic equations associated to (1.1) is made up by the union of
radially symmetric ground states of (1.1), see [26].

There are several results for existence of G.S. and solutions of the Dirichlet prob-
lem, even in non-symmetric domains, obtained via variational techniques. However
it is difficult to apply these methods when the non-linearity f is either critical or
supercritical, e. g. f is of type (1.2) and q ≥ p∗, due to the lack of compactness of
the problem. In order to recover some compactness, especially in the supercritical
case, the analysis is often restricted to radial solutions. Another key ingredient for
the analysis of these equation is the Pohozaev identity, see [23, 24, 25, 27, 29] et al.
which is a clever way to restate Green formula for the solutions of these problems;
see also [28] for a more detailed discussion of this tool also in different context.

When f is of type (1.2) or (1.3) roughly speaking positive solutions exhibit two
typical structures separated by a third one that lies in the border between them,
see [16].

Sub: All the regular solutions u(d, r) are crossing solutions and they have
negative slope at their first zero R(d), there is a unique S.G.S. with slow
decay and uncountably many S.G.S. with fast decay. No G.S. can exist.
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Crit: All the regular solutions are G.S. with fast decay, there are uncountably
many S.G.S. with slow decay. No other positive solutions can exist.

Sup: All the regular solutions are G.S. with slow decay, there is a unique
S.G.S. and has slow decay. There are uncountably many solutions u(r) of
the Dirichlet problem in the exterior of balls, i. e. there is R > 0 such that
u(R) = 0, u(r) > 0 for r > R and u(r) has fast decay.

When f is of type (1.2) and it is spatial independent it is well known that we have
structure Sup for q > p∗, Crit for q = p∗ and Sub for σ < q < p∗. When p < q ≤ σ
regular solutions have structure Sub but singular solutions do not exist. Sufficient
conditions to have one of these structures for positive solutions for f of type (1.2)
are given in [13, 14, 16, 23]. Similar classification results were observed in the case
p = 2 and f spatial independent for equations of type (1.3) in [7]. The general case
of a function f satisfying F0 and p > 1 is considered in [16].

When the nonlinearity f exhibits both subcritical and supercritical behavior
the situation becomes richer and more interesting. When p = 2 and f is spatial
independent and it is subcritical for u large and supercritical for u small (as in (1.3)
where q2−q1 < p∗ < q2 or in (1.4) where p < q1 < p∗ < q2 and k, k1, k2 are positive
constants), Erbe and Tang in [10] classified regular solutions. More recently Chern
and Yotsutani in [7] managed to classify singular solutions as well, obtaining the
following structure for positive solutions:

Mix: There are uncountably many crossing solutions, uncountably many G.S.
with slow decay, and at least one G.S. with slow decay. There are un-
countably many S.G.S. with fast decay, uncountably many solution of the
Dirichlet problem in exterior domains, and uncountably many S.G.S. with
slow decay.

In fact in [7] the authors just proved the existence and conjectured the uniqueness
of the S.G.S. with slow decay, but as a Corollary of Theorem 3.10 we obtain un-
countably many such solutions. In [33] the authors obtain the same structure for
regular solutions in the case p = 2, assuming that f is of type (1.2) and k is “suf-
ficiently increasing” for r small and “sufficiently decreasing” for r large (e.g. when
q = p∗ and k(r) behaves like a positive power for r small and k(r) like a negative
power for r large). Recently these results have been extended to the p 6= 2 case in
[20]. In all these papers the results depend strongly on the Pohozaev identity, and
use essentially ODE techniques.

This paper is thought as the sequel of [16] and the main purpose is to apply the
dynamical method developed there to obtain structure Mix for positive solutions.
The advantages of this approach lie in the possibility to discuss together nonlin-
earities of type (1.2) and (1.3) inserting them in a wider family and to extend the
previous results to the case p 6= 2 and by giving also the classification of singular
solutions. Moreover we are also able to refine the asymptotic estimates for singular
and slow decay solutions. So we generalize the results given in [7], since we extend
the results to the spatial dependent case and to the setting p 6= 2, and the ones in
[20] since we consider more generic nonlinearities and we discuss singular solutions.

In the proofs we follow the way paved by Johnson, Pan and Yi in [21, 22], and
later followed by Johnson, Battelli in [2] and Bamon Flores Dal Pino [1, 12]. So
we introduce a dynamical system through a change of coordinates that generalizes
the well known Fowler transform and we pass to a dynamical system. Then we
use this new point of view on the problem; so we prove the existence of unstable
and stable sets Wu(τ) and W s(τ) which are made up of initial conditions which
correspond respectively to regular and fast decay solutions. Then we establish their
mutual position using the transposition of the Pohozaev function for this dynamical
context and we conclude with elementary analysis of the phase portrait.
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We remark that when f is of type (1.2), q = p∗ and k(r) is uniformly positive and
bounded the situation is more delicate. In fact Bianchi in [4] found some example in
which no radial G.S. may exist and in [5] Bianchi and Egnell have provided several
very generic conditions that are sufficient for the existence of them. See also [2] and
[18] for some multiplicity results when k is a perturbation of a constant. In this
setting it is possible to prove the existence of G.S. with fast decay even if k(r) is
decreasing for r small and increasing for r large, that is the opposite situation with
respect to the one we discuss in this paper. We stress that in that case anyway we do
not have G.S. with slow decay neither S.G.S. with fast decay, so positive solutions
do not have structure Mix. That situation has some analogy to the case where f
is subcritical for u small and supercritical for u large, that is the opposite setting
with respect to the one considered in this paper. We stress that there are very few
papers concerning that context which seems to be the most delicate. Among them
we wish to quote [12] and [1] in which the authors use a dynamical approach similar
to the one introduced in [22] and followed also in this paper.

This paper is divided as follows. In section 2 we review some known facts: in
section 2 we introduce the generalized Fowler transformation and we establish the
existence of unstable and stable sets Wu(τ) and W s(τ) for the non-autonomous
problem via Wazewski’s principle. In section 3 we use the Pohozaev function to
establish the mutual position of Wu(τ) and W s(τ) and we prove the main result,
Theorem 3.10: this Theorem is very general but difficult to be understood. So in
section 4 we apply it to specific cases to obtain easier to read Corollaries. In the
Appendix we explain some technical construction needed to construct the stable
and the unstable sets.

We stress that all the results of this paper can be extended to more generic
equations involving spatial dependent generalizations of the p-Laplace operator,
see Remark 3.12 and [19], where this fact was first noted. In fact, after [19], this
generalization has been worked out in details also for similar equations governed
by different nonlinearities, and thus exhibiting different structures for positive solu-
tions: we quote [6, 17, 30] for the case where f is negative for u small and positive
for u large, and [11, 31] for the case where f is negative.

2. Preliminary result: Fowler transformation and construction of
stable and unstable sets

In this section we recall some known facts proved in [16]. First of all we introduce
a dynamical system through the following change of coordinates depending on the
parameter l > p:

αl = p
l−p , βl = (p−1)l

l−p , γl = βl − (n− 1),

xl = u(r)rαl yl = u′(r)|u′(r)|p−2rβl r = et

gl(xl, t) = f(xe−αlt, et)eαl(l−1)t(2.1)

Using (2.1) we pass from (1.5) to the following system:

(2.2)
(

ẋl

ẏl

)
=

(
αl 0
0 γl

)(
xl

yl

)
+

(
yl|yl|

2−p
p−1

−g(xl, t)

)

Obviously positive solution u(r) of (1.5) correspond to trajectories xl(t) = (xl(t), yl(t))
such that xl(t) > 0 and u′(r) < 0 implies yl(t) < 0 and viceversa. We denote by
Gl(xl, t) :=

∫ xl

0
gl(ξ, t)dξ = F (xle

−αlt, et)eαllt and by Gl(xl, t) := gl(xl, t)/|xl|p−1

= F(xle
−αlt, et)ept.

This change of coordinates generalizes the well known classical Fowler transfor-
mation that works in the p = 2 case. It was first introduced in [13] for functions f of
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the form (1.2). In this case we have gl(x, t) = hl(t)x|x|q−2 and Gl(x, t) = h(t) |x|
q

q ,
where hl(t) = k(et)eδlt and δl = αl(l − q). Moreover, if we set l = q, we simply
find gl(x, t) = k(et)xl|xl|q−2 and if k does not depend on t we find a 2 dimensional
autonomous system which is completely understood, see [13]. In the whole paper
we will assume (without explicitly mentioning it anymore) the following hypothesis
which generalizes slightly F0, in order to guarantee that the basic features of (2.2)
with g(x, t) = k(et)x|x|q−2 are maintained.

G0: There is N > 0 such that for any |t| > N the function Gl(x, t) =
gl(x, t)/xp−1 is such that Gl(0, t) = 0, limx→∞Gl(x, t) = ∞ and it is
increasing in x for any |t| > N .

Observe that G0 holds for (1.2), (1.3), (1.4). Let us denote by Gl(x, t) = Gl(x, t)/xp:
note that if Gl(x, t) satisfy G0 then Gl(x, t) has the same property, see Remark 2.2
in [16].

A key role in this analysis will be played by the Pohozaev function P (u, u′, r),
introduced by Pucci and Serrin in [27], which is one of the main tool for the investi-
gation of this family of equations. In fact we use its transposition for this dynamical
setting Hl(xl, yl, t), which acts as a sort of Lijapunov function:

P (u, u′, r) := rn

[
n− p

p

uu′|u′|p−2

r
+

p− 1
p

|u′|p + F (u, r)
]

Hl(xl, yl, t) :=
n− p

p
xlyl +

p− 1
p

|yl|
p

p−1 + Gl(xl, t)

If xp∗(t) = (xp∗(t), yp∗(t)) and xl(t) = (xl(t), yl(t)) are the trajectories of (2.2)
corresponding to u(r), we have

(2.3) P (u(r), u′(r), r) = Hp∗(xp∗(t), yp∗(t), t) = e−(αl+γl)tHl(xl(t), yl(t), t) .

The key observation is that when Gp∗(x, t) is differentiable with respect to t, for
any trajectory xp∗(t) we have the following:

(2.4)
d

dt
Hp∗(xp∗(t), yp∗(t), t) =

∂

∂t
Gp∗(xp∗(t), t)

This is in fact another way to restate the Pohozaev identity, which is one of the
main tool to investigate this equation, see e. g. [23, 24].

We recall some basic facts concerning positive solutions of (1.5), see [16].

2.1. Remark. For any d > 0 there is a ρ(d) > 0 such that (1.5), (1.6) admits a
unique solution u(d, r) which is positive and decreasing for r ∈ [0, ρ(d)). Moreover
for any R < ρ(d1) and any ε > 0 there is δ > 0 such that maxr∈[0,R] |u(d1, r) −
u(d2, r)|+ |u′(d1, r)− u′(d2, r)| < ε whenever |d1 − d2| < δ.

2.2. Lemma. • If a solution u(r) of (1.5) is positive for 0 < r ≤ R, then
u′(r) < 0 for 0 < r < R.

• Assume that for any x > 0 lim supt→+∞ gσ(x, t) < ∞. If a solution v(r)

of (1.5) is positive and decreasing for any r > R, then v(r)r
n−p
p−1 is strictly

increasing for any r > R. Moreover if w(r) is such that P (w(r), w′(r), r) <

0 for r ∈ (R1, R2), then w(r)r
n−p
p−1 is increasing in that interval.

We say that a positive solution v(r) has fast decay when the limit v(r)r
n−p
p−1 is

finite and that it has slow decay when this limit is infinity. From the previous
Lemma we know that the limit always exist.

We review quickly the results concerning the autonomous case, that is gl(x, t) ≡
ḡl(x) for a certain l > p. This will provide us some sub and super solutions for
the original non-autonomous problem. First of all when l > σ, system (2.2) with
gl(x, t) ≡ ḡl(x) admits three critical points: the origin, P = (Px, Py), where Px =
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U+

U −

Y

XO

H=0

H=−c<0

H=c>0

X=0

−P

P

Figure 1. The level sets of the function H(x, y, t) for t fixed

G−1(|γl(αl)p−1|) > 0 and Py = −(αlPx)p−1 < 0, and −P. Furthermore Hl(P) =
−C < 0 and P is a repulser for σ < l < p∗, a center for l = p∗, and an attractor for
l > p∗. If l 6= p∗ there are no periodic trajectories, and if p < l ≤ p∗, there are no
critical points but the origin, see [16]. We introduce now some notation that will
be in force through the whole paper:

R2
+ := {(x, y) | x ≥ 0} R2

± := {(x, y) | y < 0 < x}
U+

l := {(x,y) ∈ R2
+ | αlx + y|y| 2−p

p−1 > 0} U−
l := {(x, y) ∈ R2

+ | αlx + y|y| 2−p
p−1 < 0}

U0
l := {(x, y) ∈ R2

+ | αlx + y|y| 2−p
p−1 = 0}

Observe that U0
l2
⊂ U+

l1
and U0

l1
⊂ U−

l2
if l2 > l1. We denote by capital letters the

trajectories of the autonomous system to distinguish them from the ones of the non-
autonomous system. We denote by Xl̄(t, τ ;Q, ḡl̄) = (Xl̄(t, τ ;Q, ḡl̄), Yl̄(t, τ ;Q, ḡl̄))
the trajectory of the autonomous system (2.2) where l = l̄ and gl̄(x, t) ≡ ḡl̄(x),
departing from Q at t = τ . We denote by xl̄(t, τ ;Q) the trajectory of the non-
autonomous system (2.2) departing from Q at t = τ .

We stress that when p > 2 local uniqueness on the coordinate axes is not guar-
anteed anymore. However it is possible to prove that the origin admits an unstable
manifold, denoted by Mu(ḡ), whenever l > p and a stable set which is compact
and connected (it is the union of locally Lipschitz trajectories) denoted by Ms(ḡ),
see [15] and [16]. Let u(r) be a solution of (1.5) and Xl(t, τ,Q) the corresponding
trajectory of (2.2). In [16] it is proved that if Q ∈ Mu(ḡ) then u(r) is a regular
solution and viceversa, while if Q ∈ Ms(ḡ) then u(r) has fast decay and viceversa.

Using the Pohozaev function Hp∗ it is possible to establish their mutual positions,
see [16], and to draw a picture of the phase portrait. Using this picture it is possible
to classify completely positive solutions, both regular and singular, see [16].

We introduce now some hypotheses that guarantee the existence of stable and
unstable sets for the non-autonomous system (2.2). Choose τ ∈ R, we introduce
the following functions

(2.5)
aτ

l (xl) = inft≤τ 1/2gl(xl, t) bτ
l (xl) = supt≤τ 2gl(xl, t)

Aτ
l (xl) = inft≥τ 1/2gl(xl, t) Bτ

l (xl) = supt≥τ 2gl(xl, t)

These functions are monotone increasing in x for any τ and satisfy G0, when they
are not identically null or infinity. We will make use of some of these assumptions:
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Figure 2. A sketch of Mu
l and of Ms

l when l > p∗ (on the left)
and σ < l < p∗ (on the right). We have denoted by U0

1 = U0
l1

, by
U0

2 = U0
l2

, by U0
∗ = U0

p∗ , where l1 < p∗ < l2.

G1: There is l1 > p such that for any x > 0 the function gl1(x, t) converges
to a t-independent locally Lipschitz function g−∞l1

(x) 6≡ 0 as t → −∞,
uniformly on compact intervals.

G1′: There is l1 > p such that for any τ ∈ R the functions aτ
l1

and bτ
l1

are locally Lipschitz. Moreover for any x > 0 and any τ < 0, we have
0 < aτ

l1
(x) < bτ

l1
(x) < ∞.

G1′′: There are j1 ≥ i1 > p, such that for any τ ∈ R the functions aτ
j1

and
bτ
i1

are locally Lipschitz. Moreover for any x > 0 we have aτ
j1

(x) > 0, and
bτ
i1

(x) < ∞.
G2: There is l2 > σ such that for any x > 0 the function gl2(x, t) converges

to a t-independent locally Lipschitz function g+∞
l2

(x) 6≡ 0 as t → +∞,
uniformly on compact intervals.

G2′: There is l2 > σ such that such that for any τ ∈ R the functions Aτ
l2

and
Bτ

l2
are locally Lipschitz. Moreover for any x > 0 and any τ > 0, we have

0 < Aτ
l2

(x) < Bτ
l2

(x) < ∞.
G2′′: There are j2 ≥ i2 > σ, such that for any τ ∈ R the functions Aτ

i2
and

Bτ
j2

are locally Lipschitz. Moreover for any x > 0 we have Aτ
i2

(x) > 0, and
Bτ

j2
(x) < ∞.

Obviously G1 implies G1′ which implies G1′′, and G2 implies G2′ which implies
G2′′.

In order to construct stable and unstable sets in the non-autonomous case and to
localize them we introduce the following barrier sets. Assume first G1′ and G2′; we
recall that Mu

l1

(
aτ

l1

)
is the unstable manifold of the autonomous systems (2.2) where

gl1(xl1 , t) ≡ aτ
l1

(xl1). Follow Mu
l1

(
aτ

l1

)
from the origin towards R2

+: it intersects the
isocline U0

l1
in a point denoted by Q̃u

l1

(
aτ

l1

)
. We denote by M̃u

l1

(
aτ

l1

)
the branch of the

unstable manifold of Mu
l1

(
aτ

l1

)
of the autonomous systems (2.2) where gl1(xl1 , t) ≡

aτ
l1

(xl1), between the origin and Q̃u
l1

(
aτ

l1

)
; we give the analogous definition for

Q̃u
l1

(
bτ
l1

)
and M̃u

l1

(
bτ
l1

)
. Moreover M̃u

l1

(
aτ

l1

)
and M̃u

l1

(
bτ
l1

)
do not intersect and the

former is on the right of the latter (here and later we think of the x axis as horizontal
and the y axis as vertical), see Lemma 3.1 in [16]. We denote by c̃u

l1
(τ) the branch

of U0
l1

between Q̃u
l1

(
aτ

l1

)
and Q̃u

l1

(
bτ
l1

)
. Finally we denote by Ẽu

l1
(τ) the bounded

set enclosed by M̃u
l1

(
aτ

l1

)
, M̃u

l1

(
bτ
l1

)
and c̃u

l1
(τ).

Analogously we follow Ms
l2

(
Aτ

l2

)
from the origin towards R2

+ and we denote by
ξ̃s
l2

(
Aτ

l2

)
its first intersection with U0

l2
; in fact ξ̃s

l2

(
Aτ

l2

)
is a compact connected set.
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We denote by M̃s
l2

(
Aτ

l2

)
the branch of Ms

l2

(
Aτ

l2

)
between the origin and ξ̃s

l2

(
Aτ

l2

)
,

and we give the analogous definitions for ξ̃s
l2

(
Bτ

l2

)
and M̃s

l2

(
Bτ

l2

)
. Again M̃s

l2

(
Aτ

l2

)
is

on the right of M̃s
l2

(
Bτ

l2

)
, and they do not intersect. It follows that ξ̃s

(
Aτ

l2

)
is on the

right of ξ̃s
(
Bτ

l2

)
as well: we denote by Q̃s

l2

(
Aτ

l2

)
the left endpoint of ξ̃s

l2

(
Aτ

l2

)
and

by Q̃s
l2

(
Bτ

l2

)
the right endpoint of ξ̃s

l2

(
Bτ

l2

)
, again see [16] Lemma 3.1. We denote

by c̃s
l2

(τ) the branch of U0
l2

between Q̃s
l2

(
Aτ

l2

)
and Q̃s

l2

(
Bτ

l2

)
. Then we denote by

Ẽs
l2

(τ) the bounded set enclosed by M̃s
l2

(
Aτ

l2

)
, M̃s

l2

(
Bτ

l2

)
and c̃s

l2
(τ).

Let us denote by

Wu
l (τ) := {Q ∈ R2 |xl(t, τ ;Q) ∈ U+

l for any t < τ}
W s

l (τ) := {Q ∈ R2 |xl(t, τ ;Q) ∈ U−
l for any t > τ}

It is easy to prove that if Qu ∈ Wu
l1

(τ) respectively Qs ∈ W s
l2

(τ) then limt→−∞xl(t, τ ;Qu) =
(0, 0) resp. limt→+∞xl(t, τ ;Qs) = (0, 0), see [16]. A priori these sets may be empty.
In [16] it is proved that the flow of the non-autonomous system (2.2) with l = l1
on M̃u

l1

(
aτ

l1

)
and M̃u

l1

(
bτ
l1

)
points towards the interior of Ẽu

l1
(τ), and the flow of

(2.2) with l = l2 on M̃s
l2

(
Aτ

l2

)
and M̃s

l2

(
Bτ

l2

)
points towards the exterior of Ẽs

l2
(τ).

Exploiting this fact we can prove the following, see [16] Lemma 3.4.

2.3. Lemma. Assume G1′, then for any τ ∈ R there is a compact connected
subset W̃u

l1
(τ) ⊂ Wu

l1
(τ) which contains the origin and intersects U0

l1
in a compact

connected set ξ̃u
l1

(τ). Analogously assume G2′, then for any τ ∈ R there is a
compact connected subset W̃ s

l2
(τ) ⊂ W s

l2
(τ) which contains the origin and intersects

U0
l2

in a compact connected set ξ̃s
l2

(τ).

Using the flow of (2.2) we can define global stable and unstable sets:

Wu
l1(τ) := ∪T∈R{P | ∃Q ∈ W̃u

l1(T ) s.t. P = xl1(τ, T ;Q)} ,

Ws
l2(τ) := ∪T∈R{P | ∃Q ∈ W̃ s

l2(T ) s.t. P = xl2(τ, T ;Q)}
Obviously if P1 ∈ Wu

l1
(τ) and P2 ∈ Ws

l2
(τ), then limt→−∞xl1(t, τ ;P1) = (0, 0) and

limt→+∞xl2(t, τ ;P2) = (0, 0). In fact it can be shown that trajectories xl1(t, τ,Q),
where Q ∈ W̃u

l1
(τ), correspond to regular solutions of (1.5) while if Q ∈ W̃ s

l2
(τ)

they correspond to fast decay solutions of (1.5), as in the autonomous case. So this
is also a way to prove the existence of fast decay solutions for our problem in the
general case p 6= 2: when p = 2 the existence of such solutions follows directly from
the Kelvin inversion, see e. g. [33], but this tool is not anymore available when
p 6= 2. In fact we can push these correspondences a bit further, but we need to
introduce further barrier sets, see [16] and figure 3.

We start by assuming G1′ and G2′. We set B̄u
l1

(τ) = (B̄u
x (τ), B̄u

y (τ)) := Q̃u(bτ
l1

)
and we denote by Āu

l1
(τ) the point of intersection between M̃u

l (aτ
l1

) and the line
x = B̄u

x (τ). Then we denote by ∂Ēu,a
l1

(τ) the branch of M̃u
l1

(aτ
l1

) between the origin
and Āu

l1
(τ). We denote by c̄u

l1
(τ) the line between B̄u

l1
(τ) and Āu

l1
(τ). Finally we

denote by Ēu
l1

(τ) the subset enclosed by ∂Ēu,a
l1

(τ), ∂Ēu,b
l1

(τ) and c̄u
l1

(τ).
Analogously we set B̄s

l2
(τ) = (B̄s

x(τ), B̄s
y(τ)) := Q̃s(Bτ

l2
) and we denote by Ās

l2
(τ)

the point of intersection between M̃s
l2

(Aτ
l2

) and the line x = B̄s
x(τ). Then we denote

by ∂Ēs,a
l2

(τ) the branch of M̃s
l2

(Aτ
l2

) between the origin and Ās
l2

(τ). We denote by
c̄s
l2

(τ) the line between B̄s
l2

(τ) and Ās
l2

(τ). Finally we denote by Ēs
l2

(τ) the subset
enclosed by ∂Ēs,a

l2
(τ), ∂Ēs,b

l2
(τ) and c̄s

l2
(τ). Once again the flow of (2.2) with l = l1

on ∂Ēu,a
l1

(τ), ∂Ēu,b
l1

(τ) points towards the interior of Ēu
l1

(τ) for any t ≤ τ , while
the flow of (2.2) with l = l2 on ∂Ēs,a

l2
(τ), ∂Ēs,b

l2
(τ) points towards the exterior of
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ξ
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E

W
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X

ξ

c

X=0

W

U
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u

u
(τ)

(τ)
u

u
(τ)

u
(τ)

u
(τ)

(τ)

u
(τ)

u

u

(τ)
u

+

(τ)

−

Figure 3. Construction of the unstable sets W̄u
l (τ) and W̃u

l (τ).

Ēs
l2

(τ), see [16]. So using a kind of sub-super solution method we can construct the
sets W̄u

l1
(τ) and W̄ s

l2
(τ). These sets are closed and connected and join the origin

with c̄u
l1

(τ) and c̄s
l2

(τ) respectively and have the following property:

W̄u
l1(τ) ⊂ {Q ∈ R2

+ |xl1(t, τ ;Q) ∈ Ēu
l1(τ) for any t ≤ τ}

W̄ s
l2(τ) ⊂ {Q ∈ R2

+ |xl2(t, τ ;Q) ∈ Ēs
l2(τ) for any t ≥ τ}

Let us denote by ξ̄u
l1

(τ) = c̄u
l1

(τ)∩ W̄u
l1

(τ) and ξ̄s
l2

(τ) = c̄s
l2

(τ)∩ W̄ s
l2

(τ); observe that
we can (and will) choose W̄u

l1
(τ) ⊂ W̃u

l1
(τ) and W̄ s

l2
(τ) ⊂ W̃ s

l2
(τ) for any τ ∈ R.

Moreover from Lemma 3.5. in [16] we get the following.

2.4. Lemma. Assume G1′ and G2′, and let Q̄u ∈ W̄u
l1

(τ) and Q̄s ∈ W̄ s
l2

(τ). Then
the solution of (1.5) corresponding to the trajectory xl1(t, τ ; Q̄u) is a regular solution
u(d, r), where d = d(τ ; Q̄u). Moreover if Q̄u ∈ ξ̄u

l1
(τ) we have d(τ ; Q̄u) → +∞ as

τ → −∞ and viceversa, τ → +∞ if d(τ ; Q̄u) → 0, and if l1 ≤ l2 the viceversa
holds as well.

Analogously the solution of (1.5) corresponding to the trajectory xl2(t, τ ; Q̄s) is
a fast decay solution v(L, r), where L = L(τ ; Q̄s) = limr→+∞v(L, r)r(n−p)/(p−1).
Moreover if Q̄s ∈ ξ̄s

l2
(τ) we have L(τ ; Q̄s) → +∞ as τ → +∞ and viceversa,

τ → −∞ as L(τ ; Q̄s) → 0 as and if l1 ≤ l2 the viceversa holds as well.

If G1 holds we can prove something more, see [16].

2.5. Remark. Assume G1 with l1 < p∗. Then there is D > 0 such that u(d, r)
is a crossing solution for d > D and its first zero R(d) is such that R(d) → 0 as
d → +∞.

Let us introduce now the changes of coordinates from (2.2) with l = lu to (2.2)
with l = ls:

(2.6) ℵt
ls,lu(x, y) =

(
x exp[(αls − αlu)t], y exp[(βls − βlu)t]

)
.

Let u(r) be a solution of (1.5) and xlu(t) and xls(t) be the trajectories of (2.2) with
l = lu and l = ls respectively corresponding to u(r); then ℵt

ls,lu

(
xlu(t)

)
= xls(t). If
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Xlu(t) is a trajectory of the autonomous system with lu > p and limt→−∞Xlu(t) =
(0, 0), then Xls(t) := ℵt

ls,lu

(
Xlu(t)

)
is such that limt→−∞Xls(t) = (0, 0), when-

ever ls > p, see [16]. Analogously if lu > σ and limt→+∞Xlu(t) = (0, 0), then
limt→+∞Xls(t) = (0, 0) for any ls > σ.

Let us introduce now the following modified polar coordinates:

(2.7) xl|xl|p−2 = ρl cos(θl) y = ρl sin(θl)

Note that tan(θl(t)) = u′(et)et/u(et), so in fact θl(t) = θ(t) is independent of l
and the sets defined by θ = const are invariant for ℵt

ls,lu
. In particular U0

l , which
is defined by the relation θ = 1/(αl) arctan(|αl|p−1), is invariant for ℵt

ls,lu
. These

diffeomorphisms allows us to introduce the unstable sets and the stable sets also for
l 6= l1 and l 6= l2, and if we just assume G1′′ or G2′′; the construction of these sets
with these weaker assumption is rather technical so it is postponed to the appendix.

More precisely we can construct the compact connected sets W̃u
lu(τ) and ξ̃u

lu(τ)
for any τ ∈ R whenever lu > p if j1 ≤ p∗ and just for lu ≥ j1 otherwise; analogously
we can construct W̃ s

ls(τ) and ξ̃s
ls(τ) for any τ ∈ R whenever ls > σ if i2 ≥ p∗ and

just for ls ≤ i2 otherwise. Moreover we can reprove Lemma 2.4 also with these
weaker assumptions. Again the role of l1 is played by j1 and the role of l2 is played
by i2.

Assume G1′′ and G2′′, then we can define global stable and unstable sets as
follows: Wu

lu(τ) = ℵτ
lu,j1

(
Wu

j1
(τ)

)
, and Ws

ls(τ) = ℵτ
ls,i2

(
Ws

i2
(τ)

)
. Then if Q ∈

Wu
lu(τ), limt→−∞xlu(t, τ,Q) = (0, 0), while if Q ∈ Ws

ls(τ), limt→+∞xls(t, τ,Q) =
(0, 0). Then we follow Wu

lu(τ) and Ws
ls(τ) from the origin towards R2

± and we
denote by ξ̃u

lu(τ) the first intersection of Wu
lu(τ) with U0

lu and by ξ̃s
ls(τ) the first

intersection of Ws
ls(τ) with U0

ls . Then we denote by W̃u
lu(τ) the branch of Wu

lu(τ)
between the origin and ξ̃u

lu(τ), and by W̃ s
ls(τ) the branch of Ws

ls(τ) between the
origin and ξ̃s

ls(τ).
We look for intersections between Wu

l (τ) and Ws
l (τ). For this purpose it is

convenient to understand better the case l = p∗, and we need to assume G1′′

and G2′′ with j1 ≤ p∗ ≤ i2. Observe first that as τ → −∞ |B̄u
l (τ)| becomes

unbounded if l > j1 and tends to 0 if l < j1. Fix x > 0, then bτ
p∗(x) and Bτ

p∗(x)
are both positive and bounded for any τ . So we consider the autonomous system
(2.2) with l = p∗, and the points Q̃u

p∗(b
τ
p∗) and Q̃s

p∗(B
τ
p∗). We denote by B+(τ) =

(B+
x (τ), B+

y (τ)) := Q̃u
p∗(b

τ
p∗) and by B−(τ) = (B−

x (τ), B−
y (τ)) := Q̃s

p∗(B
τ
p∗). We

set c+
p∗(τ) := {(x, y) ∈ U+

p∗ |x = B+
x (τ)} and c−p∗(τ) := {(x, y) ∈ U−

p∗ |x = B−
x (τ)}.

We have already seen that xp∗(t, τ,Q) corresponds to a regular solution of (1.5)
whenever Q ∈ Wu

p∗(τ) and to a fast decay solution whenever Q ∈ Ws
p∗(τ). More-

over we can control Wu
p∗(τ) and Ws

p∗(τ) until they cross U0
p∗ . In the next section we

will discuss in detail the case where the function Gp∗(x, t) is increasing as t → −∞
and decreasing as t → +∞, roughly speaking. In such a case it is possible to obtain
some further results concerning Wu

p∗(τ) and Ws
p∗(τ). In particular we can follow

Wu
p∗(τ) until it crosses c−p∗(τ) and Ws

p∗(τ) until it crosses c+
p∗(τ).

2.6. Lemma. Assume G1′′ and that there is T+ < 0 such that Gp∗(x, t) is in-
creasing in t for t < T+ and any x. Then there is M̆u > 0 such that for any
τ < −M̆u, Wu

p∗(τ) contains a closed connected subset W̆u
p∗(τ) which contains the

origin and intersects c−p∗(τ) in a set denoted by ξ̆u
p∗(τ). Moreover if Q ∈ W̆u

p∗(τ),
then xp∗(t, τ,Q) ∈ R2

± for any t ≤ τ .
Analogously assume G2′′ and that there is T− > 0 such that Gp∗(x, t) is de-

creasing in t for any x and t > T−. Then there is M̆s > 0 such that for any
τ > M̆s, Ws

p∗(τ) contains a closed connected subset W̆ s
p∗(τ) which contains the
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origin and intersects c+
p∗(τ) in a set denoted by ξ̆s

p∗(τ). Moreover if Q ∈ W̆ s
p∗(τ),

then xp∗(t, τ,Q) ∈ R2
± for any t ≥ τ .

The proof of this Lemma is postponed to the appendix. Since W̃u
l (τ) and ξ̃u

l (τ),
W̃ s

l (τ) and ξ̃s
l (τ) have been constructed through the continuous flow of (2.2) re-

stricted to U+
l and U−

l respectively, they vary continuously in τ . More precisely
we have the following: denote by B(Q, ε) the open ball of center Q and radius ε,
and if A is a set denote by B(A, ε) = ∪Q∈AB(Q, ε).

2.7. Remark. Assume that ξ̄u
l (τ) and ξ̄u

l (τ0) exist. Then for any ε > 0 there is δ > 0
such that B(ξ̄u(τ0), ε) ∩ ξ̄u(τ) 6= ∅ whenever |τ − τ0| < δ, for any τ0 ∈ R.

From the previous Remark we easily get the following property.

2.8. Lemma. Let τ1 ≤ τ2 and Q1 ∈ ξ̄u
l1

(τ1), Q2 ∈ ξ̄u
l1

(τ2). If H : R2 → R is
a continuous function and H(Q1) = α, H(Q2) = β with α < β, then for any
γ ∈ (α, β) there is τ ∈ [τ1, τ2] and Q ∈ ξ̄u

l1
(τ) such that H(Q) = γ.

The same continuity property is fulfilled by W̄u(τ), W̃u(τ), W̆u(τ), ξ̃u(τ), ξ̆u(τ),
W̄ s(τ), W̃ s(τ), W̆ s(τ), ξ̄s(τ), ξ̃s(τ), ξ̆s(τ).

3. The main result.

We begin this section with some basic facts, proved in [16] section 3.2, concerning
the value of the function Hp∗ along regular and fast decay solutions. First of all
recall that for any finite value of t the level set {x ∈ R2 |Hl(x, t) = 0} ⊂ R2

± is
bounded, see figure 1. Therefore if Hl(xl(t), t) < 0 for any t ∈ (T1, T2) it follows
that xl(t) ∈ R2

± for any t ∈ (T1, T2) and if T1 and T2 are finite xl(t) can be continued
till t = T1 and t = T2 and belongs to R2

±. This fact will be used several times in
this paper.

3.1. Remark. • Assume that for any x > 0 lim supt→+∞ gσ(x, t) < ∞. Then,
if a solution u(r) of (1.5) has fast decay, for the corresponding trajectory
xp∗(t) of (2.2) we have limt→+∞Hp∗(xp∗(t), t) = 0.

• Assume F (u, r)rn → 0 as r → 0 for any u > 0. Then, if u(d, r) is a regular
solution of (1.5), for the corresponding trajectory xp∗(t) of (2.2) we have
limt→−∞Hp∗(xp∗(t), t) = 0.

3.2. Lemma. Consider a trajectory xp∗(t) of (2.2) and the corresponding solution
u(r) of (1.5) and denote by h+ = lim inft→+∞Hp∗(xp∗(t), t). Assume that there is
l > p such that lim inft→+∞Gl(x, t) > 0 for any x > 0. Follow xp∗(t) forward in t,
then if h+ > 0, xp∗(t) has to cross the negative yp∗ semi-axes. Moreover if u(r) is
positive and has slow decay then h+ < 0.

Analogously denote by h− = lim inft→−∞Hp∗(xp∗(t), t), and assume that there
is l > p such that lim inft→−∞Gl(x, t) > 0 for any x > 0. Follow xp∗(t) backwards
in t, then if h− > 0 xp∗(t) has to cross the positive yp∗ semi-axes. Moreover if u(r)
is a singular solution then h− < 0.

Note that the assumptions of Remark 3.1 and Lemma 3.2 are satisfied if G1′′

and G2′′ hold. The proof of this Lemma is given explicitly in [16] Lemma 3.10,
when h+ and h− are positive. But in fact from a careful analysis the proof of the
part concerning singular and slow decay solutions follows.

Summing up, fast decay and regular solutions are such that Hp∗ goes to 0 respec-
tively as t → +∞ and as t → −∞. If Hp∗ is uniformly positive along a trajectory,
the corresponding regular solution cannot be positive. In [16] it is proved that if
Hp∗ evaluated along a trajectory xp∗(t) is definitely negative, either as t → −∞ or
as t → +∞, then xp∗(t) corresponds respectively to a regular or to a slow decay
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solutions of (1.5). More precisely we have the following asymptotic estimates and
existence results.

3.3. Proposition. Consider a trajectory xp∗(t) of (2.2) which is well defined for
t < −N , and assume lim supt→−∞Hp∗(xp∗(t), t) < 0. Then the corresponding
solution u(r) of (1.5) is a singular solution, hence limr→0u(r) = +∞. Moreover,
if G1′′ is satisfied, then

lim inf
r→0

u(r)r
n−p

p > 0 and 0 < lim sup
r→0

u(r)r
p

j1−p < lim sup
r→0

u(r)r
p

i1−p < ∞ .

Analogously consider a trajectory xp∗(t) of (2.2) which is well defined for t > N
and assume that lim supt→+∞Hp∗(xp∗(t), t) < 0. Then the corresponding solution
u(r) of (1.5) has slow decay. Moreover, if G2′′ is satisfied

lim inf
r→∞

u(r)r
n−p

p > 0 and 0 < lim sup
r→∞

u(r)r
p

i2−p < lim sup
r→∞

u(r)r
p

j2−p < ∞ .

The proof of Proposition 3.3 follows from the proof of Proposition 3.12 in [16],
with some trivial changes. We repeat here also Proposition 3.11 of [16].

3.4. Proposition. Assume G1 with l1 > σ, and that either l1 6= p∗ or l1 = p∗

and Gp∗(x, t) is monotone in t for any x and any t ≤ −M , for a certain M > 0.
Then there is a trajectory x̄l1(t) of the non-autonomous system (2.2) such that
limt→−∞x̄l1(t) = P−∞, where P−∞ is the unique critical point in R2

+\ {(0, 0)} of
the autonomous system where gl1(x, t) ≡ g−∞l1

(x).
Analogously assume that G2 is satisfied with l2 > σ and that either l2 6= p∗ or

l2 = p∗ and Gp∗(x, t) is monotone in t for any x and any t ≥ M , for a certain
M > 0. Then there is a trajectory x̄l2(t) of the non-autonomous system (2.2) such
that limt→+∞x̄l2(t) = P+∞, where P+∞ is the unique critical point in R2

+\ {(0, 0)}
of the autonomous system where gl1(x, t) ≡ g−∞l1

(x).

In this section we will assume the following.

F+
a : There are M+

a and NA < −N such that Gp∗(x, t) is increasing in t for
any (xp∗ , t) ∈ Ua := {(x, t) |x > M+

a eαp∗ t, t ≤ NA} .
F−z : There are M−

z and NZ > N such that Gp∗(x, t) is decreasing in t for any

(x, t) ∈ Sz := {(xp∗ , t) |x > M−
z e−

n−p
p(p−1) t, t ≥ NZ} .

To understand better the previous hypotheses observe that, when G1′′ and G2′′

hold, if Gp∗(x, t) is increasing in t then j1, j2 ∈ (p, p∗] while if it is decreasing then
i1, i2 ∈ [p∗, +∞), see [16]. In fact with F+

a we require that Gp∗(x, t) is increasing
when evaluated along trajectories corresponding to regular solutions u(d, r) with
d large and r small, while with F−z we require that Gp∗(x, t) is decreasing when
evaluated along trajectories corresponding to fast decay solutions v(L, r) with L
small for r large. In fact we ask the system to be subcritical for u large and r small
and supercritical for u small and r large.

In the whole paper we will require also the following without explicitly mention-
ing:

H0: The function gp∗(x, t) converges uniformly on compact subsets to a func-
tion g−∞p∗ (x) as t → −∞ and to g+∞

p∗ (x) as t → +∞.

When F+
a and F−z are satisfied the convergence is ensured, and if f also belongs

to one of the families (1.2), (1.3), (1.4) or it is a sum of functions of these type
H0 holds. Let us denote by X−∞

p∗ (t,Q) and X+∞
p∗ (t,Q) the trajectories of the

autonomous system (2.2) where respectively gp∗(x, t) ≡ g−∞p∗ (x) and gp∗(x, t) ≡
g+∞

p∗ (x), departing from Q at t = 0.
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When G1′′ and G2′′ are satisfied and j1 < p∗ < i2 we have g−∞p∗ (x) ≡ 0 ≡
g+∞

p∗ (x) for any x ≥ 0. In this case we set

M̃u(g−∞p∗ ) = {(x, 0) |x > 0}, M̃s(g+∞
p∗ ) = {(x,−[x(n− p)/(p− 1)]p−1) |x > 0},

and if Qu = (d, 0) ∈ M̃u(g−∞p∗ ) and Qs = (L,−[L(n− p)/(p− 1)]p−1) ∈ M̃s(g+∞
p∗ ),

then X−∞
p∗ (t,Qu) = (deαp∗ t, 0) and X+∞

p∗ (t,Qs) = (Le−
n−p

p(p−1) t, −e−
n−p

p t
(
Ln−p

p−1

)p−1).
Now we can introduce the following hypotheses:

H1: Assume G1′′ with j1 < p∗ and that there are d1 > 0 and Nz ≥ NZ such
that

Gp∗(deαp∗ t, t)− dαp∗

∫ t

−∞
gp∗(deαp∗s, s)eαp∗sds < 0,

for any (d, t) such that 0 < d < d1 and t > Nz.
H2: Assume G2′′ with p∗ < i2 and that there are L2 > 0 and Na ≤ NA such

that

Gp∗(Le−
n−p

p(p−1) t, t)− L
n− p

p(p− 1)

∫ +∞

t

gp∗(Le−
n−p

p(p−1) s, s)e−
n−p

p(p−1) sds < 0,

for any (L, t) such that 0 < L < L2 and t < Na.
If either g−∞p∗ 6≡ 0 or g+∞

p∗ 6≡ 0, the trajectories X−∞
p∗ (t,Qu) and X+∞

p∗ (t,Qs) have
a different expression that in general is unknown.

However when f is of type (1.2) we know the exact formula for the homoclinic
trajectories of the autonomous system: let X̃(t, τ, k) be the trajectory of (2.2) with
g = kx|x|q−2 departing from Q̃u = Q̃s at t = τ , we have

X̃(t, τ, k) =

[
1

D1(e−(t+τ) + D2e
1

p−1 (t+τ))

]n−p
p

k
−n−p

p2 ,

where D1 = (n − p)
p−1

p n
1
p and D2 = [(p − 1)/d](p−1)/p. So if Qu ∈ M̃u(g−∞p∗ )

(respectively Qs ∈ M̃s(g+∞
p∗ )), then X−∞

p∗ (t,Qu) has the form X̃p∗(t, τ, k0) where
k0 = limr→0 k(r)rδ (resp. X+∞

p∗ (t,Qs) has the form X̃p∗(t, τ, k∞) where k∞ =
limr→∞ k(r)rδ), for a certain τ and δ = n−p

p (p∗ − q). So we denote these tra-
jectories as X̃−∞

p∗ (t, τ) (resp. X̃+∞
p∗ (t, τ)) and we introduce the following modified

hypotheses:
[H1′] Assume f is of type (1.2), that G1 holds with l1 = p∗, and that there is

Nz ≥ NZ such that

Gp∗(X−∞
p∗ (τ, τ), τ)−

∫ τ

−∞
gp∗(X−∞

p∗ (t, τ), t)dt < 0,

for any τ > Nz.
[H2′] Assume f is of type (1.2), that G2 holds with l2 = p∗, and that there is

Na ≤ NA such that

Gp∗(X+∞
p∗ (τ, τ)e−

n−p
p−1 τ , τ)−

∫ +∞

τ

gp∗(X+∞
p∗ (t, τ)e−

n−p
p−1 t, t)

d

dt

[
e−

n−p
p−1 tX+∞

p∗ (t, τ)
]
dt < 0,

for any τ < Na.
Observe that from F−z , F+

a we know that the limits limτ→+∞ bτ
p∗(x) = b+∞

p∗ (x)
and limτ→−∞Bτ

p∗(x) = B−∞
p∗ (x) are finite, so the sets Ēu

p∗(τ) are uniformly bounded
even if Ẽu

p∗(τ) becomes unbounded as τ → +∞ see figure 3; analogously the sets
Ēs

p∗(τ) are uniformly bounded even if Ẽs
p∗(τ) becomes unbounded as τ → −∞. We

recall that B̃u
x (τ) is the x component of B̃u

p∗(τ) and B̃s
x(τ) is the x component of

B̃s
p∗(τ). We denote by ρu := infτ∈R B̄u

x (τ) = B̄u
x (+∞), by Ru := supτ∈R B̄u

x (τ)
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ρs := infτ∈R B̄s
x(τ) = B̄s

x(−∞) and by Rs := supτ∈R B̄s
x(τ): observe that ρu, Ru,

ρs and Rs are positive and finite.
We need to embed (2.2) in the following one parameter family of non-autonomous

systems where we have added the translation parameter τ .

(3.1)
(

ẋl

ẏl

)
=

(
αl 0
0 γl

) (
xl

yl

)
+

(
yl|yl|

2−p
p−1

−gl(xl, t + τ)

)

We denote by xτ
l (t,Q) the trajectory of (3.1) departing from Q at t = 0 so that

xτ
l (t,Q) ≡ x(t + τ, τ ;Q). So we can rewrite W̄ s

l (τ) and W̄u
l (τ) as follows

W̄u
l (τ) = {Q |xτ

l (t,Q) ∈ Ēu
l (τ) for any t ≤ 0}

W̄ s
l (τ) = {Q |xτ

l (t,Q) ∈ Ēs
l (τ) for any t ≥ 0}

and we have an analogous result for the sets W̃ s
l (τ) and W̃u

l (τ).
Let us consider the set of trajectories

U = ∪τ≥0{xτ
p∗(t,Q) |Q ∈ W̄u

p∗(τ) t ≤ 0}
S = ∪τ≤0{xτ

p∗(t,Q) |Q ∈ W̄ s
p∗(τ) t ≥ 0}

Observe that any trajectory xτ
p∗(t,Q) ∈ U is contained in the compact set Ēu

p∗(+∞) =
{(x, y) ∈ U+

p∗ ∪ U0
p∗ | 0 ≤ x ≤ Ru}, for any t ≤ 0; analogously xτ

p∗(t,Q) ∈ S is con-
tained in the compact set Ēs

p∗(−∞) = {(x, y) ∈ U+
p∗ ∪ U0

p∗ | 0 ≤ x ≤ Rs} for any
t ≥ 0. Therefore the sets of functions U and S are equibounded.

Observe also that if xτ
p∗(t,Q) ∈ U (respectively S), it solves (3.1) and satisfies

limt→−∞xτ
p∗(t,Q) = (0, 0) (resp. limt→+∞xτ

p∗(t,Q) = (0, 0)). Moreover the func-
tion t → gp∗(x, t+τ) is bounded for t < 0, uniformly in x and τ for any x ∈ Ēu

p∗(τ);
analogously t → gp∗(x, t + τ) is bounded for any t > 0, uniformly in x and τ , for
any x ∈ Ēs

p∗(τ). So from (3.1) we easily find that the functions of U and S are also
equi-Lipschitz.

Let us choose a sequence (τn,Qn) such that τn → +∞ and Qn ∈ W̄u
p∗(τn)

converges to a point Q+∞, and consider the sequence of functions (xτn
p∗ (t,Q

n)) ⊂ U.
It follows that xτn

p∗ (t,Q
n) converges pointwise to the solution of X+∞

p∗ (t,Q+∞),
therefore Q+∞ ∈ M̃u

p∗(g
+∞
p∗ ). Analogously choose a sequence (τm,Qm) such that

τm → −∞ and Qm ∈ W̄ s
p∗(τm) converges to a point Q−∞. We find that Q−∞ ∈

M̃u
p∗(g

−∞
p∗ ) and xτm

p∗ (t,Qm) converges pointwise to the solution of X−∞
p∗ (t,Q−∞) of

the autonomous system.
Exploiting the fact that the functions in U and X+∞

p∗ (t,Q+∞) tend to 0 exponen-
tially as t → −∞ and using a Theorem of Ascoli-Arzelà type, it is in fact possible
to show that xτn

p∗ (t,Q
n) converges uniformly to X+∞

p∗ (t,Q+∞) for t ≤ 0. The
analogous property holds for functions in S: we do not give the details since this
property is not really needed in the proof. Now we can easily prove the following
result.

3.5. Lemma. Assume that either H1 or H1′ are satisfied. Then there is T̄ z > Nz

such that Hp∗(Q, τ) < 0 for any τ > T̄ z and any Q ∈ W̄u
p∗(τ).

Analogously assume that either H2 or H2′ are satisfied. Then there is T̄ a < Na

such that Hp∗(Q, τ) < 0 for any τ < T̄ a and any Q ∈ W̄ s
p∗(τ).

Proof. Choose Q = (Qx, Qy) ∈ W̄u
p∗(τ); from (2.4) and Remark 3.1 we have

Hp∗(Q, τ) = Gp∗(Qx, τ)−
∫ τ

−∞
ẋp∗(s, τ ;Q)gp∗(xp∗(s, τ ;Q), s)ds =

= Gp∗(Qx, τ)−
∫ 0

−∞
ẋτ

p∗(t,Q)gp∗(xτ
p∗(t,Q), t + τ)dt

(3.2)
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We have seen that, if we choose τ → +∞ and Q(τ) → Q(+∞), the trajectory
xτ

p∗(t,Q(τ)) converges pointwise to X+∞
p∗ (t,Q+∞) as τ → +∞. Furthermore, using

the fact that both X+∞
p∗ (t,Q+∞) and xτ

p∗(t,Q) converge to 0 as t → −∞ with the
same exponential rate (they both are O(eαp∗ t)), for τ sufficiently large we find

∣∣ẋτ
p∗(s,Q)gp∗(xτ

p∗(s,Q), s + τ)− Ẋ+∞
p∗ (s,Q+∞)gp∗(X+∞

p∗ (s,Q), s + τ)
∣∣ ≤

≤ K
∣∣Ẋ+∞

p∗ (s,Q+∞)gp∗(X+∞
p∗ (s,Q), s + M)

∣∣ ∈ L1
[
(−∞, 0)

]

where K and M are sufficiently large constants. So from Lebesgue Convergence
Theorem we conclude that for any ε > 0 there is T̄ z > Nz such that, for any τ > T̄ z

we have
∣∣Hp∗(Q, τ)−Gp∗(Q+∞

x , τ) +
∫ 0

−∞
Ẋ+∞

p∗ (s,Q+∞)gp∗(X+∞
p∗ (s,Q), s + τ)

∣∣ < ε

So, if either H1 or H1′ hold, we can choose ε > 0 small enough so that Hp∗(Q, τ) <
0 for any Q ∈ W̄u

p∗(τ), whenever τ > T̄ z. The proof concerning the stable set
W̄ s

p∗(τ) is analogous, so we omit it. ¤

3.6. Lemma. Assume G1′′ and F+
a ; then there is T̆ a < 0 such that for τ < T̆ a we

have Hp∗(Q, τ) > 0 for any Q ∈ ξ̆u
p∗(τ). Analogously assume G2′′ and F−z ; then

there is T̆ z such that for any τ > T̆ z we have Hp∗(Q, t) > 0 for any Q ∈ ξ̆s
p∗(τ).

Proof. Assume G1′′ and F+
a : it follows that j1 ≤ p∗. We construct the function

ḡp∗(x, t) defined as follows:

ḡp∗(x, t) :=
{

gp∗(x, t), if (x, t) ∈ Ua;
gp∗(x, min{Na, 1/αp∗ ln(x/M+

a )}), if (x, t) 6∈ Ua.

Consider system (2.2) where l = p∗ and we have replaced the original function
gp∗(x, t) with the truncated function ḡp∗(x, t). From F+

a it follows that Ḡp∗(x, t) =∫ x

0
ḡp∗(s, t)ds is increasing in t for any (x, t) ∈ R2. So we can apply Lemma 2.6 to

conclude the existence of the manifold W̆u
p∗(τ) for any τ ∈ R, for the truncated sys-

tem. Choose Q̆u = (Q̆u
x, Q̆u

y ) ∈ ξ̆u
p∗(τ), where τ < Na, and consider the trajectory

xp∗(t, τ, Q̆u) and the corresponding regular solution u(d, r) of the truncated prob-
lem. Set T̆ a = min{Na, 1/αp∗ ln(ρu/M+

a )} so that Q̆u
xe−αp∗τ > ρue−αp∗ T̆ a

> M+
a

for any τ < T̆ a. From Lemma 2.2 we know that u(d, r) is decreasing for t ≤ τ .
So u(d, r) > M+

a for any r ≤ eτ and (xp∗(t, τ, Q̆u), t) ∈ Ua for any t ≤ τ . So
xp∗(t, τ, Q̆u) is a trajectory of the original problem as well. It follows that for any
τ < T a the set W̆u

p∗(τ) ⊂ R2
± exists for the original problem, and that it joins the

origin with ξ̆u
p∗(τ). Note also that the sets ξ̆u

p∗(τ) for the original and the truncated
problem coincide but the sets W̆u

p∗(τ) do not (even if they both have the properties
described in Lemma 2.6). Since

(
xp∗(t, τ, Q̆u), t

) ∈ Ua for any t ≤ τ , from F+
a we

find that

Hp∗(Q̆u, τ) =
∫ τ

−∞

∂

∂t
Gp∗(xp∗(t, τ, Q̆u), t)dt > 0 .

Analogously assume G2′′ and F−z ; it follows that i2 ≥ p∗. Consider the function
ḡp∗(x, t) defined as follows:

ḡp∗(x, t) :=

{
gp∗(x, t), if (x, t) ∈ Sz;
gp∗(x,max{Nz, p(p−1)

n−p | ln(x/M−
z )|}), if (x, t) 6∈ Sz.

and the modified problem where gp∗(x, t) = ḡp∗(x, t). Observe that Ḡp∗(x, t) is
decreasing in t for any (x, t) ∈ R2. Reasoning as above we prove the existence of a
stable set W̆ s

p∗(τ) for any τ ∈ R. Set T̆ z := max{Nz, p(p−1)
n−p ln(Mz

−/ρu)}; it follows
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that for any Q̆s ∈ ξ̆s
p∗(τ) and τ > T̆ z we have xp∗(τ, τ, Q̆s) exp[τ(n−p)/[p(p−1)] >

Mz
−. Moreover from Lemma 2.2 we have xp∗(t, τ, Q̆s) exp

(
t(n−p)/[p(p−1)]

)
> Mz

−
for any t ≥ τ so xp∗(t, τ, Q̆s) ∈ Sz whenever t ≥ τ . Therefore these trajectories are
actually solutions of the original problem and we can infer the existence of a stable
set W̆ s

p∗(τ) ⊂ R2
± which intersects c̆s

p∗(τ) in ξ̆s
p∗(τ) for any τ > T̆ z.

Again, since Gp∗(x, t) is decreasing in Sz, from (2.4) we find

Hp∗(Q̆s, τ) = −
∫ +∞

τ

∂

∂t
Gp∗(xp∗(t, τ, Q̆s), t)dt > 0 .

¤

Observe that for τ > T̆ z we have W̄ s
p∗(τ) ⊂ W̃ s

p∗(τ) ⊂ W̆ s
p∗(τ), while for

τ < T̆ a we have W̄u
p∗(τ) ⊂ W̃u

p∗(τ) ⊂ W̆u
p∗(τ). Set T a = min{T̄ a, T̆ a} and

T z = max{T̄ z, T̆ z}.
We give now a Remark, that together with Proposition 3.3, allows to give better

estimates on the asymptotic behavior of positive solutions.

3.7. Remark. Assume that G1′′, G2′′, F−z , F+
a are satisfied and consider a slow

decay solution u(r), a singular solution v(r), and the corresponding trajectories
xu

p∗(t) and xv
p∗(t).

Then limt→+∞Hp∗(xu
p∗(t), t) < 0 and limt→−∞Hp∗(xv

p∗(t), t) < 0.

Proof. From Lemma 3.2 we know that lim inft→+∞Hp∗(xu
p∗(t), t) = h+ < 0. There-

fore there is T large such that Hp∗(xu
p∗(T ), T ) < 0. From Lemma 2.2 xu

p∗(t)e
n−p

p(p−1) t ↗
+∞ as t → +∞, so, possibly choosing a larger T , we can assume that xu

p∗(t)e
n−p

p(p−1) t >
Mz
− for any t > T . Hence xu

p∗(t) ∈ Sz for t ≥ T and Hp∗(xu
p∗(t), t) is negative and

decreasing for t ≥ T ; so it converges to a negative value. The proof concerning the
singular solution u(r) is completely analogous. ¤

Set A− := {d > 0 |u(d, r) is a G. S. with slow decay} and A+ := {d > 0 |u(d, r)
is a crossing solution}.
3.8. Lemma. Assume G1′′, G2′′, F−z , F+

a ; then A+ and A− are open.

Proof. Let d̄ ∈ A+ and denote by R(d̄) = eT (d̄) the first zero of u(d̄, r). Let
xj1(t, τ, Q̄

u) be the trajectory corresponding to u(d̄, r); we can choose τ such that
Q̄u ∈ W̄u

j1
(τ)\ ξ̄u

j1
(τ). Choose d > 0 such that |d − d̄| < δ and let xj1(t, τ,Q

u)
be the trajectory corresponding to u(d, r). If we show that u(d, r) is a crossing
solution, then it follows that A+ is open. From Remark 2.1 we know that for
any ε > 0 we can find δ > 0 such that ‖Qu − Q̄u‖ < ε. So we can also assume
that Qu ∈ W̄u

j1
(τ). Moreover we can assume that xj1(t, τ,Q

u) does not cross the y-
negative semi-axis for t ≤ T (d̄), otherwise we are done. Fix ρ > 0 small, and denote
by T̄ρ = max{t ≤ T (d̄) | xj1(t, τ,Q

u) = ρ}. From the continuous dependence on
initial data of (2.2) on R2

± it follows that we can choose ε > 0 small enough so
that ‖xj1(T̄ρ, τ, Q̄u)− xj1(T̄ρ, τ,Qu)‖ < ρ/2. Since we can choose ρ > 0 arbitrarily
small and xj1(t, τ, Q̄

u) crosses the y negative semi-axis transversally, it can be
shown easily that xj1(t, τ,Q

u) has to cross the y negative semi-axis transversally
as well, at a certain t = T (d) close to T (d̄). Hence A+ is open. ¤

Using Lemma 2.8, from elementary arguments we find that

3.9. Remark. Assume G1′′, G2′′, F−z , F+
a , either H1 or H1′, and either H2 or

H2′. Then there is τh ∈ R such that ξ̃u
p∗(τh) ∩ ξ̃s

p∗(τh) 6= ∅.
Now we are ready to prove the main result of the paper.
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3.10. Theorem. Assume G1′′, G2′′, F−z , F+
a ; moreover assume either H1 or H1′,

and either H2 or H2′. Then there are d∗ ≤ d∗ such that u(d, r) is a G.S. with
fast decay if d ∈ {d∗, d∗}, a G.S. with slow decay if d ∈ (0, d∗), and a crossing
solution if d > d∗. Furthermore there are uncountably many S.G.S. with fast decay,
uncountably many solutions of the Dirichlet problem in the exterior of balls, and
S.G.S. with slow decay. So positive solutions have a structure of type Mix.

Proof. Let us choose Q ∈ ξ̃u
p∗(τh) ∩ ξ̃s

p∗(τh), see Remark 3.9. It follows that
xp∗(t, τh,Q) ∈ Ẽu

p∗(τ
h) for any t ≤ τh and xp∗(t, τh,Q) ∈ Ẽs

p∗(τ
h) for any t ≥ τh.

In particular xp∗(t, τ,Q) ∈ R2
± so the corresponding solution u(d, r) is a monotone

decreasing G.S. with fast decay.
We show now that any regular solution u(d(Q̄u), r) corresponding to xp∗(t, τ, Q̄u)

where Q̄u ∈ W̄u
p∗(τ) and τ > T z, is a G.S. with slow decay. Then from Lemma 2.4

we deduce the existence of a d∗ > 0 such that u(d, r) is a G.S. with slow decay for
any 0 < d < d∗.

From Lemma 3.5 we know that Hp∗(Q̄u, τ) < 0 for any Q̄u ∈ ξ̄u
p∗(τ) and

τ > T z. Let us denote by R(Q̄u) ≤ +∞ the first zero of u(d(Q̄u), r) and ob-
serve that u(d(Q̄u), r)r

n−p
p−1 is increasing for 0 < r < R. Recall that Q̄u = (Q̄u

x, Q̄u
y )

is such that Q̄u
x > ρu. So we have xp∗(t, τ, Q̄u)e

n−p
p(p−1) t > ρue

n−p
p(p−1) T z

> M−
z and

(xp∗(t, τ, Q̄u), t) ∈ Sz for t ∈ [τ, ln(R)). It follows that Hp∗(xp∗(t, τ, Q̄u), t) is nega-
tive and decreasing for any t ∈ [τ, ln(R)), therefore R = +∞ and xp∗(t, τ, Q̄u) ∈ R2

±
for any t ∈ R.
So limt→+∞Hp∗(xp∗(t, τ, Q̄u), t) < 0 and u(d(Q̄u), r) is a G.S. with slow decay, see
Proposition 3.3. Since we can repeat the argument for any τ > T z, from Lemma
2.4 we find that u(d, r) is a G.S. with slow decay for d small enough.

Now we prove that there is d∗ such that u(d, r) is a crossing solution for any
d > d∗. We choose τ < T a and Q̆u ∈ W̆u

p∗(τ); from Lemma 3.5 and 3.6 it follows
that Hp∗(Q̆u, τ) > 0 > Hp∗(Q̄s, τ) for any Q̄s ∈ ξ̄s

p∗(τ). Reasoning as above we
can show that there is T > τ such that xp∗(t, τ, Q̆u) ∈ R2

± for t < T and crosses
the y negative semi-axis at t = T. It follows that the corresponding solution u(d, r)
of (1.5) is regular and it is such that u(d, r) > 0 for r ∈ [0, eT) and u(d, eT) = 0, so
it is a crossing solution. This proves the part of the Theorem concerning regular
solutions. Note also that we have proved that A+ and A− are non-empty and we
know from Lemma 3.8 that they are open. So there is d∗ > 0 which disconnect
them, and this gives a different proof of the existence of G.S. with fast decay.
Using the same argument we can prove that the Dirichlet problem (1.5) in the
exterior of the ball of radius R admits at least a solution for any R large enough.

Now we prove the existence of S.G.S. with fast decay. Choose τ < T a and a point
Q = (Qx, Qy) ∈ ξ̄s

p∗(τ), so that Qx > ρs. We denote by T = inf{t |xp∗(s, τ,Q) ∈
R2
± for any s > t}; note that T < τ . From Lemma 2.2 we know that xp∗(t, τ,Q)e−αp∗ t >

ρse−αp∗τ > M+
a for any t < τ , so xτ

p∗(t,Q) ∈ Ua for t ≤ τ . From Lemma 3.5 we
have that Hp∗(xp∗(t, τ,Q), t) is negative for t = τ and increasing for t ∈ (T, τ).
Hence T = −∞ and xp∗(t, τ,Q) ∈ R2

± for any t ∈ R, and from Proposition 3.3 we
find that v(r) is a monotone decreasing S.G.S. with fast decay.

Now we prove the existence of uncountably many S.G.S. with slow decay, see
figure 4. We stress that the multiplicity result is in fact new for nonlinearities of
this type even in the classical case p = 2; in fact in [7] it was conjectured that the
S.G.S. is unique. Choose τ < T a; we denote by Ru(τ) the open subset enclosed
by W̄ s

p∗(τ), W̆u
p∗(τ) and the vertical line between ξ̄s

p∗(τ) and ξ̆u
p∗(τ). Analogously

choose τ > T z; we denote by Rs(τ) the open subset enclosed by W̄u
p∗(τ), W̆ s

p∗(τ)
and the vertical line between ξ̄u

p∗(τ) and ξ̆s
p∗(τ), see figure 4. Observe that Ru(τ)
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Figure 4. Construction of S.G.S. with slow decay.

is “negatively invariant” for any τ ≤ T a; more precisely if Q ∈ Ru(τ) and τ ≤ T a,
then xp∗(t, τ,Q) ∈ Ru(t) for any t ≤ τ . Analogously Rs(τ) is “positively invariant”
for any τ ≥ T z: if Q ∈ Rs(τ) and τ ≥ T z, then xp∗(t, τ,Q) ∈ Rs(t) for any t ≥ τ .

We choose T2 > T z and we look for a P1 ∈ Ru(T1) such that xp∗(T2, T1,P1)
∈ Rs(T2) and xp∗(t, T1,P1) ∈ R2

± for any t ∈ [T1, T2]. Then it follows that
xp∗(t, T1,P1) ∈ R2

± for any t. Then we will see that it is possible to choose P1

in such a way that there is δ < 0 such that Hp∗(xp∗(t, T1,P1), t) < −δ < 0 for |t|
large enough. So it does not converge to the origin and we can conclude that the
corresponding solution u(r) of (1.5) is a S.G.S. with slow decay whose asymptotic
behavior (both as r → 0 and as r → +∞) is described by Proposition 3.3.

Let us choose P1 ∈ U0
p∗ and set δ = ‖P1‖. If δ > 0 is not too large we have

P1 ∈ Ru(T1) and Hp∗(P1, T1) < 0. If δ is small enough we can find Q1 ∈ W̄u
p∗(T1)

such that ‖Q1−P1‖ < δ, ‖Q1‖ < δ. Possibly choosing a smaller δ, we can assume
that xp∗(T2, T1,Q1) = Q2 = (Q2

x, Q2
y) ∈ ξ̄u

p∗(T2). Then from Lemma 3.5 there is
c > 0 so that Hp∗(Q2, T2) = −2c < 0. Let us denote by P2 = xp∗(T2, T1,P1); for
any ε > 0 we can find δ > 0 such that ‖xp∗(t, T1,P1) − xp∗(t, T1,Q1)‖ < ε, for
any t ∈ [T1, T2], thanks to the continuous dependence on initial data of (2.2); in
particular xp∗(t, T1,P1) ∈ R2

± for any t ∈ [T1, T2]. Moreover we can also assume
that |Hp∗(P2, T2) −Hp∗(Q2, T2)| < c, so that Hp∗(P2, T2) < −c. Observe that if

T2 is large enough xp∗(t, T1,P1)e
n−p

p(p−1) t > (Q2
x − ε)e

n−p
p(p−1) T2 > ρue

n−p
p(p−1) T2 > Mz

−,
for any t > T2, thanks to Lemma 2.2. Hence xp∗(t, T1,P1) ∈ Sz for any t > T2

and Hp∗(xp∗(t, T1,P1), t) ≤ Hp∗(P2, T2) < 0 for any t > T2. So from Proposition
3.3 we get that the solution v(r) corresponding to xp∗(t, T1,P1) has slow decay.

Moreover there is T0 < T1 such that xp∗(T0, T1,P1) = P0 = (P 0
x , P 0

y ) ∈
c−p∗(T0)\ ξ̄s

p∗(T0). Observe that for any Q = (P 0
x , Qy) ∈ ξ̄s

p∗(T0) by construc-
tion we have P 0

y > Qy, so from an easy computation and Lemma 3.5 we get
Hp∗(P0, T0) < Hp∗(Q, T0) < 0. Thus from Lemma 2.2 we have xp∗(t, T1,P1) >
ρs exp[αp∗(t− T0)] > M+

a exp[αp∗t] for t < T0; so
(
xp∗(t, T1,P1), t

) ∈ Ua whenever
t < T0. It follows that limt→−∞Hp∗(xp∗(t, T1,P1), t) < 0, and v(r) is a singular
solution so it is a S.G.S. with slow decay. Since we can repeat the argument for
uncountably many points P1 we find that there are uncountably many S.G.S. with
slow decay. ¤
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If some further assumptions are satisfied it is possible to understand something
more concerning the behavior of regular solutions.

3.11. Corollary. Assume that we are in the hypothesis of Theorem 3.10. Moreover
assume that G1 is satisfied with l1 < p∗ and denote by R(d) the first zero of a
crossing solution u(d, r) where d > d∗. Then R(d) depends continuously on d and
tends to 0 as d → +∞ and to +∞ as d → d∗.

Moreover, if we assume that there is T such that, for any x > 0, Gp∗(x, t) is
increasing in t for any t < T and decreasing for any t > T , then we have d∗ = d∗,
so the G.S. with fast decay is unique.

Proof. The claim concerning the first zero of regular solutions follows from Lemma
2.5 and Theorem 3.10. The proof of the uniqueness of the G.S. with fast decay
follows from [24]. More precisely in that paper the claim is proved just for f of
type (1.2). But the argument relies on an intersection property of regular solutions
(and of fast decay solutions) that depends on the fact that any G.S. with fast decay
u(d, r) is such that P (u(d, r), u′(d, r), r) > 0 for any r > 0. It is easily observed
that this fact holds also with our hypotheses.

Then the proof of the uniqueness goes through following [24] almost with no
changes. ¤

We also stress that if G1 and G2 hold then the asymptotic estimates for singular
and slow decay solutions simplify to u(r)r−

p
l1−p → Pu

x as r → 0 and u(r)r
−p

l2−p → P s
x

as r → ∞, where Pu
x and P s

x are positive computable constants, see Proposition
3.4.

3.12. Remark. We stress that following [19] (or [16]) it is possible to reduce the
analysis of radial solutions of

(3.3) div(h(|x|)∇u|∇u|p−2) + f̄(u, |x|) = 0

to the analysis of solutions of an equation of the form (1.5). Here again x ∈ Rn

and h(|x|) ≥ 0 for |x| ≥ 0. Set a(r) = rn−1g(r), the only requirement is that one
of the Hypotheses below is satisfied

A1: a−1/(p−1) ∈ L1[1,∞]\ L1[0, 1]
A2: a−1/(p−1) ∈ L1[0, 1]\L1[1,∞)

4. Applications

In this section we give some applications of Theorem 3.10 and Corollary 3.11 to
functions of the form (1.2), (1.3) and (1.4). First of all we compute the func-
tions g obtained in these cases. When f is of type (1.2) we have gl(xl, t) =
k(et)eδltxl|xl|q−2, where δl = αl(l−q). If there is l1 > p such that limt→−∞k(et)eδl1 t =
A > 0, then G1 holds, while if k(et)eδl1 t varies between two positive values
for t < 0 G1′ holds, and G1′′ holds if there are a > 0 and b > 0 such that
k(et)eδj1 t > a and k(et)eδi1 t < b for t < 0. Analogously if there is l2 > σ such
that limt→+∞k(et)eδl2 t = A > 0 then G2 holds, and if k(et)eδl2 t varies between
two positive values for t > 0 then G2′ holds, and G2′′ holds if there are A > 0 and
B > 0 such that k(et)eδi2 t > A and k(et)eδj2 t < B for t > 0. In particular if k(r) is
uniformly positive and bounded we find that G1′ and G2′ hold with l1 = l2 = q.

When f is of type (1.3) and k1 and k2 are uniformly positive and bounded we
can set l1 = q2 − q1 to find

gl1(xl1 , t) =
k2(et)xl1 |xl1 |q2−2

e
p

q2−q1−p t + k1(et)xl1 |xl1 |q1−2
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so that for any given τ ∈ R we have that aτ
l1

(xl1) has the form
k2x

q2−1
l1

2(c+k1x
q1−1
l1

)
and

bτ
l1

(xl1) = 2k2
k1

xq2−q1
l1

, where c, k1 and k2 are positive constants. Analogously if we
set l2 = q2 we obtain

gl2(xl2 , t) =
k2(et)xl2 |xl2 |q2−2

1 + k1(et)e−
p(q1−1)

q2−p txl1 |xl1 |q1−2
,

hence Aτ
l2

(xl2) has the form
k2x

q2−1
l1

2(1+cx
q1−1
l2

)
and Bτ

l2
(xl2) = 2k2x

q2−1
l2

where c, k1 and

k2 are positive constants.
The function gp∗(x, t) has the following form:

gp∗(x, t) =
k2(et)x|x|q2−2

eαp∗ (p∗−q2)t + k1(et)eαp∗ (p∗−q2+q1)tx|x|q1−2

When f is of type (1.4) and k is uniformly positive and bounded, G1′ and G2′

hold with l1 = q1 and l2 = q2 and we find respectively

gq1(xq1 , t) = k(et)×
{

xq1 |xq1 |q1−2, if |xq1 | ≥ e
pt

q1−p ;

e−
p(q2−q1)

q1−p txq1 |xq1 |q2−2, if |xq1 | ≤ e
pt

q1−p

gq2(xq2 , t) = k(et)×
{

e
p(q2−q1)

q2−p txq2 |xq2 |q1−2, if |xq2 | ≥ e
pt

q2−p ;
xq2 |xq2 |q2−2, if |xq2 | ≤ e

pt
q2−p

(4.1)

Let us denote by λ = αp∗(q− p∗) and by λi = αp∗(qi − p∗) for i = 1, 2. After some
easy computation we find the following.

4.1. Remark. Assume f is of type (1.2); if k(r)r−λ is increasing then Gp∗(x, t) is
increasing in t, while if it is decreasing Gp∗(x, t) is decreasing. Moreover assume that
there are R > ρ > 0 such that k(r)r−λ is increasing for 0 < r < ρ and decreasing
for r > R, then F+

a , Fz
− hold. Assume further that respectively l1 < p∗ or l1 = p∗

and (k(r)r−λ)′r−
n

p−1 6∈ L1([0, 1]), then H1 or respectively H1′ hold; analogously
if l2 > p∗ or l2 = p∗ and (k(r)r−λ)′rn 6∈ L1([1,∞)), then H2 or respectively H2′

hold. So we can apply Theorem 3.10 and find structure Mix for positive solutions.
Finally assume R = ρ, then we can apply Corollary 3.11 and we find that the

G.S. with fast decay is unique.

Proof. The only difficulty is to verify that H1, H1′, H2 and H2′ hold. But this
follows from the fact that the integrals defined in these Hypotheses are always
assumed to be diverging to −∞. The proof can be obtained repeating the argument
used in section 6 of [33], with some trivial changes. We stress also that in order to
have structure Mix in the case q = p∗ and k uniformly positive and bounded in [33]
it is required neither (k(r)r−λ)′r−

n
p−1 6∈ L1([0, 1]) nor (k(r)r−λ)′rn 6∈ L1([1,∞)),

but their proof in that case is uncorrect. ¤

In particular we have the following results

4.2. Corollary. Assume that f is of type (1.2) and k(r) = A0r
λ + A1r

s + o(rs)
at r = 0 and k(r) = B0r

λ + B1r
l + o(rl) at r = ∞, where −p < l < λ < s

and A1, B1 > 0. Then hypotheses G1 and G2 hold with l1 = p∗ if A0 > 0 and
l1 = p(s+q)/(s+p) if A0 = 0, l2 = p∗ if B0 > 0 and l2 = p(l+q)/(l+p) if B0 = 0.
Moreover if either A0 = 0 or A0 > 0 and s < λ + n

p−1 and either B0 = 0 or B0 > 0
and l > λ − n, positive solution have a structure of type Mix. If A0 = B0 = 0 we
also have that all the singular solutions v(r) are such that limr→0v(r)r

p+s
q−p = C1

while all the slow decaying solutions w(r) are such that limr→+∞w(r)r
p+l
q−p = C2,
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where C1 and C2 are computable constants (they are the x coordinates of the critical
points P−∞ and of P+∞).

Now we give an example in which G1′ and G2′ do not hold but G1′′ and G2′′

do.

4.3. Corollary. Assume that f is of type (1.2) and k(r) = Arλ/| ln r|s. Then G1′′

and G2′′ hold with i1 = j2 = p∗ − ε and i2 = j1 = p∗ + ε, for any ε > 0. Moreover
hypotheses H1, H2, F+

a , Fz
− are satisfied. So we can apply Theorem 3.10 and

Corollary 3.11 and we find that positive solution have a structure of type Mix and
that the G.S. with fast decay is unique.

Similar results can be obtained for f of type (1.4): assume that k(r) = A0r
λ1 +

A1r
s + o(rs) at r = 0 and k(r) = B0r

λ2 + B1r
l + o(rl) at r = ∞, where λ1 < s,

−p < l < λ2 and A1, B1 > 0. Assume that either A0 = 0 or A0 > 0 and s < λ1+ n
p−1

and either B0 = 0 or B0 > 0 and l > λ2 − n, then we obtain the same results as in
Corollary 4.2.

We give now an example in which G1′ and G2′ hold but G1 and G2 do not.

4.4. Corollary. Assume f is of type (1.4) and k(r) = 2+sin(a ln(r)) where |λi| > |a|
for i = 1, 2. If q1 < q2 < p∗, then G1′ and G2′ hold with l1 = q1 and l2 = q2, and
we can apply Theorem 4.2 in [16]; in particular positive solutions have structure
Sub. If q2 > q1 > p∗, we can apply Theorem 4.3 in [16]; in particular positive
solutions have structure Sup. If q1 < p∗ < q2, we can apply Theorem 3.10, so in
particular positive solutions have structure Mix.

4.5. Corollary. Assume that f is of type (1.3), p∗−1 > q2−q1 > p−1 and q2 > p∗

and denote by λa = αp∗(q2 − q1 − p∗) and by λz = αp∗(q2 − p∗). Assume that k1

is a positive constant while k2(r) is such that and k2(r) = A0r
λ1 + A1r

s + o(rs) at
r = 0 and k2(r) = B0r

λ2 + B1r
l + o(rl) at r = ∞, where λ1 < s, −p < l < λ2

and A1, B1 > 0. Then if either A0 = 0 or A0 > 0 and s < λ1 + n
p−1 and either

B0 = 0 or B0 > 0 and l > λ2 − n, positive solution have a structure of type Mix.
Again if A0 = B0 = 0 we also have that all the singular solutions v(r) are such
that limr→0v(r)r

p+s
q−p = C1 while all the slow decaying solutions w(r) are such that

limr→+∞w(r)r
p+l
q−p = C2, where C1 > 0 and C2 > 0 are computable constants.

5. Appendix: Construction of stable and unstable set when G1′′ and
G2′′ hold. Proof of Lemma 2.6.

Now we develop the construction of Wu
j1

and W s
i2

in the case we just assume
G1′′ and G2′′. First of all we need to introduce the three dimensional autonomous
system obtained from (2.2) adding the extra variable z = t.

(5.1)
ẋp∗ = αp∗xp∗ + yp∗ |yp∗ |

2−p
p−1

ẏp∗ = γp∗yp∗ − gp∗(xp∗ , z)
ż = 1

We introduce the following further definitions:

Mu
i1(a

τ
j1 , z) := ℵz

i1,j1

(
Mu

j1(a
τ
j1)

)
and Mu

j1(b
τ
i1 , z) := ℵz

j1,i1

(
Mu

i1(b
τ
i1)

)
.

We consider system (2.2) where l = j1. We denote by Ãu
j1

(τ, z) the intersection
of M̃u

j1
(aτ

j1
, z) with U0

j1
and by B̃u

j1
(τ, z) the intersection of M̃u

i1
(bτ

j1
, z) with U0

j1
(this

intersection exists since j1 ≥ i1). Fix τ ∈ R; we wish to stress that Ãu
j1

(τ, z) is in
fact independent of z while B̃u

j1
(τ, z) does depend on z and limz→−∞ ‖B̃u

j1
(τ, z)‖ =

0. However, for any fixed z ≤ τ , both ‖Ãu
j1

(τ, z)‖ and ‖B̃u
j1

(τ, z)‖ are positive and
bounded.
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Figure 5. Construction of W̃u(τ) and ξ̃u(τ) when G1′′ is assumed.

We denote by ∂Ẽu,a
j1

(τ, z) = M̃u
j1

(aτ
j1

, z) by ∂Ẽu,b
j1

(τ, z) = M̃u
j1

(bτ
i1

, z), and by
∂Ẽu

j1
(τ, z) = ∂Ẽu,a

j1
(τ, z)∪ ∂Ẽu,b

j1
(τ, z) and we claim that ∂Ẽu,a

j1
(τ, z) is on the right

of ∂Ẽu,b
j1

(τ, z). We denote by Ẽu
j1

(τ, z) the bounded set enclosed by ∂Ẽu
j1

(τ, z) and
U0

j1
for z ≤ τ . Using elementary argument, see [16] we can show that the flow of

(2.2) on ∂Ẽu
j1

(τ, z) points towards the interior of Ẽu
j1

(τ, z) for any t = z ≤ τ . As
a consequence we also find that M̃u

i1
(aτ

i1
, τ) is on the right of M̃u

j1
(bτ

i1
, z) for any

τ ∈ R and any z ≤ τ .
Assume j1 ≤ p∗ and consider system (5.1) where l = i1. We denote by Ãu

i1
(τ, z)

the intersection of Mu
i1

(aτ
j1

, z) with U0
i1

and by B̃u
i1

(τ, z) the intersection of M̃u
i1

(bτ
i1

, z)
with U0

i1
. Again B̃u

i1
(τ, z) is independent of z while Ãu

i1
(τ, z) does depend on z and

limz→−∞ ‖Ãu
i1

(τ, z)‖ = +∞. However for any fixed z ≤ τ , both ‖Ãu
i1

(τ, z)‖ and
‖B̃u

i1
(τ, z)‖ are positive and bounded. We denote by ∂Ẽu,a

i1
(τ, z) = M̃u

i1
(aτ

i1
, z), by

∂Ẽu,b
i1

(τ, z) = M̃u
i1

(bτ
j1

, z), and reasoning as above we find again that ∂Ẽu,a
i1

(τ, z) is
on the right of ∂Ẽu,b

i1
(τ, z).

5.1. Remark. If j1 > p∗, a priori M̃u
i1

(aτ
j1

, z) may not intersect U0
i1

, however we can
repeat the argument replacing U0

i1
by U0

j1
finding a slightly smaller set Ẽu

j1
(τ, z) ⊂

U+
i1

. This allows anyway the construction of the sets W̄u
j1

(τ, z) and W̄u
j1

(τ) that will
be defined below, and to prove Lemma 2.4 for a slightly smaller set W̄u

j1
(τ).

We denote by c̃u
l (τ, z) the subset of U0

l enclosed by Ãu
l (τ, z) and B̃u

l (τ, z), where
l = j1 or l = i1, by ∂Ẽu

l (τ, z) = ∂Ẽu,a
l (τ, z) ∪ ∂Ẽu,b

l (τ, z), and by Ẽu
l (τ, z) the two

dimensional set enclosed by c̃u
l (τ, z) and ∂Ẽu

l (τ, z). Reasoning as above we find
that the flow of (2.2) on ∂Ẽu

i1
(τ, z) points towards the interior of Ẽu

i1
(τ, z) for any

t = z ≤ τ . Finally we turn to (5.1) and we define the following two dimensional sets
C̃u

l (τ) = {(Q, z) |Q ∈ c̃u
l (τ, z) z ∈ R}, ∂Ẽu

l (τ) = {(Q, z) |Q ∈ ∂Ẽu
l (τ, z), z ≤ τ},

and we give the analogous definitions for Ẽu
l (τ), ∂Ẽu,a

l (τ), ∂Ẽu,b
l (τ). Note that

Ẽu
l (τ) is the 3-dimensional set enclosed by ∂Ẽu

l (τ) and C̃u
l (τ).

When G1′′ is satisfied, Ẽu
i1

(τ, z) and Ẽu
j1

(τ, z) have positive finite diameter for
any finite value z ≤ τ , and Ẽu

i1
(τ) is as sketched in figure 5. Let (Q, z) = (Qx, Qy, z)

be a point in Ẽu
i1

(τ); we denote by

T̃u(Q) = inf{T ≤ τ | (xi1(t, z,Q), t) ∈ Ẽu
i1(τ) for any t ∈ (T, τ ]}
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and by Ψu,τ
i1

((Q, z)) = limt→T̃ u(Q) xi1(t, z;Q). Reasoning as in section 3.1 of [16]
we can prove that the function Ψu,τ

j1
: Ẽu

j1
(τ) → R2

± is well defined and continuous;
so we denote by

Wu
j1(τ) = {(Q, z) ∈ Ẽu

j1(τ) |Ψu,τ
j1

(
(Q, z)

)
= (0, 0)}.

Arguing as in section 3.1 of [16], through a topological lemma based on the idea
of Wazewski’s principle, we can prove that Wu

j1
(τ) contains a compact connected

set W̃u
j1

(τ) which intersects (0, 0, z̄) and c̃u
j1

(τ, z̄). Let us denote by W̃u
j1

(τ) =
∪z≤τW̃u

j1
(τ, z)× {z}; we claim that W̃u

j1
(τ)\{(0, 0, z) | z ≤ τ} is connected.

In analogy to the G1′ case we denote by Wu
j1

(τ) the set of the initial conditions
of trajectories of (2.2) converging to the origin respectively as t → −∞, namely
Wu

j1
(τ) = {Q ∈ R2

+ | (xj1(t, τ,Q), t) ∈ Ẽu
j1

(τ) for t ≤ τ } then we set

W̃u
j1(τ) ={(xj1 , yj1) | (xj1 , yj1 , τ) ∈ W̃u

j1(τ, τ)} .

With the same argument we can construct W s
i2

(τ). It is easy to show that we can
reprove Lemma 2.4 also with these weaker assumptions. The proof of this extension
of Lemma 2.4 can be obtained from the original one with some trivial changes, see
[16].

Now we prove Lemma 2.6, so we focus on the case l = p∗. In the original
construction of W̄u

p∗(τ) we have to start from the barrier sets constructed through
the autonomous system (2.2) with l = j1, and then use ℵτ

p∗,j1
to obtain a barrier

set for the system (2.2) with l = p∗. However for l = p∗ we can give a simpler
construction of W̄u

p∗(τ) and W̄ s
p∗(τ), which is more natural in this context. We

set ∂Ēu,b
p∗ (τ) = M̃u

p∗(b
τ
p∗) and ∂Ēs,b

p∗ (τ) = M̃s
p∗(B

τ
p∗). We denote by ∂Ēu,a

p∗ (τ) =
{(x, y) ∈ M̃u

p∗(aτ
p∗) | 0 ≤ x ≤ B+

x (τ)} and by ∂Ēs,a
p∗ (τ) = {(x, y) ∈ M̃s

p∗(Aτ
p∗) | 0 ≤

x ≤ B−
x (τ)}: note that in general M̃u

p∗(a
τ
p∗) may be the positive x semi-axis and

M̃s
p∗(A

τ
p∗) the curve U0

σ . Then we denote by Ēu
p∗(τ) the subset enclosed by ∂Ēu,a

p∗ (τ),
∂Ēu,b

p∗ (τ) and c+
p∗(τ) and by Ēs

p∗(τ) the subset enclosed by ∂Ēs,a
p∗ (τ), ∂Ēs,b

p∗ (τ) and
c−p∗(τ). Again the flow of (2.2) on ∂Ēu,a

p∗ (τ) ∪ ∂Ēu,b
p∗ (τ) points towards the interior

of Ēu
p∗(τ) for t ≤ τ and on ∂Ēs,a

p∗ (τ) ∪ ∂Ēs,b
p∗ (τ) points towards the exterior of

Ēs
p∗(τ), so we can construct subsets of Wu

p∗(τ) and Ws
p∗(τ), denoted with abuse

of notation by W̄u
p∗(τ) and W̄ s

p∗(τ), intersecting c+
p∗(τ) and c−p∗(τ) respectively in

ξu
p∗(τ) and ξs

p∗(τ), and satisfying Lemma 2.4. In fact it can be shown that these
sets are subsets of W̄u

p∗(τ) and W̄ s
p∗(τ) obtained through the original construction,

so they have the properties described in Lemmas 2.3 and 2.4.
We have already seen that xp∗(t, τ,Q) corresponds to a regular solution of (1.5)

whenever Q ∈ Wu
p∗(τ) and to a fast decay solution whenever Q ∈ Ws

p∗(τ). More-
over we can control Wu

p∗(τ) and Ws
p∗(τ) until they cross U0

p∗ . Lemma 2.6 claims
that we can follow Wu

p∗(τ) until it crosses c−p∗(τ) and Ws
p∗(τ) until it crosses c+

p∗(τ).
Proof of Lemma 2.6. We just prove the first claim of Lemma 2.6, since the second

can be obtained reasoning in the same way. We follow again the idea of Lemmas
3.4 and 3.5 of [16], so we need to construct some barrier sets. It is easy to show
that j1 ≤ p∗ ≤ i2. In particular, for any x > 0, bτ

p∗(x) and Bτ
p∗(x) are bounded for

any τ ∈ R.
We fix τ ∈ R; for any z ≤ τ we denote by ∂Ĕu,b

p∗ (z) the branch of the level set
Hp∗(x, y, z) = 0 joining the origin and c−p∗(τ), and contained in R2

±. We introduce
the 2-dimensional surfaces ∂Ĕu,b

p∗ (τ) :=
(⋃

z≤τ ∂Ĕu,b
p∗ (z) × {z}), and C−

p∗(τ) :=⋃
z≤τ

(
c−p∗(τ)× {z}).
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The construction of the second barrier set is rather technical, so we start by
assuming j1 = p∗. We denote by Hp∗(Q, aτ

p∗) the function

Hp∗(x, y, aτ
p∗) :=

n− p

p
xy +

p− 1
p

|y| p
p−1 +

∫ x

0

aτ
p∗(s)ds,

and we give the analogous definition for Hp∗(x, y, bτ
p∗). Observe that Hp∗(Ãu

p∗(τ), aτ
p∗) =

0 < Hp∗(Ãu
p∗(τ), bτ

p∗). Consider the trajectory Xp∗(t, 0, Ãu
p∗(τ), bτ

p∗) and observe
that Hp∗(Xp∗(t, 0, Ãu

p∗(τ), bτ
p∗), bτ

p∗) ≡ Hp∗(Ãu
p∗(τ), bτ

p∗) > 0. It follows that there
are T 2(τ) > T 1(τ) > 0 such that Xp∗(t, 0, Ãu

p∗(τ), bτ
p∗) intersects c−p∗(τ) at t = T 1(τ)

and the yp∗ negative semi-axis at t = T 2(τ), see figure 2. Let us denote by

∂Ĕu,a
p∗ (τ) := {Xp∗(t, 0, Ãu

p∗(τ), bτ
p∗) | 0 ≤ t ≤ T 1(τ)} ∪ M̃u

p∗(a
τ
p∗).

Observe that by construction ∂Ĕu,a
p∗ (τ) and ∂Ĕu,b

p∗ (z) do not intersect for any
z ≤ τ and the former is on the right of the latter and the 2-dimensional surfaces
∂Ĕu,a

p∗ (τ) :=
(⋃

z≤τ ∂Ĕu,a
p∗ (τ)×{z}) and we denote by Ĕu

p∗(τ) the volume enclosed
by ∂Ĕu,b

p∗ (τ), ∂Ĕu,a
p∗ (τ) and C−

p∗(τ). Observe that Ĕu
p∗(τ) is unbounded but its in-

tersection with the planes z = k is bounded for k ≤ τ . Since Gp∗(x, t) is increasing
for t ≤ T+ it follows that Hp∗(xp∗(t), t) is increasing along the trajectories xp∗(t)
of (2.2) for any t ≤ T+, see (2.4). Therefore the flow of (5.1) on ∂Ĕu,b

p∗ (τ) points
towards the interior of Ĕu

p∗(τ), for any t ≤ τ .
We claim that the flow of (5.1) on ∂Ĕu,a

p∗ (τ) points towards the interior of
Ĕu

p∗(τ) as well. Observe in fact that ∂Ĕu,a
p∗ (τ) is independent of z and choose

Q = (Qx, Qy) ∈ M̃u
p∗(a

τ
p∗). Fix z ≤ τ and observe that M̃u

p∗(a
τ
p∗) is contained in the

graph of Xp∗(t, z,Q, aτ
p∗). Following Lemma 3.5 in [16] we see that Ẋp∗(z, z,Q, aτ

p∗) =
ẋp∗(z, z,Q) but

ẏp∗(z, z,Q)− Ẏp∗(z, z,Q, aτ
p∗) = aτ

p∗(Qx)− gp∗(Qx, z) < 0.

So the flow of (5.1) on (Q, z) points towards the interior of Ĕu
p∗(τ). Now choose Q =

(Qx, Qy) ∈ ∂Ĕu,a
p∗ (τ)\ {M̃u

p∗(a
τ
p∗)}. Reasoning as above we see that ẋp∗(z, z,Q) =

Ẋp∗(z, z,Q, bτ
p∗), but

ẏp∗(z, z,Q)− Ẏp∗(z, z,Q, bτ
p∗) = bτ

p∗(Qx)− gp∗(Qx, z) > 0

for any z ≤ τ . This way we have proved the claim for the whole ∂Ĕu,a
p∗ (τ).

The flow of (5.1) on C−
p∗(τ) points towards the left, so we can use a topological

idea based on Wazewski’s principle, namely Lemma 3.3 of [16], to conclude the
existence of a set W̆u

p∗(τ) of the form W̆u
p∗(τ) = ∪z≤τ

(
W̆u

p∗(z) × {z}), with the
following properties. If Q ∈ W̆u

p∗(τ) then
(
xp∗(z, τ,Q), z

) ∈ W̆u
p∗(τ) ⊂ Ĕu

p∗(τ) for
any z ≤ τ . Moreover W̆u

p∗(z) is compact and connected for any z, contains the
origin and intersects c−p∗(τ) in a compact set denoted by ξ̆u

p∗(z). Furthermore the
set ξ̆u

p∗(τ) := ∪z≤τ

(
ξ̆u
p∗(z)× {z}) is connected.

Now assume j1 < p∗, so that aτ
p∗(x) ≡ 0. In this case we follow the ideas devel-

oped above in this appendix to construct W̃u
j1

when G′′ is assumed. We consider
the unstable manifold M̃u

j1
(aτ

j1
) of the autonomous system (2.2) with l = j1: it in-

tersects U0
p∗ in a point denoted by Ã(τ). It follows that ℵz

p∗,j1
(M̃u

j1
(aτ

j1
)) intersects

U0
p∗ in one point denoted by Ã(τ, z), for any z ≤ τ . We denote by M̃u

p∗(aτ
j1

, z)
the branch of ℵz

p∗,j1
(M̃u

j1
(aτ

j1
)) between the origin and Ã(τ, z). Reasoning as above

we find that the flow of the non-autonomous system (2.2) with l = j1 on M̃u
j1

(aτ
j1

)
points towards the interior of the bounded set enclosed by M̃u

j1
(aτ

j1
) and U0

j1
. Since
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ℵz
p∗,j1

preserves orientation we have that the flow of (2.2) with l = p∗ on M̃u
p∗(aτ

j1
, z)

points towards the interior of the bounded set enclosed by M̃u
p∗(a

τ
j1

, z) and U0
p∗ as

well.
Then, arguing as above, we consider the trajectory Xp∗(t, 0, Ã(τ, z), bτ

p∗), and we
find that there are T 2(τ, z) > T 1(τ, z) > 0 such that Xp∗(t, 0, Ã(τ, z), bτ

p∗) intersects
c−p∗(τ) at t = T 1(τ, z) and the y negative semi-axis at t = T 2(τ, z). Then we are
ready to redefine the set

∂Ĕu,a
p∗ (τ, z) := {Xp∗(t, 0, Ãu

p∗(τ, z), bτ
p∗) | 0 ≤ t ≤ T 1(τ, z)} ∪ M̃u

p∗(a
τ
l1 , z).

Then we introduce the 2-dimensional manifold ∂Ĕu,a
p∗ (τ) := ∪z≤τ∂Ĕu,a

p∗ (τ, z)×{z},
and we exploit again the previously defined sets ∂Ĕu,b

p∗ (τ), ∂C−
p∗(τ) and Ĕu

p∗(τ).
Once again the flow of (5.1) on ∂Ĕu,a

p∗ (τ) points towards the interior of Ĕu
p∗(τ). The

proof when (Q, z) ∈ ∂Ĕu,a
p∗ (τ)\ ∂M̃u

p∗(aτ
l1

, z) can be obtained reasoning as above.
Then the previous argument goes through and we get the thesis. ¤

We can assume (when they all exist) W̄u
p∗(τ) ⊂ W̃u

p∗(τ) ⊂ W̆u
p∗(τ), W̄ s

p∗(τ) ⊂
W̃ s

p∗(τ) ⊂ W̆ s
p∗(τ). With similar reasoning we obtain the following.

5.2. Remark. Assume G1′′ and G2′′ are satisfied and j1 ≤ p∗ ≤ i2. If Q ∈ U+
p∗

and xp∗(t, τ,Q) ∈ U+
p∗ for any t ≤ τ and limt→−∞xp∗(t, τ,Q) = (0, 0), then the

corresponding solution u(r) of (1.5) is a regular solution. Analogously if Q ∈ U−
p∗

and xp∗(t, τ,Q) ∈ U−
p∗ for any t ≥ τ and limt→+∞xp∗(t, τ,Q) = (0, 0), then the

corresponding solution v(r) of (1.5) has fast decay.
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