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Abstract

We give some structure results for positive radial solutions of the fol-
lowing equation:

Δpu + K(r)u|u|σ−2 = 0

where K(r) is a function bounded above and below by positive con-
stants. Here r = |x|, x ∈ R

n, 2n
n+2 ≤ p ≤ 2, n > p > 1, and σ = np

n−p .
In particular we manage to prove the existence of ground states and
singular ground states when K(r) is monotone as r → 0 and as r → ∞.
The results are new even when p = 2, that is when we consider the
usual Laplacian.

The proofs make use of a new Emden-Fowler transform which al-
low us to consider a 2-dimensional dynamical system thus giving a
geometrical point of view on the problem. A key role in the analysis
is played by an energy function which is a dynamical interpretation of
the Pohozaev function used in [20] and [21].
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1 Introduction

The aim of this paper is to discuss the existence and the asymptotic behavior
of radial solutions of the following equation

Δpu + K(|x|)u|u|σ−2 = 0 (1.1) plaplace

where Δpu = div(|Du|p−2Du), p > 1, denotes the p-Laplace operator, x ∈
R

n, 2n
n+2

≤ p ≤ 2, σ = np
n−p

is the Sobolev critical exponent.
We are particularly interested in Ground States, Singular Ground States and
crossing solutions. By Ground state (G.S.) we mean a positive solution u(x)
defined in the whole space R

n such that lim|x|→∞ u(x) = 0, and by Singular
Ground State (S.G.S.) we mean a G.S. which is not defined at the origin and
satisfies lim|x|→0 u(x) = +∞. By crossing solution we mean a solution u(x)
such that u(x) > 0 if |x| < R and u(x) = 0 if |x| = R, therefore such a
solution can also be regarded as a Dirichlet solution in a ball of radius R.

We will only deal with radial solutions, so we shall consider the following
O.D.E.

(u′|u′|p−2)′ +
n − 1

r
u′|u′|p−2 + K(r)u|u|σ−2 = 0 (1.2) eq.na

where r = |x| and we commit the following abuse of notation: we write u(r)
for u(x) where |x| = r; here and later ′ denotes derivation with respect to r.

We introduce now some notation that will be in force throughout all the
paper. We will use the term “regular solution” to refer to a solution v(x) of
Eq. (1.2) satisfying u(0) = u0 > 0 and u′(0) = 0.
We will use the term “singular solution” to refer to a solution v(x) of Eq.
(1.2) such that lim|x|→0 v(x) = +∞.
Furthermore when we write that u(r) ∼ r−α as r → c we mean that the
limits lim infr→c u(r)rα and lim supr→c u(r)rα are both finite and positive.

Equations with Δ and Δp have been extensively studied by many authors
in recent years and nowadays the autonomous Eq. (1.2) is almost completely
understood; see [12] for a survey on the topic. Important papers on the case
p �= 2 are [20], and [21] where the authors, in particular give a structure result
for regular positive solutions when K(r) is monotone or admits exactly one
critical point and it is a maximum. In [9] we have been able to complete this
result in the monotone case, in the sense that we give a better estimate on
the asymptotic behavior, we prove the existence of positive singular solutions
and we classify all such solutions. It can be proved, see Proposition 2.5, that
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if K(r) is monotone for r small and for r large, then positive solutions of (1.2)
can just have two asymptotic behaviours, both as r → 0 and as r → ∞. To be
more precise a positive solution u(r) can just be regular that is u(0) = A > 0,

or singular that is u(r) ∼ r−
n−p

p as r → 0; furthermore a positive solution

u(r) can just have fast decay, that is u(r) ∼ r−
n−p
p−1 , or slow decay that is

u(r) ∼ r−
n−p

p , as r → ∞.
Putting together the results explained in [21] and in [9] and restricting

our attention to the case when 2n
n+2

≤ p ≤ 2, we can state the following
classification result:

1.1 Proposition. Consider Eq. (1.2) and assume that K(r) ∈ C1 is mono-
tone decreasing. Then we can classify all the positive solutions as follows

• All the regular solutions are monotone decreasing G.S. with slow decay.

• There exists at least one monotone decreasing S.G.S. with slow decay.

• There exist uncountably many Dirichlet solutions u(r) in exterior do-

mains; that is, there exists R > 0 such that u(R) = 0 and u(r) ∼ r−
n−p
p−1 ,

as r → ∞.

Assume that K(r) is monotone increasing, then

• All the regular solutions are crossing solutions.

• There exists one monotone decreasing S.G.S. with slow decay.

• There exist uncountably many monotone decreasing S.G.S. with fast
decay.

In both the cases there are no solutions u(r) positive as r → 0, except the
ones described.

The hypotheses of the Proposition may be weakened: if we let p take
values in (1,∞), we still have the result concerning regular solutions, see
[20]. We think in fact that the hypothesis 2n

n+2
≤ p ≤ 2 is just technical,

and that, if we remove it, also the result concerning singular solutions should
hold.

When K(r) is not monotone the structure of positive solutions becomes
richer and less understood. Bianchi in [3], proved in particular that when
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p = 2 and there is r = R such that K(r) is monotone decreasing for r ≤ R
and monotone increasing for r ≥ R, then all the solution of (1.1) are radial.
Then Bianchi and Egnell in [4] and Bianchi in [2] give several different type
of conditions on K(r) which are sufficient for the existence of ground states
with fast decay. In particular they proved the existence of such solutions
when

( ∫ ∞
0

K ′(s)snds
)( ∫ ∞

0
K ′(s)s−nds

)
< 0 and the limit limr→∞K(r) and

limr→∞K(r) exist, are positive and bounded and K(r) is flat enough as r → 0
and as r → ∞. Bianchi in [2] also gives conditions sufficient for the non-
existence of radial ground state and the existence of non-radial ground states
with fast decay. Yanagida and Yotsutani in [23] consider eq. (1.2) assuming
p = 2 and σ > 2. When σ is the Sobolev critical exponent (that is the case
considered in this paper) they proved the existence of open sets of crossing
solutions and ground states with slow decay disconnected by a non-empty
set of ground states with fast decay, in particular when K(r) is increasing
for r small and decreasing for r large.

The case p �= 2 is less understood. In [21] the authors consider the
function J(r) =

∫ r

0
K ′(s)sn and they prove a structure result assuming that

there is R > 0 such that J(r) ≥ 0 for r ∈ (0, R) and K ′(r) ≤ 0 for r > R.
They state that positive regular solutions could have either the structure of
the monotone increasing case either the structure of the monotone decreasing
case, or a richer situation, that is the coexistence of all the three different
families of regular solutions. Kabeya, Yanagida and Yotsutani in [18], proved
a result concerning nodal solutions. If we restrict to eq. (1.2) with σ critical
they proved the existence of ground state with fast decay, both positive for
any r > 0 or with a prescribed finite number of 0, assuming that K(r) is
increasing for r small and decreasing for r large and satisfy some further mild
assumptions. In particular they assume that limr→0K(r) = 0 = limr→∞K(r).

In this paper we want to complete the analysis, started in [9] with the
monotone case, of the results obtained in [20] and [21] and in particular we
want to classify singular solutions and to show when we can find Ground
States with fast decay.

We consider the case when K(r) is bounded above and below by positive
constants, that is the complementary situation with respect to [18]. We need
to assume that 2n

n+2
≤ p ≤ 2, while the methods used in [18] and in [21] does

not need such requirements. However we think that these requirements are
technical and can only affect the asymptotic behaviour. In this setting, we
are able to state natural conditions which are sufficient to have the richer
structure for positive solutions (that is structure A, see below). In this case,
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under suitable hypotheses, we will find one of the following structures for
positive solutions:

A • There exist uncountably many monotone decreasing G.S. with slow
decay.

• There exist uncountably many crossing solutions.

• There exists a non empty set of monotone decreasing G.S. with
fast decay disconnecting the first two sets.

• There exist uncountably many solutions u(r) of the Dirichlet prob-
lem in exterior domains; that is, there exists R > 0 such that

u(R) = 0 and u(r) ∼ r−
n−p
p−1 , as r → ∞.

• There exist uncountably many monotone decreasing S.G.S. with
fast decay.

• There exist uncountably many monotone decreasing S.G.S. with
slow decay.

B • There exist uncountably many crossing solutions.

• There exist uncountably many solutions u(r) of the Dirichlet prob-
lem in exterior domains; that is, there exists R > 0 such that

u(R) = 0 and u(r) ∼ r−
n−p
p−1 , as r → ∞.

• There exists a non empty set of monotone decreasing G.S. with
fast decay.

• There exist uncountably many monotone decreasing S.G.S. with
fast decay.

Here we enumerate the main hypotheses that will be used in this paper and
the main results.

Hypotheses

α− There exists ρ > 0 such that K(r) is monotone decreasing, for any 0 ≤
r ≤ ρ.

α+ There exists ρ > 0 such that K(r) is monotone increasing, for any 0 ≤
r ≤ ρ.

Ω− There exists R > 0 such that K(r) is monotone decreasing, for any
r ≥ R.
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Ω+ There exists R > 0 such that K(r) is monotone increasing, for any r ≥ R.

finito 1.2 Theorem. Consider Eq. (1.2) and assume K(r) ∈ C1 is strictly positive
and bounded. Assume that hypotheses α+ and Ω− are satisfied, then positive
solutions have a structure of type A.

altro 1.3 Theorem. Consider Eq. (1.2) and assume K(r) ∈ C1 is strictly positive
and bounded. Assume that hypotheses α− and Ω+ are satisfied, then positive
solutions have a structure of type B.

Thus we manage to complete the analysis of positive solutions of (1.2) by
giving a classification of singular positive solutions. Moreover we manage to
give a condition which is sufficient to prove the existence of all the families
of regular solutions and to extend the results to a wider class of functions.
Furthermore we can refine the estimates on the asymptotic behavior of the
solutions. We remark that the recent paper [19] treat the scalar curvature
equation (p = 2) with a function K(·) which has properties significantly
different from those of the functions K(·) considered here.

We make use of the techniques developed by Johnson , Pan, Yi and
Battelli in [16], [5], [5], [6] for problem with the Laplacian and in [9] for the
problem with the p-Laplacian. We also take some of the basic ideas of [11],
developed for the problem where K(r) is a perturbation of a constant, and
we manage to reapply them here. Thus we can extend some of the results
obtained for functions K(r) which are regular or singular perturbations of a
constant, to “generic” strictly positive K(r) exhibiting the same oscillatory
behavior.

We exploit the transform of Fowler type introduced in [10], which trans-
forms Eq. (1.2) to a dynamical system and enables us to give a geometrical
interpretation to the problem. The refining of the estimate on the asymp-
totic behavior follows by an application to the problem of invariant manifold
theory, extended to non-autonomous systems. A crucial role will be played
by a function H which enables us to give a dynamical interpretation of the
Pohozaev identity.

We finish this introduction by giving some terminology. Recall that given
a system of the form

ẋ = f(x, t)

and a solution x(t), the α-limit set of x(t) is the set

A =
{
P : ∃tn → −∞ such that lim

n→∞
x(tn) = P

}
,
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while the ω-limit set is the set

W =
{
P : ∃tn → +∞ such that lim

n→∞
x(tn) = P

}
.

One can show that, if x(t) is bounded on R, then these sets are compact.
Moreover, if the system is autonomous, these sets are invariant for the flow
generated by the system.

2 Preliminaries

We begin by introducing a transform which generalizes to the p-Laplacian
the well known Fowler transform which works for the classic Laplacian.

x1 = u(r)rα x2 = u′(r)|u′(r)|p−2rβ r = et φ(t) = K(et)

where α = n−p
p

and β = n(p−1)
p

(2.1) transf

This change of variables allows us to transform the singular O.D.E (1.2) into
the following dynamical system:

(
ẋ1

ẋ2

)
=

(
α 0
0 −α

)(
x1

x2

)
+

(
x2|x2|

2−p
p−1

−φ(t)x1|x1|σ−2

)
(2.2) si.na

Here and later “·” denotes derivation with respect to t. Note that the pre-
ceding equation is C1 if and only if 2n

2+n
≤ p ≤ 2, thus we will restrict our

analysis only to this case. Moreover we have a close relationship between
trajectories x(t) of our system and solutions u(r) of our problem.

corrispondenze 2.1 Remark. The solutions u(r) of Eq. (1.2) correspond to the trajectories
x(t) of system (2.2) having the origin as α-limit point. Moreover if u(r) > 0
then x1(t) > 0 and u′(r) > 0 implies x2(t) > 0.

Since we are mainly interested in positive solutions u(r) we will focus our
attention on the halfplane where x1 ≥ 0, which will be denoted by R

2
+.

It will be useful to embed system (2.2) in the following one parameter
family of systems:

(
ẋ1

ẋ2

)
=

(
α 0
0 −α

)(
x1

x2

)
+

(
x2|x2|

2−p
p−1

−φ(t + τ)x1|x1|σ−2

)
(2.3) si.natau
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Let x(τ̃ , x0; t) be the trajectory of system (2.3) departing at t = 0 from
x = x0, for τ = τ̃ . Assume that φ is uniformly continuous, then using the
theory developed in [14] and in [15], we can state the existence of C1 leaves

W u
loc(τ) = {x0 | lim

t→−∞
x(τ, x0; t)} and W s

loc(τ) = {x0 | lim
t→∞

x(τ, x0; t)},

defined in a neighborhood of the origin. These leaves are C1 graphs re-
spectively on the unstable and stable manifold of the autonomous system
linearized in the origin (that in this case are respectively the x1 and x2 axis).
The uniform continuity of φ ensures that we can choose W u

loc(τ) and W s
loc(τ)

in such a way that their diameter is greater than a positive small constant
which is independent from τ .

Then, following the techniques explained in [16] and in [5], we can con-
struct a global stable and unstable manifold as follows:

W u(τ) =
⋃
t∈R

{x0 | x(τ − t, x0; t) ∈ W u
loc(τ)}

W s(τ) =
⋃
t∈R

{x0 | x(τ − t, x0; t) ∈ W s
loc(τ)}.

It can be proved that these manifolds are C1, furthermore they vary C1

smoothly in τ , see [16], Theorem 2.1 at page 1051, and [15]. Define Φτ (t, x0)
to be the diffeomorphism which associates to a point x0 its image through the
flow of system (2.3) at time t, that is x(τ, x0; t). Note that Φτ (t,W

u,s(τ)) =
W u,s(τ + t).

Now we give the definitions of the following three sets of the dynamical
system:

U+ :={(x1, x2, x3) | x1 ≥ 0 x2 ≤ 0 and ẋ1 > 0}
U− :={(x1, x2, x3) | x1 ≥ 0 x2 ≤ 0 and ẋ1 < 0}

c :={(x1, x2, x3) | x1 ≥ 0 x2 ≤ 0 and ẋ1 = 0}.

We will also need the following extended autonomous system obtained from
system (2.4) by adding the extra variable x3 = τ + t:

⎛
⎝ ẋ1

ẋ2

ẋ3

⎞
⎠ =

⎛
⎝ α 0 0

0 −α 0
0 0 0

⎞
⎠

⎛
⎝ x1

x2

x3

⎞
⎠ +

⎛
⎝ x2|x2|

2−p
p−1

−φ(x3)x1|x1|σ−2

1

⎞
⎠ (2.4) si.naa
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We will make use also of the following system, where we set x3 = eξt.⎛
⎝ ẋ1

ẋ2

ẋ3

⎞
⎠ =

⎛
⎝ α 0 0

0 −α 0
0 0 ξ

⎞
⎠

⎛
⎝ x1

x2

x3

⎞
⎠ +

⎛
⎝ x2|x2|

2−p
p−1

−φ(ξ; x3)x1|x1|σ−2

0

⎞
⎠ (2.5) si.naaxi

where φ(ξ; x3) = φ( log(x3)
ξ

).
If we set ξ > 0, this system is useful to investigate the asymptotic be-

haviour of the solutions as t → −∞, while if we set ξ < 0 it can be used
to analyze the asymptotic behaviour as t → ∞. In fact when ξ > 0 the α-
limit set of any bounded trajectory of system (2.5) is contained in the plane
x3 = 0, while when ξ < 0 this plane contains the ω-limit set of any bounded
trajectory. Note that when ξ < 0 the origin admits a two dimensional stable
manifold W s. Intersecting W s with the plane x3 = eξτ we obtain the man-
ifolds W s(τ) already described. Analogously when ξ > 0 the origin admits
a two dimensional unstable manifold W u. Intersecting W u with the plane
x3 = eξτ we obtain the manifolds W u(τ) already described.

Furthermore if we pass from (2.5) to (2.4) through the change of variables
x3 → log x3

ξ
, we have that W u and W s are transformed into two dimensional

manifolds which will be denoted with the same name. Note that, intersecting
these manifolds with the plane x3 = τ , we obtain respectively W u(τ) × {τ}
and W s(τ) × {τ}.

We introduce now a function closely related to the Pohozaev identity, and
already used in a more general setting in [9], which will play a key role in the
following analysis. It is in fact the transposition in this dynamical context of
the function P (r) of [21]. Let us consider a trajectory x(t) of system (2.3),
we define

H(x(t); t) := αx1x2 +
p − 1

p
|x2|

p
p−1 + φ(τ + t)

|x1|σ
σ

.

Observe that by differentiating we get

d

dt
H(x(t), t) =

d

dt
φ(τ + t)

|x1|σ
σ

.

We now begin our analysis of Eq. (2.3). To do this we need to recall some
results about the autonomous system (2.2) where φ ≡ const > 0, see [9].
First of all observe that such a system admits exactly three critical points
which are the origin, P = (P1, P2), where P2 < 0 < P1 and −P . Note that P
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Figure 1: Sketch of the level sets of the function H(x1, x2, T ), for T fixed.
The solid line is the level set C0, the dotted and the dashed lines represent
some level sets Cb where respectively b < 0 and b > 0. livelli

depends on φ. We need now the following Lemma concerning the shape of
the level sets of the function H(·, ·; t), for t fixed, see Figure 1. Let us define

Cb := {(x1, x2) | H(x1, x2; T ) = b}.

For any fixed T such that φ(T ) is positive and finite, the level sets Cb of the
function H(·, ·; T ) are as sketched in Figure (1). This claim follows easily
from Lemma 2.9 in [9] and Lemma 2.6 in [10], therefore it will be skipped.
Recalling that H is a first integral for the autonomous system we easily
deduce the following.

autonomo 2.2 Proposition. Consider Eq. (1.2) when K ≡ const > 0. All the regular
solutions u(r) of Eq. (1.2) are monotone decreasing G.S. with fast decay,

that is u(r) ∼ r−
n−p
p−1 . They correspond to a unique homoclinic trajectory of

(2.2), belonging to the closed 4th quadrant.



11

There exist uncountable many S.G.S. v(r) with slow decay that is v(r) ∼
r−α, both as r → 0 and as r → ∞. They correspond to the periodic trajecto-
ries contained in the open 4th quadrant, therefore we can find a, b > 0 such
that ar−α ≤ v(r) ≤ br−α, for any r > 0.

There exists a S.G.S. with slow decay that can be explicitly computed, that
is v̄(r) = P1r

−α; it corresponds to the critical point P .

In the autonomous case we can also write the exact expression of the
Ground States, see [12] for example. Therefore we can deduce the exact ex-
pression of the homoclinic trajectories. We denote by UK(t) = (UK

1 (t), UK
2 (t))

the homoclinic trajectory of the system (2.2) where K(r) ≡ K and crossing
the isocline c at t = 0.

UK
1 (τ, t) =

[
1

D(e−t + e
1

p−1
t)

]n−p
p

K
−n−p

p2

where D = (n − p)
p−1

p n
1
p is a constant.

Note that the autonomous system is invariant for translations in t, therefore
all the homoclinic trajectories have the same graph.

Now we need a technical Lemma which shows that unbounded trajectories
x(t) of (2.2) cannot correspond to positive solutions u(r) of (1.2).

illimitate 2.3 Lemma. Consider equation (1.2) and the corresponding system (2.2),
where K(r) is strictly positive and bounded. Then, if x(t) is unbounded, it
rotates clockwise crossing infinitely many times the x1 and x2 axes.

Proof. By assumption there exist M > m > 0 such that m < K(r) < M
for any r. Consider a trajectory x(t) which becomes unbounded as t → c
where c can also be ∞. The proof in the case of a trajectory that becomes
unbounded going backwards in t is analogous.

Fix t0 and the corresponding point P 1 = x(t0) in R
2. Assume that

P ∈ U+. Consider at first system (2.2), where φ(t) ≡ M . Recall that
the solution of (2.2) which are not homoclinic to (0, 0) and which do not
coincide with equilibria are periodic, hence the corresponding trajectories
define closed curves in R

2. We choose a periodic solution x1,M(t) of (2.2)
which crosses the coordinate axes and such that P 1 lies in the exterior of the
disc D1,M enclosed by x1,M(t) for t ∈ R. Such a choice is always possible,
since we can choose |P 1| as large as we wish. In a similar way, consider
system (2.2), where φ(t) ≡ m. We choose a periodic solution x1,m(t) of (2.2)
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which crosses the coordinate axes and such that P lies in the open disc D1,m

enclosed by x1,m(t), for t ∈ R. We can choose D1,M and D1,m in such a way
that D1,m ⊃ D1,M . Let ∂D1,M and ∂D1,m denote the boundary respectively
of D1,M and D1,m. Let us denote by R+ := D1,m − D1,M and by ∂R+ its
boundary.

We return to the non-autonomous system (2.2). We claim that the flow
on ∂R+ ∩ U+ is always going towards the interior of R+ and that P 1 ∈
R+ ∩ U+. In fact choose Q ∈ ∂D1,m ∩ U+; denote by x1,m(Q, t) and x(Q, t)
the trajectories passing through Q at t = 0 respectively of system (2.2)
where φ ≡ m and of the non autonomous system (2.2). Then we have
ẋ1(Q, 0) = ẋ1,m

1 (Q, 0) and ẋ2(Q, 0) ≤ ẋ1,m
2 (Q, 0). The proof for the case

Q ∈ ∂D1,M ∩ U+ is completely analogous, so the claim is proved
Consider now the unbounded trajectory x(t). Note that it lies in R+∩U+

for t ≥ t0, until it crosses the isocline c in a point P 2. Thus there exists t1 > t0
such that x(t1) = P 2 ∈ c and x(t) enters U− for t > t1.

Once again we consider the autonomous system where φ(t) ≡ m. We
choose a periodic solution x2,m(t) of (2.2) which crosses the coordinate axes
and such that P 2 lies in the exterior of the disc D2,m enclosed by x2,m(t)
for t ∈ R. In a similar way, we choose a periodic solution x2,M(t) of (2.2)
where φ(t) ≡ M which crosses the coordinate axes, and such that P 2 lies
in the open disc D2,M enclosed by x2,M(t), where t ∈ R. We choose D1,M

and D2,M in such a way that D2,M ⊃ D2,m and define R−
2 := D2,M − D2,m.

Now we return to the non-autonomous system (2.2). Reasoning as above
we find that x(t) ∈ R−

2 , for all t > t1 such that x(t) ∈ U−. Recalling that
x(t) is unbounded we conclude that there exists t2 < t1 such that x(t2) ∈ c.
Therefore x(t) rotates clockwise crossing the x2 and x1 negative semi-axes,
then it enters U+ for t > t2.

Iterating the reasoning we obtain that x(t) must cross the coordinate axes
infinitely many times.

With a similar argument we get also the following result

accapos 2.4 Lemma. Consider a trajectory x(t) of system (2.3) and assume
that
lim inft→∞ H(x(t), t) > 0. Then, if we follow x(t) forward in t we find that
it must cross the positive x2 semi-axis for some t = t2. Analogously consider
a trajectory x̄(t) and assume that lim inft→−∞ H(x̄(t), t) > 0. Then, if we
follow x̄(t) backwards in t we find that it must cross the positive x2 semi-axis
for some t = t1.
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Proof. Assume that lim inft→∞ H(x(t), t) > 0; then there are a > 0 small
and T > 0 large so that H(x1(t), x2(t), t) > 2a for any t ≥ T . Let us denote
by D̄a(t) := {(x1, x2) | H(x1, x2) ≤ a}. Observe that D̄a(t) is compact and
connected. Assume first that x(T ) = Q ∈ U+. Consider the trajectory
xm(Q, t) of system (2.2) where φ ≡ m = inft∈R φ(t), departing from Q at
t = 0. We denote by A the bounded subset enclosed by the trajectory
xm(Q, t) and by A+ = A∩U+. Then x(t) is forced to stay in A+ ∩ D̄a(t) for
t > T , until it reaches the isocline ẋ = 0 at t = T1 ≤ ∞. Since |ẋ(t)| + |ẏ(t)|
is strictly positive for t ∈ [T, T1] it follows that T1 < ∞.

Therefore we can assume that Q ∈ U−. Let us denote by xM(Q, t) the
trajectory of system (2.2) where φ ≡ M = supt∈R

φ(t), departing from Q
at t = 0, and denote by B the bounded set enclosed by xM(Q, t). We
choose ‖Q‖ large enough so that D̄a(t) ⊂ B for any t ∈ R, and denote by
B−(t) = (B ∩ U−)\D̄a(t). It follows that x(t) is forced to stay in B−(t) for
any t > T , until it crosses the x2 axes. Reasoning as above it follows that
x(t) crosses the x2 axes at a certain t = T2 finite T2 > T . Hence the first part
of the Lemma is proved; the second can be proved with a similar argument
so we will skip it.

It is easy to show now that we can have only two kinds of asymptotic
behaviour, both as r → 0 and as r → ∞ also when K(r) is monotone.

asinto 2.5 Proposition. Consider Eq. (1.2) and assume that K(r) is strictly pos-
itive and bounded. Consider a solution u(r) which is well defined and pos-
itive for r small. Assume that K(r) is monotone for r → 0 and define
K(0) = A > 0. Then we can only have two behaviour as r → 0.

0 < u(0) < ∞ (regular solution) or u(r) ∼ r−α (singular solution)

Furthermore for each singular solution u(r) there exists a S.G.S. v(r) of the
frozen Eq. (1.2) where K(r) ≡ A such that

limr→0(u(r) − v(r))rα = 0.

Analogously consider a solution u(r) of Eq. (1.2) which is well defined
and positive for r large. Assume that K(r) is monotone for r large and define
limr→∞K(r) = B > 0. Then we can only have two behaviour as r → ∞.

lim inf
r→∞

u(r) ∼ r−
n−p
p−1 (fast decay) or u(r) ∼ r−α (slow decay)
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Furthermore for each slowly decaying solution u(r) there exists a S.G.S. v(r)
of the frozen Eq. (1.2) where K(r) ≡ B such that

limr→∞(u(r) − v(r))rα = 0.

Proof. For this proof we follow the ideas developed in [9]. Assume that
K(r) is monotone for r large and consider a solution u(r) well defined and
positive for r large. Consider the corresponding trajectory x(t) of system
(2.5) where ξ < 0. Observe that the ω-limit set of the trajectory x(t) must
belong to the plane x3 = 0. Furthermore the dynamics in this plane is the
one of the autonomous system (2.4) where φ(t) ≡ B. Note that the limit
limt→∞H(x1(t), x2(t), t) = l exists. In fact H(x1(t), x2(t), t) is monotone for t
large, and both x(t) and φ(t) are bounded. Furthermore note that this limit
individuates exactly one trajectory in the plane x3 = 0, that corresponds to
the level set H = l. Since we have assumed that u(r) > 0 for any r we have
l ≤ 0.

Assume at first l < 0, then the ω-limit set of the trajectory x(t) is the
periodic trajectory of the plane x3 = 0 corresponding to the level set H = l
of the function H. This periodic trajectory corresponds to a S.G.S. with slow
decay v(r) of the autonomous system. Therefore u(r) has slow decay and
limr→∞(u(r) − v(r))rα = 0.

Assume now l = 0. Then it is easy to observe that x(t) must have the
origin as ω-limit set. Thus u(r) = o(r−α), as r → ∞. Observing that system
(2.3) admits an exponential dichotomy and that x(t) departs from a point in
W u(τ) we get u(r) = o(r−2α+ε). This asymptotic estimate can be improved
through some integral manipulations based on the ideas suggested in [21],

Theorem 5.2, and developed in details in [9]. Therefore we get u(r) ∼ r−
n−p
p−1 .

The proof for solutions u(r) defined for r small is obtained considering
system (2.5) where ξ > 0.

From this proof we can also deduce the following

2.6 Remark. A solution u(r) is a regular solution if and only if the correspond-
ing trajectory of system (2.3) has the origin as α-limit point. A solution u(r)
can have fast decay if and only if the corresponding trajectory of system (2.3)
has the origin as ω-limit point.

Now we want to get some information about the shape of the first branches
of the manifolds W u(τ) and W s(τ). We recall that we can find M > 0 large
and m > 0 small enough to have that m < K(r) < M for any r. Let
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us call respectively Um(t) = (Um
1 (t), Um

2 (t)) and UM = (UM
1 (t), UM

2 (t)) the
homoclinic trajectories of system (2.3) where φ ≡ m and φ ≡ M . We call
U̇m,M(t) = (U̇m

1 (t), U̇m
2 (t)) their derivative with respect to t. Note that U̇m(t)

and U̇M(t) are tangent respectively to Um(t) and UM(t).

Let us consider now the non-autonomous system (2.3): the curves Um and
UM are not anymore trajectories. We call E the set delimited by the origin
and these two curves; moreover we define E+ = E ∩ U+ and E− = E ∩ U−.
We claim that the intersection between W u(τ) (resp. W s(τ)) and the isocline
ẋ = 0 is nonempty. Follow W u(τ) (resp. W s(τ)) from the origin towards R

2
+;

we denote by P u(τ) (resp. by P s(τ)) the first intersection with the isocline
ẋ = 0. We denote by W̃ u(τ) (resp. W̃ s(τ)) the component of W u(τ) (resp.
W s(τ)) connecting the origin to P u(τ) (resp. by P s(τ)). In [11] it is shown
that if K is either a regular or a singular perturbation of a constant (that
is respectively K(r) = 1 + εk(r) and K(r) = k(rε), with ε > 0 small and k
C2 and bounded), the intersections between W̃ u,s

τ and the isocline ẋ = 0 is
transversal: this might not be the case in this setting. We will denote by
xs(τ ; t) and xu(τ ; t) the trajectory of system (2.3) departing at t = 0 resp.
from P s(τ) or from P u(τ). Now we can state the following result.

forma 2.7 Lemma. The manifolds W u(τ) and W s(τ) intersect the isocline ẋ = 0,
for any τ ∈ R. Moreover W̃ u(τ) (respectively W̃ s(τ)) belong to E+ (resp.
E−) and the trajectory xu(τ ; t) (resp. xs(τ ; t)) is contained in E+ for any
t < 0 (resp. E− for any t > 0), for any τ ∈ R.

Proof. Consider the non-autonomous system (2.3); reasoning as in Lemma
2.3 we can prove that the flow on ∂E+ points towards the interior of E+, while
on ∂E− the flow points towards the exterior of E−, see Figure 2. Therefore
any solution belonging to W u(τ) departs from the origin, gets into E+ and
cross the isocline c for some finite t, or it stays in E+ for any t and touches
the isocline c as t → ∞.

Now we claim that any solution x(t) belonging to W u(τ) reaches the
isocline c for finite t. In fact consider a solution x̄(t) of system (2.3) belonging
to W u(τ). Observe that there exists the limit limt→∞H(x̄(t), t) = l. Consider
now system (2.5) where ξ < 0 and call P = (P1, P2, 0) the only critical
point of this system in R

2
+ × R. We call X̄(t) the trajectory (x̄(t), x3(t)) of

system (2.5) corresponding to the trajectory x̄(t) of system (2.3). Assume
for contradiction that X̄(t) ∈ U+ for any t.

Assume that limr→∞K(r) = B > 0, and that K(r) < B; we define the
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W u(τ)

Figure 2: Sketch of the first branch of W u(τ). wasnuovo

following auxiliary function:

HB(x1, x2) := αx1x2 +
p − 1

p
|x2|

p
p−1 +

B

σ
|x1|σ.

Note that the minimum of this function is reached at the critical points P
and −P . Furthermore, if x(t) is a solution of system (2.3) differentiating
with respect to t we get the following:

d

dt
HB(x1(t), x2(t)) := (B − φ(t))x1|x1|σ−2dx1

dt
.

Recalling that dx̄1

dt
> 0 for any t we have that HB(x̄1(t), x̄2(t), t) is monotone

increasing for t large. Thus the limit limt→+∞ HB(x1(t), x2(t)) exists and it
is strictly larger than HB(P1, P2). It follows that x(t) has a periodic trajec-
tory as ω-limit set, see Proposition 2.5, so it crosses the isocline ẋ = 0, a
contradiction. So the Lemma is proved.

Now we remove the assumption on K(r). Fix τ̄ , we want to prove that
W u(τ̄) crosses the isocline c. We can construct a smooth function ψ(t) such
that ψ(t + τ̄) = φ(t + τ̄) for any t < 0, and ψ(t + τ̄) is monotone increasing
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for any t > 1. We denote by W u
ψ (τ) the unstable manifold of the system with

potential ψ(τ + t), and simply by W u(τ) the unstable manifold of the system
with potential φ(τ + t).

Note that the unstable manifold W u
ψ (τ) coincides with W u(τ) for any

τ ≤ τ̄ . Furthermore we have just shown that W u
ψ (τ) crosses the isocline c

for any τ , since ψ(τ + t) is monotone increasing for t large. Therefore W u(τ̄)
crosses the isocline c.

Analogously, following backwards in t any solution belonging to W s(τ),
we notice that it departs from the origin, gets into E− and crosses the isocline
c for some t finite.

Recalling that the global manifolds W u,s(τ) are constructed from the local
manifolds W u,s

loc (τ) using the flow of (2.3), the proof of the Lemma easily
follows.

Observe now that limt→−∞H(xu(τ ; t)) = 0 and limt→∞H(xs(τ ; t)) = 0,
thus

H(P u(τ), 0) =

∫ 0

−∞
φ̇(t + τ)

|xu
1 |σ
σ

dt

H(P s(τ), 0) = −
∫ ∞

0

φ̇(t + τ)
|xs

1|σ
σ

dt,

(2.6) integrale

where we have used the notation xu(τ ; t) = (xu
1(τ ; t), xu

2(τ ; t)) and xs(τ ; t) =
(xs

1(τ ; t), xs
2(τ ; t)).

3 Oscillatory Potentials

Now we turn to consider potentials K(r) which are monotone for r large and
for r small. As usual we always assume that K(r) ∈ C1 is bounded above
and below by positive constants and that 2n

n+2
≤ p ≤ 2. First of all we need

the following Lemma:

segno 3.1 Lemma. Consider (1.2) and assume that K(r) is strictly positive and
bounded.

• Assume that hypothesis α+ is satisfied, then there is T+
α such that

H(P u(τ), 0) > 0 and H(P s(τ), 0) < 0, for any τ < T+
α .

Assume that hypothesis α− is satisfied, then there is T−
α such that we

have H(P u(τ), 0) > 0 and H(P s(τ), 0) < 0, for any τ < T−
α .
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• Assume that hypothesis Ω+ is satisfied, then there is T+
ω such that

H(P u(τ), 0) > 0 and H(P s(τ), 0) < 0, for any τ > T+
ω .

Assume that hypothesis Ω− is satisfied, then there is T−
ω such that we

have H(P u(τ), 0) > 0 and H(P s(τ), 0) < 0, for any τ > T−
ω .

Proof. We begin from the first claim. Consider any point P u(τ) such that
τ < T0 = log ρ; observe that φ̇(τ) > 0 for any τ < T0. Therefore recalling
(2.6) we have

H(P u(τ), 0) =

∫ 0

−∞
φ̇(τ + t)

|xu
1(τ, t)|σ

σ
dt > 0

for any τ < T0.
Moreover observe that

H(P s(τ), 0) = −
∫ +∞

0

φ̇(τ + t)
|xs

1(τ, t)|σ
σ

dt =

= −
∫ +∞

T0−τ

φ̇(τ + t)
|xs

1(τ, t)|σ
σ

dt −
∫ T0−τ

0

φ̇(τ + t)
|xs

1(τ, t)|σ
σ

dt

(3.1) calcolo1

We want to show that |I(τ)| = | ∫ +∞
T0−τ

φ̇(τ + t)
|xs

1(τ,t)|σ
σ

dt| becomes small as
τ → ∞.

Let us denote by Qu(τ) = xs(τ, T0−τ). We want to show that |Qs(τ)| → 0
as τ → −∞; hence in particular xs

1(τ, T0 − τ) → 0 as τ → −∞. We recall
that xs(τ, t) ∈ E− for any t > 0, thus ẋs(τ, t) < 0 for t > 0. Suppose
for contradiction that there is l > 0 and a sequence τn → −∞ such that
xs

1(τn, T0 − τn) ≥ l. Then xs
1(τn, t) > l and xs

1(τn, t) ∈ E− for any t ∈
(0, T0−τn); it follows that for any ε > 0 there is δ > 0 such that ẋs

1(τn, t) < −ε
for t ∈ (δ, T0 − τn). Hence

xs
1(τn, T0 − τn) − xs

1(τn, δ) = −
∫ δ

T0−τn

ẋs
1(τn, t)dt > ε(δ − τn + T0) .

But, as τn → −∞ the left hand side member is finite while the right hand
side tends to +∞, a contradiction; it follows that xs

1(τ, t) → 0 as τ → −∞.
Now, recalling that xs

1(τ, t) → 0 exponentially fast as t → +∞, we deduce
that, for any ε > 0, there exists τ(ε) such that |I(τ)| < ε. Therefore, using
(3.1) we deduce that we can find T+

α < T0 such that

H(P s(τ), 0) < ε −
∫ T0−τ

0

φ̇(τ + t)
|xs

1(τ, t)|σ
σ

dt < 0 , (3.2) calcolon
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Analogously assume that hypothesis Ω− is satisfied, then there exists T1 =
log(R) such that φ̇(t) < 0 for any t > T1. Therefore

H(P s(τ), 0) = −
∫ +∞

0

φ̇(τ + t)
|xs

1(τ, t)|σ
σ

dt > 0

for any τ > T1.
Moreover, reasoning as above we find

H(P u(τ), 0) =

∫ 0

−∞
φ̇(τ + t)

|xu
1(τ, t)|σ

σ
dt =

=

∫ T1−τ

−∞
φ̇(τ + t)

|xu
1(τ, t)|σ

σ
dt +

∫ 0

T1−τ

φ̇(τ + t)
|xu

1(τ, t)|σ
σ

dt <

<ε +

∫ 0

T1−τ

φ̇(τ + t)
|xu

1(τ, t)|σ
σ

dt < 0

for τ > T−
ω large enough. The other claims can be proved reasoning in the

same way.

We need to introduce the following surface for system (2.4)

S := {(x1, x2, x3) | H(x1, x2, x3) = 0 and (x1, x2) ∈ R
2
+}.

Note that, for any τ such that φ(τ) > 0 we have that S(τ) = S∩{(x1, x2, x3) |x3

= τ} is a closed bounded curve. This is a straightforward consequence of
Lemma 2.4. Furthermore if φ(t) is bounded above and below by positive
constants, then S(τ) is uniformly bounded and its diameter has a uniform
lower bound. Now we are ready to state the first Theorem of this paper. This
result will be completed afterwards, however it is interesting in itself. In fact
the part concerning the singular solutions is new even for the Laplacian.

parte 3.2 Theorem. Consider Eq. (1.2) and assume that K(r) ∈ C1 is strictly
positive and bounded.

• Assume that hypothesis α+ is satisfied. Then there are uncountably
many S.G.S. with fast decay.

• Assume that hypothesis α− is satisfied. Then there are uncountably
many Dirichlet solutions u(r) in exterior domains; that is, there exists

R > 0 such that u(R) = 0 and u(r) ∼ r−
n−p
p−1 , as r → ∞.



20 Matteo Franca

• Assume that hypothesis Ω+ is satisfied. Then there are uncountable
many crossing solutions.

• Assume that hypothesis Ω− is satisfied. Then there are uncountable
many ground states with slow decay.

Proof. We begin from the first claim, thus assume that hypothesis α+ is
satisfied. Then, recalling Lemma 3.1 there is T+

α such that H(P s(τ), 0) < 0
and φ̇(τ + t) > 0, for any τ < T+

α and for any t < 0. Therefore we have

H(xs(τ, t), t) =

∫ t

0

φ̇(τ + t)
|xs(τ, t)|σ

σ
+ H(P s(τ), 0) < H(P s(τ), 0) < 0,

for any τ < T+
α and for any t < 0. Thus the trajectory (xs(τ, t), τ + t)

of system (2.4) is forced to stay inside the surface S, so it is bounded as
t → −∞. Therefore the corresponding solution v(r) of (1.2) is a S.G.S. with
slow decay.

Now assume that hypothesis α− is satisfied. Reasoning as above we can
show that there is T−

α such that limt→−∞H(xs(τ, t), t) > 0 for any τ < T−
α .

Therefore the corresponding solution v(r) of (1.2) is a solution of the Dirichlet
problem in the exterior of a ball, see Lemma (2.4). Reasoning in the same
way we can see that, if hypothesis Ω− is satisfied, there is T−

ω such that
limt→∞H(xu(τ, t), t) < 0 for any τ > T−

ω , while if hypothesis Ω+ is satisfied,
there is Tω such that limt→∞H(xu(τ, t), t) > 0 for any τ > T−

ω . In the former
case the corresponding solution u(r) of (1.2) is a ground state with slow
decay, while in the latter case u(r) is a crossing solution, see again Lemma
3.1.

3.3 Remark. The proof of this and of the other Theorems of this paper work
even if K(r) is only locally Lipschitz. In this case we should replace the
derivative φ̇ in the integral expression containing it with the weak derivative.
It is also possible to rewrite the expression, used for example in (3.1), without
using the term φ̇, simply by integrating by parts, as it is done in [21]. However
this computation is beyond the purpose of this analysis so it is left to the
interested reader.

We define now the following function which measures the distance be-
tween the stable and the unstable manifold along the isocline c.

G(τ) = H(P u(τ), 0) − H(P s(τ), 0).
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Note that whenever G(τ) > 0 we have that P u(τ) is on the right of P s(τ),
while when G(τ) < 0 it is on the left. Here and later we think of the x1 axis
as horizontal, and of the x2 axis as vertical. Moreover observe that G(τ) = 0
implies P s(τ) = P u(τ), therefore in this case we have that xu(τ) ≡ xs(τ) is
a homoclinic trajectory. Thus the condition G(τ) = 0 is sufficient for the
existence of a G.S. with fast decay for Eq. (1.2).

Note also that the function G(τ) is continuous. In fact the functions P u(τ)
and P s(τ) are C1, due to invariant manifold theory, and H is continuous as
well. We recall incidentally that in the perturbative case the functions P u,s(τ)
have, in fact, the same regularity as φ, see [7] and [11].

concavo 3.4 Proposition. Assume that hypothesis α+ is satisfied, then G(τ) > 0 for
any τ < T+

α , while if α− is satisfied G(τ) < 0 for any τ < T−
α .

Assume that hypothesis Ω+ is satisfied, then G(τ) > 0 for any τ > T+
ω ,

while if Ω− is satisfied we have G(τ) < 0 for any τ > T−
ω .

Exploiting this analysis we can deuce the following result.

finitomod 3.5 Corollary. Consider Eq. (1.2) and assume K(r) ∈ C1 is strictly posi-
tive and bounded.

• Assume that Hypothesis α− is satisfied. Then there is R− > 0, such that
for each 0 < ρ < R− there exists a solution u(r) of the Dirichlet problem
in the exterior of the ball of radius ρ. Therefore we have u(ρ) = 0,

u(r) > 0 for any r > ρ and u(r) ∼ r−
n−p
p−1 as r → ∞.

• Assume that Hypothesis Ω+ is satisfied. Then there is R+ > 0, such
that for each ρ > R+ there exists a solution u(r) of the Dirichlet problem
in any ball of radius ρ.

Proof. We begin from the first claim, thus assume that hypothesis Ω+ is
satisfied. First of all note that G(τ) > 0 for τ → ∞, according to Proposition
3.4. In particular we know that there exists T+

ω small enough so that for any
τ > T+

ω the trajectories xu(τ, t) are crossing solutions. Therefore, for any
τ > T+

ω , there exists T+(τ) > 0 such that xu
1(τ, T (τ)) = 0, which implies that

for the corresponding solution u(r) of Eq. (1.2) we have u(exp(τ+T+(τ)) = 0.
We just need to prove that T+(τ) is bounded as τ → −∞, then the first part
of the Corollary easily follows.

Observe that ẋu
1(τ, t) < 0 for any t > 0 and that there is a positive

constant C > 0 independent of τ such that ẋu
2(τ, 0) < −C. Then we can find
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Figure 3: Sketch of the curve Z(τ) when K ′(r) admits exactly one critical
point which is a maximum. trappola

ε > 0 and t0 > 0 independent of τ such that ẋu
1(τ, t) < −ε for t > t0 and

for any τ . Let us denote by Qr = (Qr
1, Q

r
2) and by Ql = (Ql

1, Q
l
2) the two

points of intersection between the isocline c and ∂E, and let Qr
1 > Ql

1. Then
xu

1(τ, t0) < P u
1 (τ) < Qr

1 for any τ therefore there is T+(τ) < t0 + Qr
1/ε < ∞

such that xu
1(τ, T+(τ)) = 0.

The second claim can be proved following backwards in t the trajectories
xs(τ, t) for τ < T−

α where τ̃ is such that G(τ) < 0 for τ < T−
α and reasoning

in the same way.

Now we are ready to give the main Theorem of the paper which completes
the result given in [21].
Proof of Theorem 1.2. Using Corollary 3.5 and Theorem 3.2, we already
know the results concerning G.S. with fast and slow decay, crossing solutions
Dirichlet solutions in exterior domains and S.G.S. with fast decay. The only
thing left to prove is the existence of S.G.S with slow decay when α+ and ω−

are satisfied. Then, in this case, we have classified all the positive solutions
u(r) of (1.2). In fact we have covered all the possible asymptotic behavior
as r → 0 and as r → ∞.
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Now we want to prove the existence of infinitely many S.G.S. with slow
decay. The proof relies on a geometrical analysis of the phase portrait, thus
we need to deepen our knowledge of the mutual positions of the manifolds
W u and W s.

Reasoning as done in the proof of Theorem 4.1 in [11], we can construct
a bounded subset of the 4th quadrant to which some trajectories of system
(2.3) must belong. Since the construction is the same as the one given in [11]
we will just sketch it.

Fix τ , we want to construct a closed bounded curve belonging to the
4th quadrant, made up of branches of the manifolds W u(τ) and W s(τ). We
follow W u(τ) starting from the origin until we reach the first crossing between
W u(τ) and W s(τ), denoted by P1(τ). Then we follow W s(τ) towards the
origin until we reach its further crossing with W u(τ), denoted by P2(τ).
Then we follow W u(τ) until the next crossing and so on. Eventually we will
end with a last crossing denoted by P∞(τ). Then we follow W s(τ) until we
reach the origin. Let us call Z(τ) the union of the origin and the curve just
constructed, and Z the surface of system (2.4) obtained letting τ takes values
in the whole of R.

Note that, for any τ , Z(τ) belongs to the 4th quadrant. In fact both
W u(τ) and W s(τ) can cross the axes, but the branches have been chosen in
order to have that Z(τ) belongs to the bounded set delimited by the curve
Um(t) for t ∈ R, see figg. 3 and 4. A detailed proof of this fact is given in
[11]; however it depends on two facts. First W̃ u(τ) and W̃ s(τ) are contained
in E for any τ . Second, choose an intersection Pk(τ) and denote by Φτ (t, x)
the flow of system (2.3) at time t evaluated in x. We can find Tk such that
Φτ (Tk, Pk(τ)) = Pk(τ̄k) ∈ C, where τ̄k = Tk + τ . Then, if k is odd we have
that when τ < τ̄k, P s(τ) is on the left of P u(τ), while when τ > τ̄k, P u(τ) is
on the left of P s(τ). If k is even we have the opposite situation.

Let us call D(τ) the bounded subset delimited by Z(τ). Note that
D(τ) − (W u(τ) ∪ W s(τ)) contains uncountably many points. Let us con-
sider a trajectory X(t) of the extended system (2.4), departing from one of
these points.
Observe that it is forced to stay inside Z for any t and that it cannot converge
to the origin, nor as t → −∞ neither as t → ∞. Thus the corresponding
solution v(r) of Eq. (1.2) is a S.G.S. with slow decay.

We wish to remark that, exploiting the curve Z(τ) and this kind of anal-
ysis, we could give a different proof of Theorems 3.2 and 1.2, as it is done in
[11]. �
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We observe now that putting together the results of Theorem 3.2 and
Corollary 3.5 we can also prove easily Theorem 1.3.

Let us recall the definition of the function J+(r) =
∫ r

0
K ′(s)snds and

define the following analogous function J−(r) =
∫ ∞

r
K ′(s)s−

np
p−1 ds. Let us

call ua(r) the regular solution of (1.2) satisfying u(0) = a > 0 and u′(0) = 0.
Combining the ideas of Theorem 1.2 with the results of Theorem 1 and
Proposition 4.2 in [21] we find the following.

3.6 Theorem. Consider Eq. (1.2) and assume that K(r) ∈ C1 is strictly
positive and bounded; moreover assume that the hypotheses α+ and Ω− are
satisfied. Furthermore assume that there exists R > 0 such that one of the
following hypotheses is satisfied

• J+(r) ≥ 0 for any r < R and K ′(r) ≤ 0 for any r > R.

• J−(r) ≤ 0 for any r > R and K ′(r) ≥ 0 for any r > R.

O

Y

C

X

W u(τ)

W s(τ)

N1

N2

N3

N4

N5

N6

N7

N8

N9

Z(τ)

ξ−
ξ+

Figure 4: Sketch of the curve Z(τ) when there are 9 intersections between
stable and unstable manifolds. aggiunta

Then positive solutions have a structure of type A. Furthermore we have that
there exists A > 0 such that uA(r) is a G.S. with fast decay, each uA(r) is
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a crossing solutions for any a > A, while ua(r) is a G.S. with slow decay if
0 < a < A. Therefore we have the uniqueness of the G.S. with fast decay.

Note that α+ implies that J+(r) is positive for r small and Ω− implies
that J−(r) is negative for r large; moreover α+ is very close to the hypothesis
on J+ and Ω− is very close to the hypothesis on J−(r) in many practical
examples. If the second hypothesis concerning J−(r) is satisfied to prove the
uniqueness of the G.S. with fast decay we have to consider the solutions v(r)
with fast decay of (1.2) and repeat all the reasonings developed in [21]. This
way we obtain the same structure result as if the first hypothesis is satisfied,
therefore the uniqueness of the G.S. with fast decay is proved.
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