Asymptotic Expansion of Solutions of an Elliptic Equation Related to the Nonlinear Schrödinger Equation*

M. Franca ${ }^{1,2}$ and R. Johnson ${ }^{3}$

Received November 11, 2002

We study the radially symmetric blow-up solutions of the nonlinear Schrödinger equation. We give a method for developing such a solution in a series which represents it asymptotically.

KEY WORDS: Nonlinear Schrödinger equation; blow-up solution; asymptotic series representation.

1. INTRODUCTION

In this paper we will study the solutions of the nonlinear Schrödinger equation (NLS)

$$
\begin{align*}
& i \frac{\partial \phi}{\partial t}+\Delta \phi+|\phi|^{p-1} \phi=0 \quad\left(t>0, x \in \mathbb{R}^{n}\right) \tag{NLS}\\
& \phi(0, x)=\phi_{0}(x)
\end{align*}
$$

which blow up in finite time. We assume that the dimension n is at least two and that $1+\frac{4}{n} \leqslant p \leqslant p^{*}$, where $p^{*}=\infty$ if $n=2$ and $p^{*}=\frac{n+2}{n-2}$ if $n \geqslant 3$. The quantity $1+\frac{4}{n}$ is the so-called critical exponent for the NLS. We will study

[^0]the asymptotic behavior of the blow-up solutions near the blow-up time, and in so doing we will refine the information on the asymptotic behavior of the solutions given in [2-4]. We will use the well-known method of dynamical scaling [5-8], then apply the classical method of asymptotic analysis [1, 9] together with the arguments of [2] to obtain our results. The method of dynamical scaling allows one to define and study an asymptotic profile for blow-up solutions; that profile is a solution of an appropriate limiting equation.

Let us review first the dynamical scaling method. Assume that the solution ϕ is a radially symmetric function; then ϕ depends only on t and on $s=|x|$. Here and below, $|\cdot|$ denotes the euclidean norm in \mathbb{R}^{n}. Suppose that ϕ blows up at a finite time t^{*}. We rescale as follows:

$$
\xi=\frac{s}{L(t)}, \quad \tau=\int_{0}^{t} \frac{d u}{L^{2}(u)}, \quad \phi(t, s)=\frac{1}{L(t)^{\frac{1}{\sigma}}} w(\tau, \xi),
$$

where $\sigma=\frac{p-1}{2}$ and $L(t)$ will be specified in a moment. Then $w(\tau, \xi)$ satisfies the following equation:

$$
\begin{align*}
& i \frac{\partial w}{\partial \tau}+\frac{\partial^{2} w}{\partial \xi^{2}}+\frac{n-1}{\xi} \frac{\partial w}{\partial \xi}+|w|^{p-1} w-i a(\tau)\left[\frac{w}{\sigma}-\xi \frac{\partial w}{\partial \xi}\right]=0 \tag{1.1}\\
& w(0, \xi)=L(0)^{\frac{1}{\sigma}} \phi_{0}(L(0), \xi),
\end{align*}
$$

where $a(\tau)=L \frac{d L}{d t}=\frac{d}{d \tau} \log (L)$.
The idea now is to choose L (and hence a) in such a way that the solution of (1.1) is well-behaved near the blow-up time t^{*}. A standard choice of L is:

$$
L(t) \sim c\left(t^{*}-t\right)^{\frac{1}{2}} \quad\left(t \pi t^{*}\right)
$$

We then obtain $a(\tau) \rightarrow-a_{\infty}$ as $\tau \rightarrow \infty$, where a_{∞} is a nonnegative real number. We are led to study the limit equation obtained by setting $a(\tau)=-a_{\infty}$:

$$
i \frac{\partial w}{\partial \tau}+\frac{\partial^{2} w}{\partial \xi^{2}}+\frac{n-1}{\xi} \frac{\partial w}{\partial \xi}+|w|^{p-1} w-i a_{\infty}\left[\frac{w}{\sigma}-\xi \frac{\partial w}{\partial \xi}\right]=0 .
$$

As suggested in [5-7], we now set

$$
w(\tau, \xi)=e^{i c_{\omega_{0}} \tau} Q(\xi) .
$$

Then the "profile" $Q(\xi)$ satisfies the equation:

$$
\begin{align*}
& \frac{\partial^{2} Q}{\partial \xi^{2}}+\frac{n-1}{\xi} \frac{\partial Q}{\partial \xi}-c_{\infty} Q+|Q|^{p-1} Q-i a_{\infty}\left[\frac{Q}{\sigma}+\xi \frac{\partial Q}{\partial \xi}\right]=0 \\
& \frac{d Q}{d \xi}(0)=0, \quad 0 \neq Q(0) \in \mathbb{R} \tag{1.2}
\end{align*}
$$

We will consider the case $a_{\infty}>0$, whose analysis is rendered more complicated by the oscillation of the corresponding solutions of (1.2).

As suggested in [2], we put

$$
Q(\xi)=q(\xi) e^{-\frac{i}{4} a_{\infty} \xi^{2}}
$$

We obtain the following equation for $q(\xi)$:

$$
\begin{align*}
& \frac{d^{2} q}{d \xi^{2}}+\frac{n-1}{\xi} \frac{d q}{d \xi}-c_{\infty} q+|q|^{p-1} q+\frac{1}{4} a_{\infty}^{2} \xi^{2} q+i a_{\infty}\left[\frac{1}{\sigma}-\frac{n}{2}\right] q=0 \tag{1.3}\\
& \frac{d q}{d \xi}=0, \quad 0 \neq q(0) \in \mathbb{R} .
\end{align*}
$$

Next introduce the quantities

$$
u(r)=c_{\infty}^{-\frac{1}{p-1}} q(\xi), \quad r=\sqrt{c_{\infty}} \xi, \quad \lambda=\frac{a_{\infty}^{2}}{4 c_{\infty}^{2}}, \quad B=\left(\frac{n}{2}-\frac{1}{\sigma}\right) \frac{a_{\infty}}{c_{\infty}} .
$$

Observe that r is a time-scaled version of the norm $|x|$ of $x \in \mathbb{R}^{n}$. One sees that $u(r)$ satisfies the following equation:

$$
\begin{align*}
& u^{\prime \prime}(r)=\frac{n-1}{r} u^{\prime}(r)+\left(\lambda r^{2}-1\right) u(r)+|u(r)|^{p-1} u(r)-i B u(r)=0 \tag{1.4}\\
& u^{\prime}(0)=0, \quad 0 \neq u(0) \in \mathbb{R} .
\end{align*}
$$

In the critical case when $p=1+\frac{4}{n}$, we obtain $B=0$, and then (1.4) takes the simpler form

$$
\begin{align*}
& u^{\prime \prime}(r)+\frac{n-1}{r} u^{\prime}(r)+\left(\lambda r^{2}-1\right) u(r)+|u(r)|^{p-1} u(r)=0 \tag{1.5}\\
& u^{\prime}(0)=0, \quad 0 \neq u(0) \in \mathbb{R} .
\end{align*}
$$

The rest of the paper is organized as follows. In Section 2, we study the asymptotic behavior of solutions of Eq. (1.5). We will use the classical
methods of [1, 9] together with the result of [2]. Then, in Section 3, we will analyze the asymptotic behavior of the solutions of (1.4). We use again the method of [9]; however the discussion is rendered more complicated by the presence of the term $-i B u(r)$.

The second author would like to thank Prof. Xingbin Pan for consultations on an early draft of this paper.

2. THE CRITICAL CASE

We study the behavior as $r \rightarrow \infty$ of the solution of the following problem:

$$
\begin{align*}
& u^{\prime \prime}(r)+\frac{n-1^{\prime}}{u}(r)+\left(\lambda r^{2}-1\right) u(r)+|u(r)|^{p-1} u(r)=0 \tag{1.5}\\
& u^{\prime}(0)=0, \quad 0 \neq u(0) \in \mathbb{R} .
\end{align*}
$$

The local existence and uniqueness of solutions of (1.5) can be proved using the contraction mapping theorem. It can also be proved that solutions exist on $0<r<\infty$. Our main interest is in the case $p=1+\frac{4}{n}$, but our analysis will be valid for all $p \geqslant 1+\frac{4}{n}$.

Let us first review the discussion of (1.5) which is given in [2]. Define

$$
v(r)=r^{\frac{n-1}{2}} u(r), \quad k=\frac{(n-1)(n-3)}{4}
$$

Then

$$
\begin{equation*}
v^{\prime \prime}+\left[\lambda r^{2}-1-\frac{k}{r^{2}}-r^{-\frac{(n-1)(p-1)}{2}}|v|^{p-1}\right] v=0 . \tag{2.1}
\end{equation*}
$$

Next set

$$
t=r^{2}, \quad x(t)=v(r), \quad y(t)=\frac{d x}{d t}
$$

so that (2.1) takes the form

$$
\begin{align*}
& x^{\prime}=y \\
& y^{\prime}=-\frac{\lambda}{4} x-\frac{y}{2 t}+\frac{1}{4}\left(\frac{1}{t}+\frac{k}{t^{2}}\right) x-\frac{1}{4} t^{-\sigma}|x|^{p-1} x, \tag{2.2}
\end{align*}
$$

where the prime ' in (2.2) denotes the differentiation with respect to t, and $\sigma=1+\frac{1}{4}(n-1)(p-1)$.

The first step in the asymptotic analysis of the solutions of (2.2) is carried out in [2]. Introduce the Lyapunov-type function

$$
H(t)=\frac{y^{2}}{2}+\frac{\lambda}{8} x^{2}-\frac{1}{8}\left(\frac{1}{t}+\frac{k}{t^{2}}\right) x^{2}+\frac{|x|^{p+1}}{4(p+1) t^{\sigma}} .
$$

Then

$$
\frac{d H}{d t}=-\frac{y^{2}}{2 t}+\frac{1}{8}\left(\frac{1}{t^{2}}+\frac{2 k}{t^{3}}\right) x^{2}-\frac{\sigma}{4(p+1)} \frac{|x|^{p+1}}{t^{\sigma+1}}
$$

We can find $t_{0}>0$ with the property that, if $t \geqslant t_{0}$, then $H(t)>0$ and

$$
\frac{H^{\prime}(t)}{H(t)} \leqslant \frac{4}{\lambda t^{2}} \quad \text { if } t \text { is large. }
$$

It follows that $H(t)$ is bounded for $t \geqslant t_{0}$, so $x(t)$ and $y(t)$ exist for all $t \geqslant t_{0}$ and are bounded as $t \rightarrow \infty$.

Next introduce the polar variable ρ, θ defined by

$$
x=\frac{2}{\sqrt{\lambda}} \rho \cos \theta, \quad y=\rho \sin \theta .
$$

Arguing as in [2], one shows that

$$
\begin{equation*}
\rho(t)=\rho^{*} t^{-\frac{1}{4}}+O\left(t^{-\frac{1}{4}-\beta}\right) \tag{2.3}
\end{equation*}
$$

as $t \rightarrow \infty$, where $\beta=\min \left\{1, \frac{1}{4}(n-1)(p-1)\right\}$ and ρ^{*} is a positive constant. Although it is not noted explicitly in [2], one can improve (2.3) by substituting it in [2, Eq. (3.8), p. 780]; one obtains

$$
\begin{equation*}
\rho(t)=\rho^{*} t^{-\frac{1}{4}}+O\left(t^{-\frac{1}{2}-\beta}\right) \quad(t \rightarrow \infty) . \tag{2.4}
\end{equation*}
$$

This agrees with the remainder estimate of [3]. Our goal in the following discussion is that of obtaining a complete asymptotic expansion of a given solution of (2.2). With respect to this complete expansion, the relation (2.4) will correspond to the zeroth-order information.

We begin by studying the linear equation obtained by omitting the nonlinear term $\frac{1}{4} t^{-\sigma}|x|^{p-1} x$ in Eq. (2.2). Writing this linear equation in second-order form, we have

$$
\begin{equation*}
x^{\prime \prime}+\frac{1}{2 t} x^{\prime}+\left(\frac{\lambda}{4}-\frac{1}{4 t}-\frac{k}{4 t^{2}}\right) x=0 . \tag{2.5}
\end{equation*}
$$

Putting $z=x \cdot t^{-\frac{1}{4}}$, one obtains

$$
\begin{equation*}
z^{\prime \prime}+\left[\frac{\lambda}{4}-\frac{1}{4 t}+\frac{1}{t^{2}}\left(\frac{3}{16}-\frac{k}{4}\right)\right] z=0 . \tag{2.6}
\end{equation*}
$$

If we write

$$
q(t)=\frac{\lambda}{4}-\frac{1}{4 t}+\frac{1}{t^{2}}\left(\frac{3}{16}-\frac{k}{4}\right)=q_{0}+\frac{q_{1}}{t}+\frac{q_{2}}{t^{2}},
$$

then (2.6) has the form $z^{\prime \prime}+q(t) z=0$, and we are in the position to study the normal solutions [1, pp. 61 ff] of (2.6).

We briefly recall how the normal solutions are constructed; for details see [1]. First write

$$
z=e^{\omega t} t^{-\rho} g
$$

and plug this quantity into (2.6). Then

$$
\begin{aligned}
\omega^{2}+q_{0} & =0=\omega^{2}+\frac{\lambda}{4} \\
-2 \omega \rho+q_{1} & =0=-2 \omega \rho-\frac{1}{4} .
\end{aligned}
$$

One obtains the solutions $\pm \omega= \pm \frac{i \sqrt{\lambda}}{2}, \pm \rho=\frac{ \pm i}{4 \sqrt{\lambda}}$.
Following the calculations of [1], one deduces that there exist two linearly independent solutions $x_{ \pm}$of (2.2)

$$
\begin{equation*}
x_{ \pm} \sim t^{-\frac{1}{4}} e^{ \pm \omega t} t^{\mp \rho} \sum_{k=0}^{\infty} \frac{c_{k}^{ \pm}}{t^{k}} . \tag{2.7}
\end{equation*}
$$

In particular the 0 th order term $x_{ \pm}$is of the form

$$
\text { const } \times t^{-\frac{1}{4}} \exp \left[\pm i\left(\frac{\sqrt{\lambda}}{2} t+\frac{1}{4 \sqrt{\lambda}} \ln t\right)\right] .
$$

We return now to the nonlinear system (2.2), and give a general procedure for analyzing the corrections to this term in the expansion (2.7) which arise from the presence of the nonlinearity $-\frac{1}{4} t^{-\sigma}|x|^{p-1} x$. The nonlinearity is not analytic in x, so standard techniques cannot be directly applied. So we develop a method adapted to the problem at hand.

It is easiest to present the procedure in an abstract framework. Consider the Cauchy problem

$$
\begin{align*}
& \underline{x}^{\prime}=A(t) \underline{x}+f(t, \underline{x}) \quad\left(t \geqslant t_{0}, x \in \mathbb{R}^{n}\right) \tag{2.8}\\
& \underline{x}\left(t_{0}\right)=\underline{\hat{x}}
\end{align*}
$$

where $f(t, \underline{x})$ is smooth enough in its arguments to guarantee local existence and uniqueness of solutions of (2.8). We suppose that $A(\cdot)$ is analytic in an open sector S in the complex t-plane, with vertex at ∞ and containing the semi-axis $\left\{t \in \mathbb{R} \mid t \geqslant t_{0}\right\}$. We further suppose that $A(\cdot)$ admits an asymptotic expansion valid in the sector S :

$$
A(t) \sim A_{0}+\frac{A_{1}}{t}+\frac{A_{2}}{t^{2}}+\cdots .
$$

Let $\Phi(t)$ be the matrix solution of $\underline{x}^{\prime}=A(t) \underline{x}$ which satisfies $\Phi\left(t_{0}\right)=I$; we suppose that $\Phi(t)$ satisfies

$$
\begin{equation*}
\Phi(t)=t^{-\alpha} \Psi(t) \tag{2.9}
\end{equation*}
$$

where $\alpha \geqslant 0$ and $\Psi(t)$ together with $\Psi(t)^{-1}$ are bounded as $t \rightarrow \infty$.
Turning to the nonlinear function f, we assume that

$$
\begin{equation*}
f(t, \underline{x})=t^{-\sigma} g(t, \underline{x}) \quad\left(t \geqslant t_{0}\right) \tag{2.10}
\end{equation*}
$$

where $\sigma>1$ and g satisfies

$$
\begin{equation*}
|g(t, \underline{x})|=O\left(|\underline{x}|^{p}\right) \quad(|x| \rightarrow 0) \tag{2.11}
\end{equation*}
$$

Here $p>1$, and the estimate is assumed uniform for $t \geqslant t_{0}$. We further assume that $g(t, 0)=0$, and that g is Lipschitz in the following sense with respect to the variable x :

$$
\begin{equation*}
|g(t, \underline{x}+y)-g(t, \underline{x})| \leqslant M(\underline{x})|\underline{y}| \quad \text { where } M(\underline{x})=O\left(|\underline{x}|^{p-1}\right) \quad(|x| \rightarrow 0) . \tag{2.12}
\end{equation*}
$$

Now suppose that $\underline{x}(t)$ is a solution of (2.8) which satisfies

$$
\begin{equation*}
|\underline{x}(t)|=O\left(t^{-\alpha}\right) \quad(t \rightarrow \infty) \tag{2.13}
\end{equation*}
$$

By the variation of constants formula:

$$
\underline{x}(t)=\Phi(t) \underline{\hat{x}}+\int_{t_{0}}^{t} \Phi(t) \Phi(s)^{-1} f(s, \underline{x}(s)) d s
$$

where $\underline{\hat{x}}(t)=\underline{x}\left(t_{0}\right)$. It is convenient to rewrite this expression as

$$
\begin{equation*}
\underline{x}(t)=\underline{x}_{0}(t)+\int_{\infty}^{t} \Phi(t) \Phi(s)^{-1} f(s, \underline{x}(s)) d s \tag{2.14}
\end{equation*}
$$

where

$$
\begin{align*}
& \underline{x}_{0}(t)=\Phi(t) \underline{\hat{x}}+\underline{x}_{c}(t) \\
& \underline{x}_{c}(t)=\int_{t_{0}}^{\infty} \Phi(t) \Phi(s)^{-1} f(s, \underline{x}(s)) d s . \tag{2.15}
\end{align*}
$$

We see that the "correction" term $x_{c}(t)$ is a solution of the linear equation $x^{\prime}=A(t) \underline{x}$. It is well defined because of (2.10), (2.11), and (2.13), and in fact $\left|\underline{x}_{c}(t)\right|=O\left(t^{-\alpha}\right)$ as $t \rightarrow \infty$. In principle it can be computed with arbitrary accuracy by approximating the integral $\int_{t_{0}}^{\infty} \Phi(t) \Phi(s)^{-1} f(s, \underline{x}(s)) d s$ and solving the linear equation $\underline{x}^{\prime}=A(t) \underline{x}$.

Define now

$$
\underline{y}_{1}(t)=\underline{x}(t)-\underline{x}_{0}(t)=\int_{\infty}^{t} \Phi(t) \Phi(s)^{-1} f(s, \underline{x}(s)) d s
$$

so that $\underline{x}(t)=\underline{x}_{0}(t)+\underline{y}_{1}(t)$. Using the estimates (2.10), (2.11), and (2.13), we see that

$$
\left|\underline{y}_{1}(t)\right|=O\left(t^{-\sigma-\alpha p+1}\right) .
$$

Writing

$$
f_{1}(t, \underline{y})=f\left(t, \underline{x}_{0}(t)+\underline{y}\right)-f\left(t, \underline{x}_{0}(t)\right) \quad\left(t \geqslant t_{0}\right)
$$

we see that

$$
\underline{y}_{1}(t)=\int_{\infty}^{t} \Phi(t) \Phi(s)^{-1} f\left(s, \underline{x}_{0}(s)\right) d s+\int_{\infty}^{t} \Phi(t) \Phi(s)^{-1} f_{1}\left(s, \underline{y}_{1}(s)\right) d s
$$

Using the estimate (2.12), we have

$$
\left|f_{1}\left(t, \underline{y}_{1}(t)\right)\right|=O\left(t^{-\sigma} \cdot t^{-\alpha(p-1)} \cdot t^{-\sigma-\alpha p+1}\right)=O\left(t^{-2 \sigma-2 \alpha p+\alpha+1}\right)
$$

Next write

$$
\begin{aligned}
& \underline{x}_{1}(t)=\int_{\infty}^{t} \Phi(t) \Phi(s)^{-1} f\left(s, \underline{x}_{0}(s)\right) d s \\
& \underline{y}_{2}(t)=\int_{\infty}^{t} \Phi(t) \Phi(s)^{-1} f_{1}\left(s, \underline{y}_{1}(s)\right) d s
\end{aligned}
$$

Then $\underline{y}_{1}=\underline{x}_{1}+\underline{y}_{2}$ and $\underline{x}=\underline{x}_{0}+\underline{x}_{1}+\underline{y}_{2}$. The following estimates hold:

$$
\begin{aligned}
& \left|\underline{x}_{1}(t)\right|=O\left(t^{-\sigma-\alpha p+1}\right) \\
& \left|\underline{y}_{2}(t)\right|=O\left(t^{-2 \sigma-2 \alpha p+\alpha+2}\right) .
\end{aligned}
$$

It is now clear how to continue the development of $\underline{x}(t)$. For each $k=2,3, \ldots$ we write

$$
\begin{aligned}
f_{k}(t, \underline{y}) & =f_{k-1}\left(t, \underline{x}_{k-1}(t)+\underline{y}\right)-f_{k-1}\left(t, \underline{x}_{k-1}(t)\right) \\
& =f\left(t, \underline{x}_{0}+\cdots+\underline{x}_{k-1}(t)+\underline{y}\right)-f\left(t, \underline{x}_{0}+\cdots+\underline{x}_{k-1}(t)\right), \\
\underline{x}_{k}(t) & =\int_{\infty}^{t} \Phi(t) \Phi(s)^{-1} f_{k-1}\left(s, \underline{x}_{k-1}(s)\right) d s, \\
\underline{y}_{k+1}(t) & =\int_{\infty}^{t} \Phi(t) \Phi(s)^{-1} f_{k}\left(s, \underline{y}_{k}(s)\right) d s .
\end{aligned}
$$

Then $\underline{y}_{k}=\underline{x}_{k}+\underline{y}_{k+1}$ and

$$
\begin{equation*}
\underline{x}=\underline{x}_{0}+\cdots+\underline{x}_{k}+\underline{y}_{k+1} \tag{2.16}
\end{equation*}
$$

For each $k \geqslant 1$ we have:

$$
\begin{align*}
\left|\underline{x}_{k}(t)\right| & =O\left(t^{-k \sigma-k \alpha p+k+(k-1) \alpha}\right) \\
\left|\underline{y}_{k}(t)\right| & =O\left(t^{-k \sigma-k \alpha p+k+(k-1) \alpha}\right) . \tag{2.17}
\end{align*}
$$

Since $\sigma>1$ and $p>1$, we see that the development (2.16) gives rise to an asymptotic expansion in (perhaps fractional) powers of t of the solution $\underline{x}(t)$ of (2.8). Of course $\underline{x}(t)$ must satisfy the a priori bound (2.13).

Let us note that, if $\underline{x}_{k}(t)$ vanishes identically for some $k \geqslant 1$, then $\underline{x}_{l}(t) \equiv 0$ for all $l \geqslant k$. In this case we have

$$
\underline{x}(t)=\sum_{l=0}^{k-1} \underline{x}_{l}(t)+\underline{r}(t)
$$

where $\underline{r}(t)$ is small to all orders of t, as $t \rightarrow \infty$. This amplifies the discussion in [3] of relation (3.25) of that paper.

Let us return to the blow-up solution of the nonlinear Schrödinger equation which motivated our discussion. Set $\sigma=1+\frac{n-1}{n}, p=1+\frac{4}{n}$ and $\alpha=\frac{1}{4}$. Combining (2.7) and (2.15), and letting $x(t)$ denote the first component of the vector $\underline{x}(t)=\binom{x(t)}{y(t)}$, we see that

$$
x(t)=x_{0}(t)+x_{1}(t)+\cdots+x_{n}(t)+\cdots
$$

where

$$
x_{0}(t)=a t^{-\frac{1}{4}} \cos \left(\frac{\sqrt{\lambda}}{2} t+\frac{t}{4 \sqrt{\lambda}}+b\right)
$$

for constants a and b, and

$$
\left|x_{n}(t)\right|=O\left(t^{-n}\right) \quad(n=1,2, \ldots) .
$$

Observe in particular that the linear contribution $x_{0}(t)$ is determined by the constants a and b. All the remaining terms in the expansion are thus determined when a and b are known.

3. THE SUPER-CRITICAL CASE

Now we study Eq. (1.4) when $B>0$. We first review some preliminary calculations which are given in [2]. Write $u=u_{1}+i u_{2}$ where u_{1} and u_{2} are real quantities. Then

$$
\begin{align*}
& u_{1}^{\prime \prime}+\frac{n-1}{r} u_{1}^{\prime}+\left(\lambda r^{2}-1\right) u_{1}+\left(u_{1}^{2}+u_{2}^{2}\right)^{\frac{p-1}{2}} u_{1}+B u_{2}=0 \\
& u_{2}^{\prime \prime}+\frac{n-1}{r} u_{2}^{\prime}+\left(\lambda r^{2}-1\right) u_{2}+\left(u_{1}^{2}+u_{2}^{2}\right)^{\frac{p-1}{2}} u_{2}-B u_{1}=0 \tag{3.1}\\
& u_{1}^{\prime}(0)=u_{2}^{\prime}(0)=0, \quad u_{2}(0)=0, \quad u_{1}(0)=u_{0} \neq 0 .
\end{align*}
$$

Introduce the quantities

$$
t=r^{2}, \quad \sigma=1+\frac{1}{4}(n-1)(p-1), \quad k=\frac{(n-1)(n-3)}{4} .
$$

Then writing $x_{j}(t)=r^{\frac{n-1}{2}} u_{j}(r), y_{j}(t)=\frac{d x_{j}}{d t}(j=1,2)$, one obtains from (3.1):

$$
\begin{align*}
& x_{1}^{\prime}=y_{1} \\
& y_{1}^{\prime}=-\frac{\lambda}{4} x_{1}+\frac{1}{4}\left(\frac{1}{t}+\frac{k}{t^{2}}\right) x_{1}-\frac{y_{1}}{2 t}-\frac{B}{4 t} x_{2}-\frac{1}{4} t^{-\sigma}\left(x_{1}^{2}+x_{2}^{2}\right)^{\frac{p-1}{2}} x_{1} \tag{3.2}\\
& x_{2}^{\prime}=y_{2} \\
& y_{2}^{\prime}=-\frac{\lambda}{4} x_{2}+\frac{1}{4}\left(\frac{1}{t}+\frac{k}{t^{2}}\right) x_{2}-\frac{y_{2}}{2 t}+\frac{B}{4 t} x_{1}-\frac{1}{4} t^{-\sigma}\left(x_{1}^{2}+x_{2}^{2}\right)^{\frac{p-1}{2}} x_{2} .
\end{align*}
$$

Here the prime ' indicates differentiation with respect to t. Writing the linear part of (3.2) in vector form with

$$
z=\left(\begin{array}{l}
x_{1} \\
y_{1} \\
x_{2} \\
y_{2}
\end{array}\right),
$$

we obtain

$$
z^{\prime}=\left(C_{0}+\frac{C_{1}}{t}+\frac{C_{2}}{t^{2}}\right) z
$$

where

$$
\begin{gathered}
C_{0}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-\frac{\lambda}{4} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -\frac{\lambda}{4} & 0
\end{array}\right), \quad C_{1}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\frac{1}{4} & -\frac{1}{2} & -\frac{B}{4} & 0 \\
0 & 0 & 0 & 0 \\
\frac{B}{4} & 0 & \frac{1}{4} & -\frac{1}{2}
\end{array}\right), \\
C_{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\frac{k}{4} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \frac{k}{4} & 0
\end{array}\right) .
\end{gathered}
$$

We diagonalize A_{0} via the transformation $z=Q w$, where

$$
Q=\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
-i \frac{\sqrt{\lambda}}{2} & 0 & i \frac{\sqrt{\lambda}}{2} & 0 \\
0 & 1 & 0 & 1 \\
0 & -i \frac{\sqrt{\lambda}}{2} & 0 & i \frac{\sqrt{\lambda}}{2}
\end{array}\right)
$$

then

$$
\begin{aligned}
& Q^{-1} C_{0} Q=\left(\begin{array}{cccc}
-i \frac{\sqrt{\lambda}}{2} & 0 & 0 & 0 \\
0 & -i \frac{\sqrt{\lambda}}{2} & 0 & 0 \\
0 & 0 & i \frac{\sqrt{\lambda}}{2} & 0 \\
0 & 0 & 0 & i \frac{\sqrt{\lambda}}{2}
\end{array}\right), \\
& Q^{-1} C_{1} Q=\left(\begin{array}{cccc}
-\frac{1}{4}+\frac{i}{4 \sqrt{\lambda}} & -\frac{i B}{4 \sqrt{\lambda}} & \frac{1}{4}+\frac{i}{4 \sqrt{\lambda}} & -\frac{i B}{4 \sqrt{\lambda}} \\
\frac{i B}{4 \sqrt{\lambda}} & -\frac{1}{4}+\frac{i}{4 \sqrt{\lambda}} & \frac{i B}{4 \sqrt{\lambda}} & \frac{1}{4}+\frac{i}{4 \sqrt{\lambda}} \\
\frac{1}{4}-\frac{i}{4 \sqrt{\lambda}} & \frac{i B}{4 \sqrt{\lambda}} & -\frac{1}{4}-\frac{i}{4 \sqrt{\lambda}} & \frac{i B}{4 \sqrt{\lambda}} \\
-\frac{i B}{4 \sqrt{\lambda}} & \frac{1}{4}-\frac{i}{4 \sqrt{\lambda}} & -\frac{i B}{4 \sqrt{\lambda}} & -\frac{1}{4}-\frac{i}{4 \sqrt{\lambda}}
\end{array}\right) .
\end{aligned}
$$

Writing $\hat{A}_{i}=Q^{-1} C_{i} Q(i=0,1,2)$ we obtain

$$
\begin{equation*}
w^{\prime}=\left(\hat{A}_{0}+\frac{\hat{A}_{1}}{t}+\frac{\hat{A}_{2}}{t^{2}}\right) w . \tag{3.3}
\end{equation*}
$$

We now apply the method expounded in [W, pp. 54-55] to formally blockdiagonalize Eq. (3.3). One looks for a change of variables of the form

$$
\begin{equation*}
w=P(t) \xi, \tag{3.4}
\end{equation*}
$$

where $P(\cdot)$ is analytic in a sector S in the complex t-plane which has vertex at $t=\infty$ and which contains some real segment $\left\{t \in \mathbb{R} \mid t \geqslant t_{0}\right\}$. It is required that P admit a formal series expansion in the sector S :

$$
\begin{equation*}
P(t) \sim I+\sum_{k=1}^{\infty} \frac{P_{k}}{t^{k}}, \tag{3.5}
\end{equation*}
$$

where I is the 4×4 identity matrix and each P_{k} has the form

$$
P_{k}=\left(\begin{array}{cc}
0 & P_{k}^{12} \tag{3.6}\\
P_{k}^{21} & 0
\end{array}\right)
$$

with 2×2 blocks $P_{k}^{12}, P_{k}^{21}(k=1,2, \ldots)$. It turns out that one can find a sector S satisfying the condition above, together with a 4×4 matrix function $P(\cdot)$ which is holomorphic in S and which admits an asymptotic expansion in S, satisfying (3.5) and (3.6), such that, in the ξ-variable, (3.3) has the form

$$
\begin{equation*}
\xi^{\prime}=A(t) \xi \tag{3.7}
\end{equation*}
$$

where $A(t)$ is holomorphic in S, and admits an asymptotic expansion in S of the form

$$
\begin{equation*}
A(t) \sim A_{0}+\frac{A_{1}}{t}+\sum_{k=2}^{\infty} \frac{A_{k}}{t^{k}} . \tag{3.8}
\end{equation*}
$$

Furthermore $P(\cdot)$ can be chosen so that A is block-diagonal with 2×2 blocks (it follows that each A_{k} is block-diagonal as well), and so that

$$
A_{0}=C_{0}=\left(\begin{array}{cccc}
\frac{-i \sqrt{\lambda}}{2} & 0 & 0 & 0 \\
0 & \frac{-i \sqrt{\lambda}}{2} & 0 & 0 \\
0 & 0 & \frac{i \sqrt{\lambda}}{2} & 0 \\
0 & 0 & 0 & \frac{i \sqrt{\lambda}}{2}
\end{array}\right)
$$

and

$$
A_{1}=\left(\begin{array}{cc}
A_{1}^{11} & 0 \\
0 & A_{1}^{22}
\end{array}\right)=\left(\begin{array}{cc}
C_{1}^{11} & 0 \\
0 & C_{1}^{22}
\end{array}\right) .
$$

Thus

$$
\begin{aligned}
& A_{1}^{11}=\left(\begin{array}{cc}
-\frac{1}{4}+\frac{i}{4 \sqrt{\lambda}} & -\frac{i B}{4 \sqrt{\lambda}} \\
\frac{i B}{4 \sqrt{\lambda}} & -\frac{1}{4}+\frac{i}{4 \sqrt{\lambda}}
\end{array}\right) \\
& A_{1}^{22}=\left(\begin{array}{cc}
-\frac{1}{4}-\frac{i}{4 \sqrt{\lambda}} & \frac{i B}{4 \sqrt{\lambda}} \\
-\frac{i B}{4 \sqrt{\lambda}} & -\frac{1}{4}-\frac{i}{4 \sqrt{\lambda}}
\end{array}\right)=\overline{A_{1}^{11}} .
\end{aligned}
$$

Now set

$$
\beta=\frac{B}{4 \sqrt{\lambda}} .
$$

By choosing the constant c_{∞} in the introduction in an appropriate way, we can and will arrange that

$$
\beta=\frac{n}{4}-\frac{1}{p-1} .
$$

We see that, when p lies in the range $1+\frac{4}{n} \leqslant p<\frac{n+2}{n-2}, \beta$ lies in the interval $\left[0, \frac{1}{2}\right)$. The eigenvalues of the matrices A_{1}^{11} and A_{1}^{22} are respectively
$-\frac{1}{4} \pm \beta+\frac{i}{4 \sqrt{\lambda}}$ and $-\frac{1}{4} \pm \beta-\frac{i}{4 \sqrt{\lambda}}$. Observe that if $\beta \in\left(0, \frac{1}{2}\right)$, the eigenvalues do not differ by an integer. Observe further that, if $\beta=0$, we are in the critical case studied in Section 2. Assume from now on that $0<\beta<\frac{1}{2}$.

We apply the results of [9] to the system (3.7) to determine a matrix solution $\Phi(t)$, which is holomorphic in an open subsector S^{\prime} of S containing $\left\{t \in \mathbb{R} \mid t \geqslant t_{0}\right\}$, and which takes the form

$$
\begin{equation*}
\Phi(t)=\hat{\Phi}(t) t^{A_{1}} e^{A_{0} t} \tag{3.9}
\end{equation*}
$$

where $\hat{\Phi}$ admits an asymptotic expansion in S^{\prime} of the form

$$
\hat{\Phi}(t) \sim \sum_{k=0}^{\infty} \frac{\Phi_{k}}{t^{k}} .
$$

See especially [9, Theorem 5.5, p. 25] and the discussion of [9, pp. 100-101].

Let us assume from now on that $t_{0}>0$. Multiplying $\Phi(t)$ on the right by an appropriate constant matrix K, we can assume that $\Phi\left(t_{0}\right)=I$. It is clear that $\Phi(t)=t^{-\frac{1}{4}+\beta} \Psi_{1}(t)$ and $\Phi(t)^{-1}=t^{\frac{1}{4}+\beta} \Psi_{2}(t)$, where $\Psi_{1}(t)$ and $\Psi_{2}(t)$ are matrix functions which are bounded for $t \geqslant t_{0}$.

We now carry out an analysis similar to that of Section 2; the main difference will consist in the corrections due to the presence of the quantity β. Let us write

$$
\hat{f}(t, z)=\left(\begin{array}{c}
0 \\
-\frac{1}{4} t^{-\sigma}\left(x_{1}^{2}+x_{2}^{2}\right)^{\frac{p-1}{2}} x_{1} \\
0 \\
-\frac{1}{4} t^{-\sigma}\left(x_{1}^{2}+x_{2}^{2}\right)^{\frac{p-1}{2}} x_{2}
\end{array}\right)
$$

and

$$
f(t, \xi)=\hat{f}(t, P(t) Q \xi)
$$

Then (3.2) takes the form

$$
\begin{equation*}
\xi^{\prime}=A(t) \xi+f(t, \xi) . \tag{3.10}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
|f(t, \xi)|=O\left(t^{-\sigma}|\xi|^{p}\right) \quad \text { as } \quad t \rightarrow \infty \tag{3.11}
\end{equation*}
$$

uniformly in $\xi \in \mathbb{R}^{4}$. Observe further that

$$
\begin{equation*}
|f(t, \xi+\eta)-f(t, \xi)| \leqslant t^{-\sigma} M(\xi) \eta \tag{3.12}
\end{equation*}
$$

where $M(\xi)=O\left(|\xi|^{p-1}\right)$ as $\xi \rightarrow \infty$.
Let us now apply the scheme developed in Section 2. Let

$$
w(t)=\left(\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
y_{1}(t) \\
y_{2}(t)
\end{array}\right)
$$

be the solution of Eq. (3.2) which corresponds to the initial conditions indicated in (3.1).

According to [2; relation following Eq. (2.43)], we have for $j=1,2$:

$$
\begin{aligned}
& x_{j}(t)=\frac{2}{\sqrt{\lambda}} \rho^{*} t^{-\frac{1}{4}+\beta} e^{-\beta \epsilon(t)} \cos \theta_{j}(t)+O\left(t^{-\frac{1}{4}+\beta}\right) \\
& y_{t}(t)=\rho^{*} t^{-\frac{1}{4}+\beta} e^{-\beta \epsilon(t)} \cos \theta_{j}(t)+O\left(t^{-\frac{1}{4}-\beta}\right)
\end{aligned}
$$

Here $\epsilon(t)$ is a positive function which tends to zero as $t \rightarrow \infty$ and furthermore

$$
\begin{aligned}
& \theta_{1}(t)=-\frac{\sqrt{\lambda}}{2} t+\frac{1}{4 \sqrt{\lambda}} \log t+\frac{c-\theta_{0}}{2}+\beta \mu(t)+O\left(t^{-2 \beta}\right) \\
& \theta_{2}(t)=-\frac{\sqrt{\lambda}}{2} t+\frac{1}{4 \sqrt{\lambda}} \log t+\frac{c+\theta_{0}}{2}-\beta \mu(t)+O\left(t^{-2 \beta}\right),
\end{aligned}
$$

where $\mu(t) \rightarrow 0$ as $t \rightarrow \infty$: indeed $\lim _{t \rightarrow \infty} \frac{\epsilon(t)}{\mu^{2}(t)}=2 \beta$. The constant θ_{0} depends on u_{0}.

We now refine these asymptotic relations in a way that seems to shed some light on the behavior, for large t, of the functions $\epsilon(t)$ and $\mu(t)$. Let $\bar{\xi}$ be the initial condition which corresponds to $w\left(t_{0}\right)$; explicitly $w\left(t_{0}\right)=P\left(t_{0}\right) Q \bar{\xi}$. Moreover let $\xi(t)$ be defined by $w(t)=P(t) Q \xi(t)$, so that $|\xi(t)|=O\left(t^{-\frac{1}{4}+\beta}\right)$ as $t \rightarrow \infty$. We set

$$
\xi_{0}(t)=\Phi(t) \bar{\xi}+\xi_{c}(t)
$$

where

$$
\xi_{c}(t)=\int_{t_{0}}^{\infty} \Phi(t) \Phi(s)^{-1} f(s, \xi(s)) d s
$$

Then

$$
\left|\xi_{0}(t)\right|=O\left(t^{-\frac{1}{4}+\beta}\right) \quad \text { as } \quad t \rightarrow \infty
$$

Next we set

$$
\eta_{1}(t)=\xi(t)-\xi_{0}(t)=\int_{\infty}^{t} \Phi(t) \Phi(s)^{-1} f(s, \xi(s)) d s
$$

One then has from (3.11)

$$
\left|\eta_{1}(t)\right|=O\left(t^{\gamma}\right) \quad \text { as } \quad t \rightarrow \infty,
$$

where

$$
\gamma=\beta+\beta(1+p)-\sigma-\frac{p}{4}+1 .
$$

Now one also has

$$
\left(-\frac{1}{4}+\beta\right)-\gamma=\frac{p+1}{p-1}-\frac{n}{2}:=\tau
$$

where the quantity $\tau=\frac{p+1}{p-1}-\frac{n}{2}$ is positive if p takes values in the interval $\left[1+\frac{4}{n}, \frac{n+2}{n-2}\right.$). This means that $\gamma<-\frac{1}{4}+\beta$ when p takes values in this interval. Next set

$$
\begin{aligned}
\xi_{1}(t) & =\int_{\infty}^{t} \Phi(t) \Phi(s)^{-1} f\left(s, \xi_{0}(s)\right) d s \\
f_{1}(t, \eta) & =f\left(t, \xi_{0}(t)+\eta\right)-f\left(t, \xi_{0}(t)\right) \\
\eta_{2}(t) & =\int_{\infty}^{t} \Phi(t) \Phi(s)^{-1} f_{1}\left(s, \eta_{1}(s)\right) d s
\end{aligned}
$$

and observe that

$$
\begin{aligned}
\eta_{1}(t) & =\xi_{1}(t)+\eta_{2}(t) \\
\xi(t) & =\xi_{0}(t)+\xi_{1}(t)+\eta_{2}(t) .
\end{aligned}
$$

Using (3.12), we obtain

$$
\left|\eta_{2}(t)\right|=O\left(t^{\gamma-\tau}\right) \quad \text { as } \quad t \rightarrow \infty .
$$

It is now clear how to construct further approximations to the solution $\xi(t)$. For each $k \geqslant 1$ we have

$$
\xi(t)=\xi_{0}+\xi_{1}+\cdots+\xi_{k}+\eta_{k+1}(t)
$$

where $\left|\xi_{k}(t)\right|=O\left(t^{-\frac{1}{4}+\beta-k \tau}\right),\left|\eta_{k+1}(t)\right|=O\left(t^{\gamma-k \tau}\right)$ for $t \rightarrow \infty$. Returning to the variables x_{j}, y_{j}, via the transformation $w=P(t) Q \xi$, and keeping in mind that $P(t) \rightarrow I$ as $t \rightarrow \infty$, we obtain developments for these quantities as well.

REFERENCES

1. Erdelyi, A. (1956). Asymptotic Expansions, Dover, New York.
2. Johnson, R., and Pan, X. (1993). On an elliptic equation related to the blow-up phenomenon in the nonlinear Schrödinger equation. Proc. Roy. Soc. Edinburgh Sect. A 123, 763-782.
3. Kavian, O., and Weissler, F. (1994). Self similar solutions of the pseudo-conformally invariant nonlinear Schrödinger equation. Michigan Math. J. 41, 151-173.
4. Kopell, N., and Landman, M. (1995). Spatial structure of the focusing singularity of the cubic Schrödinger equation: A geometrical analysis. SIAM J. Appl. Math. 55, 1297-1323.
5. Le Mesurier, B., Papanicolau, G., Sulem, C., and Sulem, P. (1981). The focusing singularity of the nonlinear Schrödinger equation. In Crandall, M., et al., (eds.), Directions in Partial Differential Equations, Academic Press, New York, pp. 159-201.
6. Le Mesurier, B., Papanicolau, G., Sulem, C., and Sulem, P. (1988). Focusing and multifocusing solutions of the nonlinear Schrödinger equation. Phys. D 31, 78-102.
7. Le Mesurier, B., Papanicolau, G., Sulem, C., and Sulem, P. (1988). Local structure of the self-focusing solution of the nonlinear Schrödinger equation. Phys. D 32, 210-226.
8. McLaughlin, D., Papanicolau, G., Sulem, C., and Sulem, P. (1986). Focusing singularity of the cubic Schrödinger equation. Phys. Rev. A 34, 1200-1210.
9. Wasow, W. (1965). Asymptotic Expansion for Ordinary Differential Equations, Interscience Publishers, New York.

[^0]: * Dedicated to Victor A. Pliss on the occasion of his 70th birthday.
 ${ }^{1}$ Dipartimento di Matematica, Università di Firenze, Viale Morgagni 67a, 50134 Firenze, Italy. E-mail: franca@math.unifi.it
 ${ }^{2}$ To whom correspondence should be addressed.
 ${ }^{3}$ Dipartimento di Sistemi e Informatica, Università di Firenze, Via S. Marta, 3-50139 Firenze, Italy. E-mail: johnson@dsi.unifi.it

