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1. INTRODUCTION

In this paper we will study the solutions of the nonlinear Schrödinger
equation (NLS)

i
“f

“t
+Df+|f|p − 1 f=0 (t > 0, x ¥ Rn)

f(0, x)=f0(x)

(NLS)

which blow up in finite time. We assume that the dimension n is at least
two and that 1+4

n [ p [ pg, where pg=. if n=2 and pg=n+2
n − 2 if n \ 3. The

quantity 1+4
n is the so-called critical exponent for the NLS. We will study



the asymptotic behavior of the blow-up solutions near the blow-up time,
and in so doing we will refine the information on the asymptotic behavior
of the solutions given in [2–4]. We will use the well-known method of
dynamical scaling [5–8], then apply the classical method of asymptotic
analysis [1, 9] together with the arguments of [2] to obtain our results.
The method of dynamical scaling allows one to define and study an
asymptotic profile for blow-up solutions; that profile is a solution of an
appropriate limiting equation.

Let us review first the dynamical scaling method. Assume that the
solution f is a radially symmetric function; then f depends only on t and
on s=|x|. Here and below, | · | denotes the euclidean norm in Rn. Suppose
that f blows up at a finite time tg. We rescale as follows:

t=
s

L(t)
, y=F

t

0

du
L2(u)

, f(t, s)=
1

L(t)
1
s

w(y, t),

where s=p − 1
2 and L(t) will be specified in a moment. Then w(y, t) satisfies

the following equation:

i
“w
“y

+
“

2w
“t2 +

n − 1
t

“w
“t

+|w|p − 1 w − ia(y) 5w
s

− t
“w
“t
6=0

w(0, t)=L(0)
1
s f0(L(0), t),

(1.1)

where a(y)=L dL
dt=

d
dy

log(L).
The idea now is to choose L (and hence a) in such a way that the

solution of (1.1) is well-behaved near the blow-up time tg. A standard
choice of L is:

L(t) ’ c(tg − t)
1
2 (t q tg).

We then obtain a(y) Q − a. as y Q ., where a. is a nonnegative real
number. We are led to study the limit equation obtained by setting
a(y)=−a.:

i
“w
“y

+
“

2w
“t2 +

n − 1
t

“w
“t

+|w|p − 1 w − ia.
5w

s
− t

“w
“t
6=0.

As suggested in [5–7], we now set

w(y, t)=e ic.yQ(t).
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Then the ‘‘profile’’ Q(t) satisfies the equation:

“
2Q

“t2 +
n − 1

t

“Q
“t

− c.Q+|Q|p − 1 Q − ia.
5Q

s
+t

“Q
“t
6=0

dQ
dt

(0)=0, 0 ] Q(0) ¥ R.

(1.2)

We will consider the case a. > 0, whose analysis is rendered more compli-
cated by the oscillation of the corresponding solutions of (1.2).

As suggested in [2], we put

Q(t)=q(t) e− i
4

a.t
2
.

We obtain the following equation for q(t):

d2q
dt2+

n − 1
t

dq
dt

− c.q+|q|p − 1 q+
1
4

a2
.t2q+ia.

51
s

−
n
2
6 q=0

dq
dt

=0, 0 ] q(0) ¥ R.

(1.3)

Next introduce the quantities

u(r)=c− 1
p − 1

. q(t), r=`c. t, l=
a2

.

4c2
.

, B=1n
2

−
1
s
2 a.

c.

.

Observe that r is a time-scaled version of the norm |x| of x ¥ Rn. One sees
that u(r) satisfies the following equation:

uœ(r)=
n − 1

r
uŒ(r)+(lr2 − 1) u(r)+|u(r)|p − 1 u(r) − iBu(r)=0

uŒ(0)=0, 0 ] u(0) ¥ R.

(1.4)

In the critical case when p=1+4
n , we obtain B=0, and then (1.4) takes the

simpler form

uœ(r)+
n − 1

r
uŒ(r)+(lr2 − 1) u(r)+|u(r)|p − 1 u(r)=0

uŒ(0)=0, 0 ] u(0) ¥ R.

(1.5)

The rest of the paper is organized as follows. In Section 2, we study the
asymptotic behavior of solutions of Eq. (1.5). We will use the classical
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methods of [1, 9] together with the result of [2]. Then, in Section 3, we
will analyze the asymptotic behavior of the solutions of (1.4). We use again
the method of [9]; however the discussion is rendered more complicated by
the presence of the term − iBu(r).

The second author would like to thank Prof. Xingbin Pan for consul-
tations on an early draft of this paper.

2. THE CRITICAL CASE

We study the behavior as r Q . of the solution of the following
problem:

uœ(r)+
n − 1

u
Œ

(r)+(lr2 − 1) u(r)+|u(r)|p − 1 u(r)=0

uŒ(0)=0, 0 ] u(0) ¥ R.

(1.5)

The local existence and uniqueness of solutions of (1.5) can be proved
using the contraction mapping theorem. It can also be proved that solu-
tions exist on 0 < r < .. Our main interest is in the case p=1+4

n , but our
analysis will be valid for all p \ 1+4

n .
Let us first review the discussion of (1.5) which is given in [2]. Define

v(r)=r
n − 1

2 u(r), k=
(n − 1)(n − 3)

4
.

Then

vœ+5lr2 − 1 −
k
r2 − r− (n − 1)(p − 1)

2 |v|p − 16 v=0. (2.1)

Next set

t=r2, x(t)=v(r), y(t)=
dx
dt

,

so that (2.1) takes the form

xŒ=y

yŒ=−
l

4
x −

y
2t

+
1
4
11

t
+

k
t2
2 x −

1
4

t−s |x|p − 1 x,
(2.2)

where the prime Œ in (2.2) denotes the differentiation with respect to t, and
s=1+1

4 (n − 1)(p − 1).
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The first step in the asymptotic analysis of the solutions of (2.2) is
carried out in [2]. Introduce the Lyapunov-type function

H(t)=
y2

2
+

l

8
x2 −

1
8
11

t
+

k
t2
2 x2+

|x|p+1

4(p+1) ts
.

Then

dH
dt

=−
y2

2t
+

1
8
1 1

t2+
2k
t3
2 x2 −

s

4(p+1)
|x|p+1

ts+1 .

We can find t0 > 0 with the property that, if t \ t0, then H(t) > 0 and

HŒ(t)
H(t)

[
4

lt2 if t is large.

It follows that H(t) is bounded for t \ t0, so x(t) and y(t) exist for all t \ t0

and are bounded as t Q ..
Next introduce the polar variable r, h defined by

x=
2

`l
r cos h, y=r sin h.

Arguing as in [2], one shows that

r(t)=rgt− 1
4+O(t− 1

4
− b) (2.3)

as t Q ., where b=min{1, 1
4 (n − 1)(p − 1)} and rg is a positive constant.

Although it is not noted explicitly in [2], one can improve (2.3) by substi-
tuting it in [2, Eq. (3.8), p. 780]; one obtains

r(t)=rgt− 1
4+O(t− 1

2
− b) (t Q .). (2.4)

This agrees with the remainder estimate of [3]. Our goal in the following
discussion is that of obtaining a complete asymptotic expansion of a given
solution of (2.2). With respect to this complete expansion, the relation (2.4)
will correspond to the zeroth-order information.

We begin by studying the linear equation obtained by omitting the
nonlinear term 1

4 t−s |x|p − 1 x in Eq. (2.2). Writing this linear equation in
second-order form, we have

xœ+
1
2t

xŒ+1l

4
−

1
4t

−
k

4t2
2 x=0. (2.5)
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Putting z=x · t− 1
4, one obtains

zœ+5l

4
−

1
4t

+
1
t2
1 3

16
−

k
4
26 z=0. (2.6)

If we write

q(t)=
l

4
−

1
4t

+
1
t2
1 3

16
−

k
4
2=q0+

q1

t
+

q2

t2 ,

then (2.6) has the form zœ+q(t) z=0, and we are in the position to study
the normal solutions [1, pp. 61 ff ] of (2.6).

We briefly recall how the normal solutions are constructed; for details
see [1]. First write

z=ewtt−rg

and plug this quantity into (2.6). Then

w2+q0=0=w2+
l

4

− 2wr+q1=0=−2wr −
1
4

.

One obtains the solutions ± w= ± i `l

2 , ± r= ± i

4 `l
.

Following the calculations of [1], one deduces that there exist two
linearly independent solutions x± of (2.2)

x± ’ t− 1
4 e± wtt + r C

.

k=0

c ±
k

tk . (2.7)

In particular the 0th order term x± is of the form

const × t− 1
4 exp 5± i 1`l

2
t+

1

4 `l
ln t26 .

We return now to the nonlinear system (2.2), and give a general
procedure for analyzing the corrections to this term in the expansion
(2.7) which arise from the presence of the nonlinearity − 1

4 t−s |x|p − 1 x. The
nonlinearity is not analytic in x, so standard techniques cannot be directly
applied. So we develop a method adapted to the problem at hand.
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It is easiest to present the procedure in an abstract framework.
Consider the Cauchy problem

x
¯

Œ=A(t) x
¯

+f(t, x
¯

) (t \ t0, x ¥ Rn)

x
¯

(t0)=x̂
¯

(2.8)

where f(t, x
¯

) is smooth enough in its arguments to guarantee local exis-
tence and uniqueness of solutions of (2.8). We suppose that A( · ) is analytic
in an open sector S in the complex t-plane, with vertex at . and containing
the semi-axis {t ¥ R | t \ t0}. We further suppose that A( · ) admits an
asymptotic expansion valid in the sector S:

A(t) ’ A0+
A1

t
+

A2

t2 + · · · .

Let F(t) be the matrix solution of x
¯

Œ=A(t) x
¯

which satisfies F(t0)=I; we
suppose that F(t) satisfies

F(t)=t−aY(t), (2.9)

where a \ 0 and Y(t) together with Y(t)−1 are bounded as t Q ..
Turning to the nonlinear function f, we assume that

f(t, x
¯

)=t−sg(t, x
¯

) (t \ t0) (2.10)

where s > 1 and g satisfies

|g(t, x
¯

)|=O(|x
¯

|p) (|x| Q 0). (2.11)

Here p > 1, and the estimate is assumed uniform for t \ t0. We further
assume that g(t, 0)=0, and that g is Lipschitz in the following sense with
respect to the variable x:

|g(t, x
¯

+y) − g(t, x
¯

)| [ M(x
¯

) |y
¯

| where M(x
¯

)=O(|x
¯

|p − 1) (|x| Q 0).
(2.12)

Now suppose that x
¯

(t) is a solution of (2.8) which satisfies

|x
¯

(t)|=O(t−a) (t Q .). (2.13)

By the variation of constants formula:

x
¯

(t)=F(t) x̂
¯

+F
t

t0

F(t) F(s)−1 f(s, x
¯

(s)) ds
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where x̂
¯

(t)=x
¯

(t0). It is convenient to rewrite this expression as

x
¯

(t)=x
¯ 0(t)+F

t

.

F(t) F(s)−1 f(s, x
¯

(s)) ds (2.14)

where

x
¯ 0(t)=F(t) x̂

¯
+x

¯ c(t)

x
¯ c(t)=F

.

t0

F(t) F(s)−1 f(s, x
¯

(s)) ds.
(2.15)

We see that the ‘‘correction’’ term xc(t) is a solution of the linear equation
xŒ=A(t) x

¯
. It is well defined because of (2.10), (2.11), and (2.13), and in

fact |x
¯ c(t)|=O(t−a) as t Q .. In principle it can be computed with arbi-

trary accuracy by approximating the integral >.

t0
F(t) F(s)−1 f(s, x

¯
(s)) ds

and solving the linear equation x
¯

Œ=A(t) x
¯

.
Define now

y
¯

1(t)=x
¯

(t) − x
¯ 0(t)=F

t

.

F(t) F(s)−1 f(s, x
¯

(s)) ds,

so that x
¯

(t)=x
¯ 0(t)+y

¯
1(t). Using the estimates (2.10), (2.11), and (2.13), we

see that

|y
¯

1(t)|=O(t−s − ap+1).

Writing

f1(t, y
¯

)=f(t, x
¯ 0(t)+y

¯
) − f(t, x

¯ 0(t)) (t \ t0)

we see that

y
¯

1(t)=F
t

.

F(t) F(s)−1 f(s, x
¯ 0(s)) ds+F

t

.

F(t) F(s)−1 f1(s, y
¯

1(s)) ds.

Using the estimate (2.12), we have

|f1(t, y
¯

1(t))|=O(t−s · t−a(p − 1) · t−s − ap+1)=O(t−2s − 2ap+a+1).
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Next write

x
¯ 1(t)=F

t

.

F(t) F(s)−1 f(s, x
¯ 0(s)) ds

y
¯

2(t)=F
t

.

F(t) F(s)−1 f1(s, y
¯

1(s)) ds.

Then y
¯

1=x
¯ 1+y

¯
2 and x

¯
=x

¯ 0+x
¯ 1+y

¯
2. The following estimates hold:

|x
¯ 1(t)|=O(t−s − ap+1)

|y
¯

2(t)|=O(t−2s − 2ap+a+2).

It is now clear how to continue the development of x
¯

(t). For each
k=2, 3,... we write

fk(t, y
¯

)=fk − 1(t, x
¯ k − 1(t)+y

¯
) − fk − 1(t, x

¯ k − 1(t))

=f(t, x
¯ 0+ · · · +x

¯ k − 1(t)+y
¯

) − f(t, x
¯ 0+ · · · +x

¯ k − 1(t)),

x
¯ k(t)=F

t

.

F(t) F(s)−1 fk − 1(s, x
¯ k − 1(s)) ds,

y
¯

k+1(t)=F
t

.

F(t) F(s)−1 fk(s, y
¯

k(s)) ds.

Then y
¯

k=x
¯ k+y

¯
k+1 and

x
¯

=x
¯ 0+ · · · +x

¯ k+y
¯

k+1. (2.16)

For each k \ 1 we have:

|x
¯ k(t)|=O(t−ks − kap+k+(k − 1) a)

|y
¯

k(t)|=O(t−ks − kap+k+(k − 1) a).
(2.17)

Since s > 1 and p > 1, we see that the development (2.16) gives rise to an
asymptotic expansion in (perhaps fractional) powers of t of the solution
x
¯

(t) of (2.8). Of course x
¯

(t) must satisfy the a priori bound (2.13).
Let us note that, if x

¯ k(t) vanishes identically for some k \ 1, then
x
¯ l(t) — 0 for all l \ k. In this case we have

x
¯

(t)= C
k − 1

l=0
x
¯ l(t)+r

¯
(t)
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where r
¯

(t) is small to all orders of t, as t Q .. This amplifies the discussion
in [3] of relation (3.25) of that paper.

Let us return to the blow-up solution of the nonlinear Schrödinger
equation which motivated our discussion. Set s=1+n − 1

n , p=1+4
n and

a=1
4 . Combining (2.7) and (2.15), and letting x(t) denote the first compo-

nent of the vector x
¯

(t)=( x(t)
y(t)), we see that

x(t)=x0(t)+x1(t)+ · · · +xn(t)+ · · ·

where

x0(t)=at− 1
4 cos 1`l

2
t+

t

4 `l
+b2

for constants a and b, and

|xn(t)|=O(t−n) (n=1, 2,...).

Observe in particular that the linear contribution x0(t) is determined by the
constants a and b. All the remaining terms in the expansion are thus
determined when a and b are known.

3. THE SUPER-CRITICAL CASE

Now we study Eq. (1.4) when B > 0. We first review some preliminary
calculations which are given in [2]. Write u=u1+iu2 where u1 and u2 are
real quantities. Then

u'

1 +
n − 1

r
u −

1+(lr2 − 1) u1+(u2
1+u2

2)
p − 1

2 u1+Bu2=0

u'

2 +
n − 1

r
u −

2+(lr2 − 1) u2+(u2
1+u2

2)
p − 1

2 u2 − Bu1=0

u −

1(0)=u −

2(0)=0, u2(0)=0, u1(0)=u0 ] 0.

(3.1)

Introduce the quantities

t=r2, s=1+
1
4

(n − 1)(p − 1), k=
(n − 1)(n − 3)

4
.
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Then writing xj(t)=r
n − 1

2 uj(r), yj(t)=dxj

dt (j=1, 2), one obtains from (3.1):

x −

1=y1

y −

1=−
l

4
x1+

1
4
11

t
+

k
t2
2 x1 −

y1

2t
−

B
4t

x2 −
1
4

t−s(x2
1+x2

2)
p − 1

2 x1

x −

2=y2

y −

2=−
l

4
x2+

1
4
11

t
+

k
t2
2 x2 −

y2

2t
+

B
4t

x1 −
1
4

t−s(x2
1+x2

2)
p − 1

2 x2.

(3.2)

Here the prime Œ indicates differentiation with respect to t. Writing the
linear part of (3.2) in vector form with

z=Rx1

y1

x2

y2

S ,

we obtain

zŒ=1C0+
C1

t
+

C2

t2
2 z

where

C0=R 0 1 0 0
− l

4 0 0 0
0 0 0 1
0 0 − l

4 0

S , C1=R0 0 0 0
1
4 − 1

2 − B
4 0

0 0 0 0
B
4 0 1

4 − 1
2

S ,

C2=R0 0 0 0
k
4 0 0 0
0 0 0 0
0 0 k

4 0

S .

We diagonalize A0 via the transformation z=Qw, where

Q=R 1 0 1 0

− i `l

2 0 i `l

2 0

0 1 0 1

0 − i `l

2 0 i `l

2

S ;
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then

Q−1C0Q=R − i `l

2 0 0 0

0 − i `l

2 0 0

0 0 i `l

2 0

0 0 0 i `l

2

S ,

Q−1C1Q=R − 1
4+

i
4 `l

− iB
4 `l

1
4+

i
4 `l

− iB
4 `l

iB
4 `l

− 1
4+

i
4 `l

iB
4 `l

1
4+

i
4 `l

1
4 − i

4 `l

iB
4 `l

− 1
4 − i

4 `l

iB
4 `l

− iB
4 `l

1
4 − i

4 `l
− iB

4 `l
− 1

4 − i
4 `l

S .

Writing Â i=Q−1CiQ (i=0, 1, 2) we obtain

wŒ=1 Â0+
Â1

t
+

Â2

t2
2 w. (3.3)

We now apply the method expounded in [W, pp. 54–55] to formally block-
diagonalize Eq. (3.3). One looks for a change of variables of the form

w=P(t) t, (3.4)

where P( · ) is analytic in a sector S in the complex t-plane which has vertex
at t=. and which contains some real segment {t ¥ R | t \ t0}. It is
required that P admit a formal series expansion in the sector S:

P(t) ’ I+ C
.

k=1

Pk

tk , (3.5)

where I is the 4 × 4 identity matrix and each Pk has the form

Pk=R 0 P12
k

P21
k 0

S (3.6)

with 2 × 2 blocks P12
k , P21

k (k=1, 2,...). It turns out that one can find a
sector S satisfying the condition above, together with a 4 × 4 matrix func-
tion P( · ) which is holomorphic in S and which admits an asymptotic
expansion in S, satisfying (3.5) and (3.6), such that, in the t-variable, (3.3)
has the form

tŒ=A(t) t (3.7)
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where A(t) is holomorphic in S, and admits an asymptotic expansion in S
of the form

A(t) ’ A0+
A1

t
+ C

.

k=2

Ak

tk . (3.8)

Furthermore P( · ) can be chosen so that A is block-diagonal with 2 × 2
blocks (it follows that each Ak is block-diagonal as well), and so that

A0=C0=R
− i `l

2 0 0 0

0 − i `l

2 0 0

0 0 i `l

2 0

0 0 0 i `l

2

S
and

A1=RA11
1 0

0 A22
1

S=RC11
1 0

0 C22
1

S .

Thus

A11
1 =R − 1

4+
i

4 `l
− iB

4 `l

iB
4 `l

− 1
4+

i
4 `l

S

A22
1 =R − 1

4 − i
4 `l

iB
4 `l

− iB
4 `l

− 1
4 − i

4 `l

S=A11
1 .

Now set

b=
B

4 `l
.

By choosing the constant c. in the introduction in an appropriate way, we
can and will arrange that

b=
n
4

−
1

p − 1
.

We see that, when p lies in the range 1+4
n [ p < n+2

n − 2 , b lies in the interval
[0, 1

2). The eigenvalues of the matrices A11
1 and A22

1 are respectively
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− 1
4 ± b+ i

4 `l
and − 1

4 ± b − i
4 `l

. Observe that if b ¥ (0, 1
2), the eigenvalues do

not differ by an integer. Observe further that, if b=0, we are in the critical
case studied in Section 2. Assume from now on that 0 < b < 1

2 .
We apply the results of [9] to the system (3.7) to determine a matrix

solution F(t), which is holomorphic in an open subsector SŒ of S contain-
ing {t ¥ R | t \ t0}, and which takes the form

F(t)=F̂(t) tA1 eA0t (3.9)

where F̂ admits an asymptotic expansion in SŒ of the form

F̂(t) ’ C
.

k=0

Fk

tk .

See especially [9, Theorem 5.5, p. 25] and the discussion of [9,
pp. 100–101].

Let us assume from now on that t0 > 0. Multiplying F(t) on the right
by an appropriate constant matrix K, we can assume that F(t0)=I. It is
clear that F(t)=t− 1

4
+bY1(t) and F(t)−1=t

1
4
+bY2(t), where Y1(t) and Y2(t)

are matrix functions which are bounded for t \ t0.
We now carry out an analysis similar to that of Section 2; the main

difference will consist in the corrections due to the presence of the quantity b.
Let us write

f̂(t, z)=R
0

− 1
4 t−s(x2

1+x2
2)

p − 1
2 x1

0

− 1
4 t−s(x2

1+x2
2)

p − 1
2 x2

S
and

f(t, t)=f̂(t, P(t) Qt).

Then (3.2) takes the form

tŒ=A(t) t+f(t, t). (3.10)

Observe that

|f(t, t)|=O(t−s |t|p) as t Q ., (3.11)
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uniformly in t ¥ R4. Observe further that

|f(t, t+g) − f(t, t)| [ t−sM(t) g (3.12)

where M(t)=O(|t|p − 1) as t Q ..
Let us now apply the scheme developed in Section 2. Let

w(t)=Rx1(t)

x2(t)

y1(t)

y2(t)

S
be the solution of Eq. (3.2) which corresponds to the initial conditions
indicated in (3.1).

According to [2; relation following Eq. (2.43)], we have for j=1, 2:

xj(t)=
2

`l
rgt− 1

4
+be−bE(t) cos hj(t)+O(t− 1

4
+b)

yt(t)=rgt− 1
4
+be−bE(t) cos hj(t)+O(t− 1

4
− b).

Here E(t) is a positive function which tends to zero as t Q . and further-
more

h1(t)= −
`l

2
t+

1

4 `l
log t+

c − h0

2
+bm(t)+O(t−2b)

h2(t)= −
`l

2
t+

1

4 `l
log t+

c+h0

2
− bm(t)+O(t−2b),

where m(t) Q 0 as t Q .: indeed lim t Q .

E(t)

m2(t)
=2b. The constant h0 depends

on u0.
We now refine these asymptotic relations in a way that seems to shed

some light on the behavior, for large t, of the functions E(t) and m(t). Let t̄

be the initial condition which corresponds to w(t0); explicitly w(t0)=P(t0) Qt̄.
Moreover let t(t) be defined by w(t)=P(t) Qt(t), so that |t(t)|=O(t− 1

4
+b)

as t Q .. We set

t0(t)=F(t) t̄+tc(t)
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where

tc(t)=F
.

t0

F(t) F(s)−1 f(s, t(s)) ds.

Then

|t0(t)|=O(t− 1
4
+b) as t Q ..

Next we set

g1(t)=t(t) − t0(t)=F
t

.

F(t) F(s)−1 f(s, t(s)) ds.

One then has from (3.11)

|g1(t)|=O(tc) as t Q .,

where

c=b+b(1+p) − s −
p
4

+1.

Now one also has

1 −
1
4
+b2− c=

p+1
p − 1

−
n
2

:=y

where the quantity y=p+1
p − 1 − n

2 is positive if p takes values in the interval
[1+4

n , n+2
n − 2). This means that c < − 1

4+b when p takes values in this interval.
Next set

t1(t)=F
t

.

F(t) F(s)−1 f(s, t0(s)) ds

f1(t, g)=f(t, t0(t)+g) − f(t, t0(t))

g2(t)=F
t

.

F(t) F(s)−1 f1(s, g1(s)) ds,

and observe that

g1(t)=t1(t)+g2(t)

t(t)=t0(t)+t1(t)+g2(t).
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Using (3.12), we obtain

|g2(t)|=O(tc − y) as t Q ..

It is now clear how to construct further approximations to the solution
t(t). For each k \ 1 we have

t(t)=t0+t1+ · · · +tk+gk+1(t)

where |tk(t)|=O(t− 1
4
+b − ky), |gk+1(t)|=O(tc − ky) for t Q .. Returning to the

variables xj, yj, via the transformation w=P(t) Qt, and keeping in mind
that P(t) Q I as t Q ., we obtain developments for these quantities as well.
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