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Periodic solutions of a periodically forced and undamped
beam resting on weakly elastic bearings
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Abstract. We study the problem of existence of periodic solutions to a partial differential
equation modelling the behavior of an undamped beam subject to an external periodic force.
We assume that the ordinary differential equation associated to the first two modes of vibration
of the beam has a symmetric homoclinic solution. By using methods borrowed by dynamical
systems theory we prove that, if the period is non resonant with the (infinitely many) internal
periods of the PDE, the equation has a weak periodic solution of the same period as the external
force. In particular we obtain continua of periodic solutions for the undamped beam in absence
of external forces. This result may be considered as an infinite dimensional analogue of a result
obtained in [16] concerning accumulation of periodic solutions to homoclinic orbits in finite
dimensional reversible systems.
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1. Introduction

In this paper we consider the problem of existence of weak, 2T√
ε
−periodic solutions

of equation
utt + uxxxx + εµh(x,

√
εt) = 0 ,

uxx(0, ·) = uxx(1, ·) = 0 ,

uxxx(0, ·) = −εf(
∫ 1

0
u(x, ·)ϕ(x)dx),

uxxx(1, ·) = εg(
∫ 1

0
u(x, ·)ϕ(1− x)dx) .

(1)

We assume that h(x, t) is a 2T−periodic (in t) C1−function on [0, 1]×R, f(x), g(x)
are sufficiently smooth functions such that f(0) = g(0) = 0 and ϕ(x) = ϕa(x) ∈
L2(R, R), is a non negative function whose support suppϕ ⊆ [0, a], where a is a
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fixed positive number such that 0 < a < 1
3 , and∫ 1

0

ϕ(x)dx =
∫ ∞

−∞
ϕ(x)dx = 1. (2)

By a weak 2T√
ε
−periodic solution of (1) we mean a function u(x, t) ∈ C(R, L2([0,

1])) that satisfies (1) in the distributional sense and it is 2T√
ε
-periodic in t. Clearly

u ∈ L2
loc([0, 1]× R).

We may also consider the more general case where the condition on uxxx(1, ·)
is replaced by

uxxx(1, ·) = εg

(∫ 1

0

u(x, ·)ϕ̃(x)dx

)
ϕ̃(x) ∈ L1

loc(R, R), being another non negative function such that suppϕ ⊆ [1−a, 1]
and (2) holds. Physically these conditions mean that the response at the end points
of the beam depends on a small part of the beam near the end points. In (1) we
assume that the response may be different (f(x) may possibly be different than
g(x)) but depend in a symmetric way on the beam. This assumption simplifies
the analysis, however the result we obtain holds as well if we consider different
functions ϕ(x) and ϕ̃(x) as the reader may check making suitable changes at the
appropriate places in this paper. To perform such a study we will use perturbation
methods, that is we first look at equation (1) with ε = 0. This unperturbed
equation has its own internal modes of vibration. As in [2, 4] we assume that the
4−th dimensional equation in the direction of the first two modes (those associated
to the zero eigenvalue) has a symmetric homoclinic solution Γ(t). Then we look
for a weak 2T√

ε
−periodic solution of (1) which is close to the homoclinic orbit

when |t| ≤ T√
ε
. Our main result states that if h(x, t) = h(x,−t), ε > 0 and µ are

sufficiently small and the period 2T of h(x, t) belongs to a certain non-zero measure
subset of the interval [2T̃0, 2ε−1/4], with T̃0 sufficiently large, then equation (1) has
a weak 2T√

ε
−periodic solutions.

Related results to those in this paper concerning existence of periodic solutions
to partial differential equations are obtained for instance also in the papers [1, 4,
5, 6, 8, 9, 10, 13, 15, 17].

2. The integral equation

As a first step we take u(x, t) ↔ u(x,
√

εt) and get the equivalent problem

utt + ε−1uxxxx + µh(x, t) = 0 ,

uxx(0, ·) = uxx(1, ·) = 0 ,

uxxx(0, ·) = −εf(
∫ 1

0
u(x, ·)ϕ(x)dx),

uxxx(1, ·) = εg(
∫ 1

0
u(x, ·)ϕ(1− x)dx).

(3)
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Of course a weak 2T√
ε
−periodic solution of equation (1) corresponds to a weak

2T−periodic solution of equation (3).
Since suppϕ ⊆ [0, a] we have (here ∗ denotes convolution in the x variable)∫ 1

0

u(x, t)ϕ(x)dx =
∫ ∞

−∞
u(x, t)ϕ(x)dx = [u(·, t) ∗ ϕ̂](0)

where ϕ̂(x) = ϕ(−x) and∫ 1

0

u(x, t)ϕ(1− x)dx =
∫ ∞

−∞
u(x, t)ϕ(1− x)dx = [u(·, t) ∗ ϕ](1)

Note that, here, u(x, t) is any measurable extension of u(x, t) to R×R, the above
integrals being independent on the choice of the extension since suppϕ ⊆ [0, a] ⊂
[0, 1].

By a weak 2T−periodic solution of (3) (cf. [9, p. 135]), we mean any u ∈
C(R, L2([0, 1])) that is 2T -periodic in t and satisfies the identity∫ T

−T

∫ 1

0

{
u(x, t)

[
vtt(x, t) + ε−1vxxxx(x, t)

]
+ µh(x, t)v(x, t)

}
dx dt

+
∫ T

−T

{
f([u(·, t) ∗ ϕ̂](0))v(0, t) + g([u(·, t) ∗ ϕ](1))v(1, t)

}
dt = 0

(4)

for any v(x, t) ∈ C∞T ([0, 1]×R) - the set of all v(x, t) ∈ C∞([0, 1]×R, R) that are
2T -periodic in t - and the following boundary value conditions hold

vxx(0, ·) = vxx(1, ·) = vxxx(0, ·) = vxxx(1, ·) = 0 . (5)

We intend to search for weak periodic solutions of equation (1), or equivalently
(4), by perturbation methods, i.e. for small ε. Thus we let ε → 0 in (1) and get
the linear homogeneous equation with homogeneous boundary conditions

utt + uxxxx(x) = 0

uxx(0, ·) = uxx(1, ·) = 0,

uxxx(0, ·) = uxxx(1, ·) = 0 .

By separation of variables, i.e. setting u(t, x) = U(x)T (t) (or else using Fourier
series), we see that κ has to exists such that

U (iv)(x) = κU(x),

U
′′
(0) = U

′′
(1) = 0,

U
′′′

(0) = U
′′′

(1) = 0

(6)

and
T
′′
(t) = −κT (t).
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Now, changing x with π
4 x we see that (6) is equivalent to

U (iv)(x) =
(

4
π

)4
κU(x),

U
′′
(0) = U

′′
(π/4) = 0,

U
′′′

(0) = U
′′′

(π/4) = 0

and then, using a result in [9] and coming back to the old variable x we see that
(6) may have nonzero solutions only for κ = µ4 ≥ 0 with µ = µk, k = −1, 0, 1, · · ·
and µ−1 = µ0 = 0, µk = π

2 (2k + 1) + rk ≥ 1, for k ≥ 1. Moreover, in Appendix 1
it is proved that, for any k ∈ N, the following estimate holds:

|rk| ≤ c
π

4
e−kπ (7)

where c < 2.6. The corresponding orthonormal system of eigenfunctions {wi}∞i=−1 ∈
L2([0, 1]) is bounded, i.e. supi≥−1,x∈[0,1] |wi(x)| < ∞. Moreover the eigenfunctions
w−1(x) and w0(x) of the zero eigenvalue are:

w−1(x) = 1, w0(x) =
√

3(2x− 1).

We note that
[w−1 ∗ ϕ̂](0) = 1 = [w−1 ∗ ϕ](1)

and similarly,
[w0 ∗ ϕ̂](0) = −[w0 ∗ ϕ](1)

since w0(1− x) = −w0(x). We set

kϕ = [w0 ∗ ϕ](1) .

Note that kϕ > 0 since supp ϕ ⊆ [0, 1
3 ]. Moreover:

lim
a→0

∫ ∞

−∞
w0(x)ϕ(1− x)dx = w0(1) =

√
3

since w0(x) ∈ C([0, 1]). We can also easily estimate the difference kϕ −
√

3. In
fact we have, using also (2) and w0(1− x) = −w0(x):

|kϕ −
√

3| =
∣∣∣∣∫ a

0

[w0(1− x)−
√

3]ϕa(x) dx

∣∣∣∣ = 2
√

3
∫ a

0

xϕa(x) dx ≤ 2
√

3a. (8)

We seek a solution u(x, t) of (3) in the form

u(x, t) = y1(t)w−1(x) + y2(t)w0(x) + z(x, t)

where, for any t ∈ [−T, T ], z(x, t) belongs to the infinite dimensional space spanned
by {wi}∞i=1. To get the equations for y1(t), y2(t), and z(x, t) we take v(x, t) =
φ1(t)w−1(x) + φ2(t)w0(x) + v0(x, t) in (4) with φi ∈ C∞, v0(x, t) ∈ C∞, 2T -
periodic in t and v0(x, t) satisfying, besides (5), also:∫ 1

0

v0(x, t)dx =
∫ 1

0

xv0(x, t)dx = 0. (9)
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Note that conditions (9) correspond to the orthogonality of v0(x, t) to w−1(x) and
w0(x), for any t ∈ R. The same equations are also satisfied by z(x, t). Plugging
the above expression for v(x, t) into (4) and using the orthonormality, we arrive
at the system of equations

ÿ1(t) + µ

∫ 1

0

h(x, t) dx + f(y1(t)− kϕy2(t) + [z(·, t) ∗ ϕ̂](0))

+g(y1(t) + kϕy2(t) + [z(·, t) ∗ ϕ](1)) = 0 ,

(10)

ÿ2(t) +
√

3µ

∫ 1

0

h(x, t)(2x− 1) dx

−√3f(y1(t)− kφy2(t) + [z(·, t) ∗ ϕ̂](0))

+
√

3g(y1(t) + kφy2(t) + [z(·, t) ∗ ϕ](1)) = 0 ,

(11)

∫ T

−T

∫ 1

0

{
z(x, t)

[
vtt(x, t) + ε−1vxxxx(x, t)

]
+ µh(x, t)v(x, t)

}
dx dt

+
∫ T

−T

{
f([u(·, t) ∗ ϕ̂](0))v(0, t) + g([u(·, t) ∗ ϕ](1)v(1, t)

}
dt = 0

(12)

where we wrote v(x, t) instead v0(x, t). Thus, in equation (12), v(x, t) is any
function in C∞T ([0, 1]× R) and the conditions (5), (9) hold.

We now assume that the following conditions hold:

H1) f(0) = g(0) = 0, f ′(0) < 0, g′(0) < 0 and the system:

ξ̈1 + f(ξ1 − kϕξ2) + g(ξ1 + kϕξ2) = 0

ξ̈2 −
√

3[f(ξ1 − kϕξ2)− g(ξ1 + kϕξ2)] = 0
(13)

has a symmetric homoclinic solution Γ(t) = (Γ1(t),Γ2(t)) 6= 0, that is a non–
trivial bounded solution such that Γ(t) = Γ(−t) and lim

t→±∞Γ(t) = lim
t→±∞ Γ̇(t) =

0.
H2) The homoclinic solution Γ(t) is non-degenerate, that is the linear system

ÿ1 = −[f ′(Γ1(t)− kϕΓ2(t)) + g′(Γ1(t) + kϕΓ2(t))]y1

+kϕ[f ′(Γ1(t)− kϕΓ2(t))− g′(Γ1(t) + kϕΓ2(t))]y2

ÿ2 =
√

3[f ′(Γ1(t)− kϕΓ2(t))− g′(Γ1(t) + kϕΓ2(t))]y1

−√3kϕ[f ′(Γ1(t)− kϕΓ2(t)) + g′(Γ1(t) + kϕΓ2(t))]y2

(14)

has the only bounded solution (y1(t), y2(t), ẏ1(t), ẏ2(t)) = (Γ(t), Γ̇(t)) up to a
multiplicative constant.
We also remark that assumption (H1) imply that (y1, y2) = (0, 0) is a hyperbolic

equilibrium of system (13). In fact the Jacobian matrix at the point (0, 0) of the
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first order system associated to (13) is

A :=


0 1 0 0

−f ′(0)− g′(0) 0 kϕ[f ′(0)− g′(0)] 0
0 0 0 1√

3[f ′(0)− g′(0)] 0 −√3kϕ[f ′(0) + g′(0)] 0

 (15)

whose eigenvalues are the solutions of the equation

µ4 + (
√

3kϕ + 1)[f ′(0) + g′(0)]µ2 + 4
√

3kϕf ′(0)g′(0) = 0.

Now, the discriminant ∆ of the equation

λ2 + (
√

3kϕ + 1)[f ′(0) + g′(0)]λ + 4
√

3kϕf ′(0)g′(0) = 0 (16)

satisfies
∆

f ′(0)2
= (kϕ

√
3 + 1)2(s + 1)2 − 16kϕ

√
3s

where s = g′(0)
f ′(0) > 0. The function on the right hand side has a minimum at the

point

s = −3k2
ϕ − 6kϕ

√
3 + 1

(kϕ

√
3 + 1)2

and its value at this point is

16
√

3kϕ

(
kϕ

√
3− 1

kϕ

√
3 + 1

)2

> 0

if kϕ

√
3 6= 1. Since, as observed in (8), |kϕ −

√
3| ≤ 2

√
3a < 2√

3
and f ′(0) < 0,

g′(0) < 0, we see that for any a ∈ (0, 1/3), equation (16) has two positive solutions.
As a consequence the matrix A has two positive and two negative real eigenvalues.

We set
A11(t) = A22(t) = f ′(Γ1(t)− kϕΓ2(t)) + g′(Γ1(t) + kϕΓ2(t))

A12(t) = A21(t) = f ′(Γ1(t)− kϕΓ2(t))− g′(Γ1(t) + kϕΓ2(t))

and

A(t) =


0 1 0 0

A11(t) 0 −kϕA12(t) 0
0 0 0 1

−√3A21(t) 0
√

3kϕA22(t) 0

 . (17)

Since A(t) → A0 as |t| → ∞, from [7] it follows that the first order linear
system

ẏ = A(t)y (18)

corresponding to (14) and obtained setting y = (y1, ẏ1, y2, ẏ2) has an exponential
dichotomy on both R+ and R−. This means that projections P+ and P− and
constants k̂ ≥ 1 and δ̂ > 0 (called, respectively, the constant and the exponent
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of the dichotomy) exist such that the fundamental matrix Y (t) of system (18)
satisfies

‖Y (t)P+Y −1(s)‖ ≤ k̂e−δ̂(t−s) if 0 ≤ s ≤ t

‖Y (t)(I− P+)Y −1(s)‖ ≤ k̂eδ̂(t−s) if 0 ≤ t ≤ s

‖Y (t)P−Y −1(s)‖ ≤ k̂e−δ̂(t−s) if s ≤ t ≤ 0

‖Y (t)(I− P−)Y −1(s)‖ ≤ k̂eδ̂(t−s) if t ≤ s ≤ 0

(19)

Moreover H2) implies that the space of bounded solutions on R is spanned by
(Γ1(t), Γ̇1(t),Γ2(t), Γ̇2(t)). Throughout this paper k̂ and δ̂ denote the constant and
the exponent, respectively, of the dichotomy of (18) on R+ and R−.

Since we look for 2T−periodic solutions of equations (10)–(12) such that the
sup-norm in [−T, T ] of y1(t) − Γ1(t), y2(t) − Γ2(t) and the norm of z(x, t) ∈
C([−T, T ], L2([0, 1])) are small, we replace yj(t) with yj(t) + Γj(t), j = 1, 2 in
(10)–(12) and write y(t) for (y1(t), ẏ1(t), y2(t), ẏ2(t)). We obtain:

ẏ(t) + A(t)y(t) = F (t, y1(t), y2(t), [z(·, t) ∗ ϕ̂](0), [z(·, t) ∗ ϕ](1), µ, ε), (20)∫ T

−T

∫ 1

0

{
z(x, t)

[
vtt(x, t) + ε−1vxxxx(x, t)

]
+ µh(x, t)v(x, t)

}
dx dt

+
∫ T

−T

{
f([u(·, t) ∗ ϕ̂](0))v(0, t) + g([u(·, t) ∗ ϕ](1))v(1, t)

}
dt = 0

(21)

where u(x, t) = [y1(t) + Γ1(t)] + [y2(t) + Γ2(t)]w0(x) + z(x, t), and

F (t, y1, y2, z1, z2, µ, ε) =


0

F1(t, y1, y2, z1, z2, µ, ε)
0

F2(t, y1, y2, z1, z2, µ, ε)

 (22)

with

F1(t, y1, y2, z1, z2, µ, ε) = −f([y1 + Γ1(t)]− kϕ[y2 + Γ2(t)] + z1)

−g([y1 + Γ1(t)] + kϕ[y2 + Γ2(t)] + z2)

+f(Γ1(t)− kϕΓ2(t)) + g(Γ1(t) + kϕΓ2(t))

−µ

∫ 1

0

h(x, t) dx + A11(t)y1 − kϕA12(t)y2

1√
3
F2(t, y1, y2, z1, z2, µ, ε) = f([y1 + Γ1(t)]− kϕ[y2 + Γ2(t)] + z1)

−g([y1 + Γ1(t)] + kϕ[y2 + Γ2(t)] + z2)

−f(Γ1(t)− kϕΓ2(t)) + g(Γ1(t) + kϕΓ2(t))

−µ
∫ 1

0
h(x, t)(2x− 1) dx

−A21(t)y1 + kϕA22(t)y2.
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Remark 1. Since equation (13) depends on the function ϕ(x) one might wonder
whether conditions (H1) and (H2) may be satisfied. Now, if we assume that
f(x) = g(x) (equal responses at the end points of the beam) we see that we may
consider the case where Γ2(t) = 0. In this case conditions H1) and H2) are replaced
by
H3) the second order equation on R: ξ̈ + f(ξ) = 0 has a solution Γ0(t) homoclinic

to the hyperbolic fixed point ξ = 0
H4) Γ0(t) is non degenerate that is the linear equation ξ̈ +

√
3kϕf ′(Γ0(t))ξ = 0

has no bounded solutions apart from the trivial one ξ = 0.
In fact, if H3) and H4) hold we can take Γ1(t) = Γ0(

√
2t) and Γ2(t) = 0. We note

that the assumption Γ(t) = Γ(−t) follows by requiring, without loss of generality,
that Γ̇0(0) = 0. Moreover, since lima→0 kϕ =

√
3, we see that condition H4) is

satisfied, provided a > 0 is sufficiently small and the equation ξ̈ + 3f ′(Γ0(t))ξ = 0
has the only bounded solution ξ = 0.

Again in the case where f(x) = g(x) but with the further condition f(−x) =
−f(x), we may also consider the case where Γ1(t) = 0. In this case conditions H1)
and H2) are replaced by
H5) the second order equation on R: ξ̈ + f(ξ) = 0 has a solution Γ0(t) homoclinic

to the hyperbolic fixed point ξ = 0
H6) Γ0(t) is non degenerate that is the linear equation ξ̈ + 1

kϕ

√
3
f ′(Γ0(t))ξ = 0

has no bounded solutions apart from the trivial one ξ = 0.
In fact, if H5) and H6) hold we can take Γ1(t) = 0 and

Γ2(t) =
1
kϕ

Γ0(
4
√

12
√

kϕt).

Again the assumption Γ(t) = Γ(−t) follows by requiring, without loss of gener-
ality, that Γ̇0(0) = 0. Moreover, as in the previous case we see that, if the second
order equation 3ξ̈ + f ′(Γ0(t))ξ = 0 has the only bounded solution ξ = 0, the non
degenerateness of Γ0(t) follows from roughness, provided a > 0 is sufficiently small.

We conclude this Section by noting some properties of the matrix A(t) and the
function F (t, y1, y2, z1, z2, µ, ε) that will be used in Section 4. Let

J =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 . (23)

Then it is easy to see that

J2 = J, JA(t) = −A(t)J, A(t) = A(−t) (24)

the last equality following from Γ(t) = Γ(−t), and moreover:

JF (t, y1, y2, z1, z2, µ, ε) = −F (t, y1, y2, z1, z2, µ, ε). (25)
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3. The linear equations

First we study the problem of existence of 2T−periodic solutions of equation (21).
We begin by considering the problem of existence of a 2T−periodic solution of the
following linear non-homogeneous equation in R:

z̈(t) + ω2z(t) = h(t) , (26)

where h(t) ∈ L1([−T, T ], R). We set

‖h‖1 =
∫ T

−T

|h(t)|dt < ∞

and extend h(t) to the whole R by 2T−periodicity (i.e. h(t + 2T ) = h(t) for any
t ∈ R).

Since the homogeneous equation has a periodic fundamental matrix of period
2π
ω we can have a 2T−periodic solution only if ωT 6= kπ, with k ∈ Z. As a
matter of fact, elementary computations show that, in this case, equation (26) has
a (unique) 2T−periodic solution which is given by

z(t) =
1

2ω sin ωT

∫ t+T

t−T

h(T + s) cos ω(t− s)ds (27)

We assume that T ∈ R is such that | sin ωT | ≥ sin δ̃ for some δ̃ ∈ (0, π
2 ). Of course

this is equivalent to say that
|ωT − kπ| ≥ δ̃

for any k ∈ Z.
Now, from (27) we obtain:

|z(t)| ≤ 1
2ω sin(δ̃)

‖h‖1 (28)

Next, if h(t) is differentiable in [−T, T ], and ḣ(t) ∈ L1([−T, T ]) we obtain, inte-
grating by parts and using the periodicity of h(t):

z(t) =
1

2ω sin ωT

[2 sin(ωT )
ω

h(t) +
∫ t+T

t−T

sinω(t− s)
ω

ḣ(s + T )ds

+
sin ω(t− 2kT )

ω
(h(T+)− h(T−))

]
=

1
ω2

h(t) +
1

2ω2 sin ωT

[ ∫ t+T

t−T

ḣ(s + T ) sin ω(t− s)ds

+sin ω(t− 2kT )(h(T+)− h(T−))
]

(29)

for (2k − 1)T ≤ t < (2k + 1)T , k ∈ Z. Hence:

|z(t)| ≤ 1
ω2

[(
1 +

1

sin δ̃

)
‖h‖∞ +

1
2 sin(δ̃)

‖ḣ‖1
]

(30)
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where
‖h‖∞ = sup

t∈[−T,T ]

|h(t)|.

Now, for j ∈ N, we consider the family of equations:

z̈j(t) + ω2
j zj(t) = hj(t) , (31)

where

ωj =
µ2

j√
ε

and h(t) := {hj(t)}j∈N is a family of 2T−periodic functions on R such that

‖h‖ := sup
j∈N

‖hj‖1 < ∞.

Assume that, for some β ∈ (1, 3
2 ), T satisfies the inequalities

|ωjT − kπ| ≥ θj−β > 0 (32)

for any j ∈ N and k ∈ Z, where, according to (89) (see Appendix 2), we take θ
satisfying

0 < θ <
π(β − 1)

2β

and set δ̃ = θj−β ≤ θ < π/2. It follows from Appendix 2 that the set of values
of T ∈ R that satisfy (32) has positive measure (see also Remark 2 in Section 4).
Hence from (32) we get | sin(ωjT )| ≥ sin(θj−β) for any j ∈ N.

Let zj(t) be the corresponding 2T−periodic solution of equation (31) and set

z(x, t) :=
∞∑

j=1

zj(t)wj(x). (33)

Now, for any t ∈ [−T, T ], we evaluate the L2−norm of the function z(x, t).
The usual integral norm on L2([0, 1]) is denoted by ‖ · ‖2, i.e. we take ‖w‖2 =√∫ 1

0
w(x)2 dx for any w ∈ L2([0, 1]). Since {wj(x)} is an orthonormal system in

L2([0, 1]) we have, according to (28) and using also sin δ̃ ≥ δ̃/2 for any δ̃ ∈ [0, π/2]
and µj > jπ for any j ∈ N,

‖z(x, t)‖22 =
∞∑

j=1

|zj(t)|2 ≤
∞∑

j=1

‖zj(t)‖2∞ ≤ ε

θ2

∞∑
j=1

j2β

µ4
j

sup
j∈N

‖hj‖21

≤ ε

π4θ2

∞∑
j=1

1
j2(2−β)

sup
j∈N

‖hj‖21 ≤
2ε(2− β)

π4θ2(3− 2β)
sup
j∈N

‖hj‖21,

since ∞∑
j=1

1
j2(2−β)

≤ 1 +
∫ ∞

1

s−2(2−β) ds =
2(2− β)
3− 2β

.
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Recalling that 1 < β < 3
2 , we find that ‖z(x, t)‖2 is bounded. Moreover, from the

total convergence of the series
∞∑

j=1

‖zj‖2∞

we see that, for any σ̃ > 0 there is a p ∈ N such that
∞∑

j=p+1

‖zj‖2∞ < σ̃/8. Using

the uniform continuity of the functions zj(t) in the compact interval [−T, T ], we

can find ρ̃ > 0 so small that
p∑

j=1

|zj(t) − zj(t0)|2 < σ̃/2, whenever |t − t0| < ρ̃.

Consequently, we derive for |t− t0| < ρ̃

‖z(x, t)− z(x, t0)‖22 =
∞∑

j=1

|zj(t)− zj(t0)|2

≤
p∑

j=1

|zj(t)− zj(t0)|2 + 4
∞∑

j=p+1

‖zj‖2∞ < σ̃ .

Hence the map t 7→ z(x, t) belongs to C([−T, T ],W ) where

W =
{

w ∈ L2([0, 1])
∫ 1

0

w(x)dx =
∫ 1

0

xw(x)dx = 0
}

. (34)

Finally, it is clear that z(x,−T ) = z(x, T ) a.e.
Now, let H1(x, t) ∈ L1([0, 1] × [−T, T ]), H2(t),H3(t) ∈ L1([−T, T ]) and con-

sider the equation∫ T

−T

∫ 1

0

{
z(x, t)

[
vtt(x, t) + ε−1vxxxx(x, t)

]
+ H1(x, t)v(x, t)

}
dx dt

+
∫ T

−T

{
H2(t)v(0, t) + H3(t)v(1, t)

}
dt = 0

(35)

where v(x, t) ∈ C∞T ([0, 1]×R) satisfies the boundary conditions (5), (9). For j ∈ N,
we take v(x, t) = φ(t)wj(x) where φ(t) ∈ C∞(R) is 2T -periodic. Then (35) reads:∫ T

−T

∫ 1

0

{
z(x, t)

[
φ′′(t)wj(x) +

µ4
j

ε
φ(t)wj(x)

]
+ H1(x, t)φ(t)wj(x)

}
dx dt

+
∫ T

−T

{
H2(t)φ(t)wj(0) + H3(t)φ(t)wj(1)

}
dt = 0

(36)

and hence, writing z(x, t) as in (33), we see that zj(t) has to satisfy equation (31)
with

hj(t) = −
( 1∫

0

H1(x, t)wj(x) dx + H2(t)wj(0) + H3(t)wj(1)
)

(37)
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Here we have silently 2T -periodically extended on R with respect to the t−variable,
the functions H1,H2,H3. Now:

‖hj‖1 ≤ M1[‖H1‖1 + ‖H2‖1 + ‖H3‖1] (38)

where
M1 = sup

j∈N

‖wj‖∞ (39)

and

‖H1‖1 =
∫ T

−T

∫ 1

0

|H1(x, t)|dxdt.

As a consequence equation (35) has a unique solution z(x, t) ∈ C([−T, T ],W ) that
satisfies z(x,−T ) = z(x, T ) a.e. and

‖z(·, t)‖2 ≤ Cβ,θ

√
εM1[‖H1‖1 + ‖H2‖1 + ‖H3‖1], (40)

where Cβ,θ = 1
π2θ

√
2(2−β)
3−2β .

For any H1(x, t) ∈ L1([0, 1] × [−T, T ]), H2(t),H3(t) ∈ L1([−T, T ]) we denote
with

Lε(H1,H2,H3) ∈ C([−T, T ],W )

the unique function z(x, t) that satisfies equation (35) and z(x,−T ) = z(x, T ) a.e.
It is obvious that Lε(H1,H2,H3) is a linear function from L1([0, 1] × [−T, T ]) ×
L1([−T, T ])× L1([−T, T ]) into C([−T, T ],W ).

We have the following

Proposition 1. For any given triple (H1(x, t),H2(t),H3(t)) ∈ L1([0, 1]×[−T, T ])
×L1([−T, T ])×L1([−T, T ]) with T as in (32), equation (35) has a unique solution
z(x, t) ∈ C([−T, T ],W ) such that z(x,−T ) = z(x, T ) a.e. Moreover z(x, t) has the
form

z(x, t) =
∞∑

j=1

zj(t)wj(x)

zj(t) being the unique 2T−periodic solution of equation (31); furthermore z(x, t)
satisfies the estimate (40). Finally, there exist positive constants c1,β,θ, c2,β,θ such
that if (H1(x, t),H2(t),H3(t)) ∈ L∞([0, 1] × [−T, T ]) × L∞([−T, T ]) × L∞([−T,
T ]) the following hold:

a) if H1
t (x, t) ∈ L1([0, 1]× [−T, T ]) and Ḣ2(t), Ḣ3(t) ∈ L1([−T, T ]), then

‖z(·, t)‖2 ≤ M1ε
{

c1,β,θ[‖H1‖∞ + ‖H2‖∞ + ‖H3‖∞]

+c2,β,θ[‖H1
t ‖1 + ‖Ḣ2‖1 + ‖Ḣ3‖1]

}
.

(41)
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b) if H1
t (x, t) ∈ L2([0, 1]× [−T, T ]) and Ḣ2(t), Ḣ3(t) ∈ L2([−T, T ]), then

‖z(·, t)‖2 ≤ M1ε
{

c1,β,θ[‖H1‖∞ + ‖H2‖∞ + ‖H3‖∞]

+c2,β,θ(
√

T + ε1/4)[‖H1
t ‖2 + ‖Ḣ2‖2 + ‖Ḣ3‖2]

}
.

(42)

Proof. Only (41) and (42) need to be proved. From the assumptions on H1(x, t),
H2(t), H3(t) in a) it follows that hj(t) defined as in (37) satisfies hj(t) ∈ L∞([−T,

T ]), ḣj(t) ∈ L1([−T, T ]). Moreover

‖hj‖∞ ≤ M1

[‖H1‖∞ + ‖H2‖∞ + ‖H3‖∞
]

and
‖ḣj‖1 ≤ M1

[
‖H1

t ‖1 + ‖Ḣ2‖1 + ‖Ḣ3‖1
]
.

Similarly if H1(x, t), H2(t), H3(t) satisfy the conditions in b), then ḣj ∈ L2([−T, T ])
and

‖ḣj‖2 ≤ M1

[
‖H1

t ‖2 + ‖Ḣ2‖2 + ‖Ḣ3‖2
]
.

Thus, in case a), from (30) we get:

|zj(t)| ≤ M1ε
µ4

j

{(
1 + 2jβ

θ

)[
‖H1‖∞ + ‖H2‖∞ + ‖H3‖∞

]
+

jβ

θ

[
‖H1

t ‖1 + ‖Ḣ2‖1 + ‖Ḣ3‖1
]}

and, since µj > 2j, we find:

∞∑
j=1

|zj(t)|2 ≤ 2M2
1 ε2

{ ∞∑
j=1

µ−8
j

(
1 +

2jβ

θ

)2 [
‖H1‖∞ + ‖H2‖∞ + ‖H3‖∞

]2

+
∞∑

j=1

µ−8
j

j2β

θ2

[
‖H1

t ‖1 + ‖Ḣ2‖1 + ‖Ḣ3‖1
]2}

≤ 4M2
1 ε2

{[
‖H1‖∞ + ‖H2‖∞ + ‖H3‖∞

]2 ∞∑
j=1

(
µ−8

j +
1
θ2

µ
2(β−4)
j

)
+

1
8θ2

[
‖H1

t ‖1 + ‖Ḣ2‖1 + ‖Ḣ3‖1
]2 ∞∑

j=1

µ
2(β−4)
j

}
≤ M2

1 ε2
{

c1,β,θ

[
‖H1‖∞ + ‖H2‖∞ + ‖H3‖∞

]
+c2,β,θ

[
‖H1

t ‖1 + ‖Ḣ2‖1 + ‖Ḣ3‖1
]}2

with

c1,β,θ = 2

√√√√ ∞∑
j=1

(
µ−8

j +
1
θ2

µ
2(β−4)
j

)
, c2,β,θ =

1√
2θ

√√√√ ∞∑
j=1

µ
2(β−4)
j . (43)
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The proof of the statement in b) is quite similar. We only have to note that∣∣∣∣∣
∫ t+T

t−T

ḣ(s + T ) sin ω(t− s)ds

∣∣∣∣∣ ≤ ‖ḣ‖2
(∫ t+T

t−T

sin2 ω(t− s)ds

)1/2

≤
(

T − sin ωT cos ωT

ω

)1/2

‖ḣ‖2 .

Hence, using (29), we get

|zj(t)| ≤ 1
ω2

j

[
(1 + | sin ωjT |−1)‖hj‖∞

+
1

2| sin ωjT |
(

T − sinωjT cos ωjT

ωj

)1/2

‖ḣj‖2
]

≤ 1
ω2

j

[
(1 + 2jβθ−1)‖hj‖∞ +

1
2| sin ωjT |

(√
T +

√
| sin ωjT cos ωjT |

ωj

)
‖ḣj‖2

]

≤ ε

µ4
j

[
(1 + 2jβθ−1)‖hj‖∞ +

(√
T

θ
jβ +

ε1/4

2µj

√
| cos ωjT |
| sin ωjT |

)
‖ḣj‖2

]

≤ ε

µ4
j

[
(1 + 2jβθ−1)‖hj‖∞ +

(√
T

θ
jβ +

ε1/4

√
2µj

√
jβ

θ

)
‖ḣj‖2

]
The conclusion now easily follows, so the proof is complete.

Next, to study the problem of existence of 2T−periodic solutions of equations
(10)–(11) we consider the problem of existence of bounded solutions (on [−T, T ])
of equation (20) that satisfy the boundary condition

y(T )− y(−T ) = b(T ) := −2


0

Γ̇1(T )
0

Γ̇2(T )

 (44)

To this end we need the following two Lemmas, the first being a slight variation
of a result proved in [11] (see also [3]).

Lemma 1. Let A ∈ C(R,M(n)), where M(n) be the set of all real (n×n)-matrices.
Assume that the linear system ẋ+A(t)x = 0 has an exponential dichotomy on R+

and R− with constant k and exponent δ, projections P+ and P− respectively. Let
P±(T ) = X(t)P±X(t)−1, X(t) being the fundamental solution of ẋ + A(t)x = 0
such that X(0) = I. Assume that T0 > 0 exists such that the following hold:
i) for any T > T0 > 0 one has R

n = NP+(T )⊕RP−(T ).
ii) Let RT : R

n → R
n be the projection on R

n such that RRT = RP−(T ) and
NRT = NP+(T ). Then ‖RT ‖ is bounded uniformly with respect to T for
T > T0.
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Then, for any T > T0 and (ξ, η) ∈ RP+ × NP−, h(t) ∈ L∞([−T, T ], Rn) and
b ∈ R

n, there exists a unique function x(t) = x(t, ξ, η, h, b, T ) ∈ W 1,1([−T, 0]) ∩
W 1,1([0, T ]) that satisfies, for almost all t ∈ [−T, T ], the equation

ẋ + A(t)x = h(t)

together with the boundary conditions

x(T )− x(−T ) = b

x(0+) = ξ + X(T )−1ϕ+ −
∫ T

0

(I− P+)X(s)−1h(s)ds

x(0−) = η + X(−T )−1ϕ− +
∫ 0

−T

P−X(s)−1h(s)ds

(45)

where (ϕ+, ϕ−) ∈ NP+(T )×RP−(−T ) is the (unique) solution of the equation

ϕ− − ϕ+ = X(T )ξ −X(−T )η +
∫ T

0

X(T )P+X(s)−1h(s)ds

+
∫ 0

−T

X(−T )(I− P−)X(s)−1h(s)ds− b.

(46)

Finally, x(t, ξ, η, h, b, T ) is linear in (ξ, η, h, b) for any fixed T and the following
holds:

‖x(·, ξ, η, h, b, T )‖∞ ≤ k{C1[|ξ|+ |η|] + C2(‖h‖∞ + |b|)}. (47)

We note that Lemma 1 has been proved in [3, ?] under the assumption that
h(t) ∈ C0

b ([−T, 0]) ∩ C0
b ([0, T ]), and in this case x(·, ξ, η, h, b, T ) ∈ C1([−T, 0]) ∩

C1([0, T ]). However the same proof goes through under the assumption about h(t)
stated in Lemma 1. Of course then x(·, ξ, η, h, b, T ) only belongs to W 1,1([−T, 0])∩
W 1,1([0, T ]).

As an application of Lemma 1 we now show the following result that does not
seem to have been noted previously.

Lemma 2. Let A ∈ C(R,M(n)). Assume that

a) lim
t→±∞A(t) → A0 ∈ M(n),

b) A0 has no purely imaginary eigenvalues,
c) the linear equation ẋ + A(t)x = 0 has a one dimensional space of bounded

solutions spanned by, say, p(t).

Then the adjoint linear equation ẋ − A∗(t)x = 0 has a one dimensional space of
bounded solutions and there exists T0 > 0 such that for any T ≥ T0, b ∈ R

n

and h(t) ∈ L∞([−T, T ], Rn) there exists a unique solution x(t) = x(t, h, b, T ) ∈
W 1,1([−T, 0]) ∩W 1,1([0, T ]) of equation

ẋ + A(t)x = h(t) (48)
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that satisfies

x(T )− x(−T ) = b

< p(0), x(0+) >= 0

x(0+)− x(0−) =< ψ(0), x(0+)− x(0−) > ψ(0)

(49)

ψ(t) being the unique bounded solution of the adjoint linear equation with |ψ(0)| =
1. Moreover there exists a constant Ĉ independent of T such that

‖x(·, h, b, T )‖∞ ≤ Ĉ(‖h‖∞ + |b|). (50)

Proof. By assumption b) the linear equation ẋ + A0x = 0 has an exponential
dichotomy on R with projection P0, (P0 is the projection onto the stable space of
A0 along the unstable space). Then, by roughness, ẋ + A(t)x = 0 has exponential
dichotomies on both R+ and R− and the projections P± can be assumed to satisfy

lim
T→+∞

P+(T ) = lim
T→+∞

P−(−T ) = P0 (see [12]). In the rest of the proof k and δ will

denote the constant and the exponent of the dichotomy of system ẋ = A(t)x. As a
consequence assumptions i) and ii) of Lemma 1 are satisfied. Since the conclusion
concerning the adjoint system ẋ−A∗(t)x = 0 is known (see [12, p. 246]), we only
need to prove the last part. Let x(t, ξ, η, h, b, T ) be the unique solution of (48)
that satisfies (45). We show that (ξ, η) ∈ RP+ ×NP− exist such that (49) holds.
From (45) it follows that the second and third conditions in (49) read

< p(0), ξ >= − 〈
p(0), X(T )−1ϕ+

〉
+

〈
p(0),

∫ T

0

(I− P+)X(s)−1h(s)ds

〉
(51)

and

ξ − η = X(−T )−1ϕ− −X(T )−1ϕ+ − ψ∗(0)[X(−T )−1ϕ− −X(T )−1ϕ+]ψ(0)

+
∫ T

0

(I− P+)X(s)−1h(s)ds +
∫ 0

−T

P−X(s)−1h(s)ds−
∫ T

−T

ψ(s)∗h(s)dsψ(0)

(52)
respectively, where we use, according to [12, p. 246], the fact that ψ(0) ∈ RP⊥+ ∩
NP⊥− , and ψ(t) = X(t)∗−1(I − P ∗+)ψ(0) for t ≥ 0 and ψ(t) = X(t)∗−1P ∗−ψ(0) for
t ≤ 0. Now, from (46) we get

|ϕ±| ≤ c̃
(
ke−δT [|ξ|+ |η|] + 2kδ−1‖h‖∞ + |b|)

and then

|X(T )−1ϕ+| = |X(0)(I− P+)X(T )−1ϕ+| ≤ ke−δT |ϕ+|
≤ k2e−δT c̃

{
[|ξ|+ |η|]e−δT + 2δ−1‖h‖∞ + |b|} .

(53)

Similarly:

|X(−T )−1ϕ−| ≤ k2e−δT c̃
{
[|ξ|+ |η|]e−δT + 2δ−1‖h‖∞ + |b|} (54)
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for a suitable constant c̃ > 0. Now, the linear map (ξ, η) →
(

< p(0), ξ >
ξ − η

)
from

RP+ × NP− into R × (RP+ + NP−
)

is an isomorphism since RP+ ∩ NP− =
span{p(0)} and both spaces have the same dimension. Thus, because of (53) and
(54) we see that (51) and (52) can be written as

L(ξ, η) = r(h, b) ∈ R× (RP+ +NP−
)

where L is an isomorphism provided T is large enough. Hence there exists a unique
(ξ, η) = (ξ(h, b), η(h, b)) ∈ RP+ +NP− satisfying (51) and (52). Moreover, since
‖r(h, b)‖ ≤ C0(‖h‖ + |b|), with a constant C0 independent of T , we can find a
constant C independent of T such that

|ξ|, |η| ≤ C
(‖h‖∞ + |b|).

Hence (50) easily follows from this and (47). The proof is complete.

4. Existence of periodic solutions

In this section, we prove the existence of 2T/
√

ε-periodic solutions of (1) (Theo-
rem 1). Using the results of the previous sections, we rewrite the periodic prob-
lem for (1) as a fixed point problem (see equations (75)–(76)) and solve this last
applying a fixed point result (Lemma 3). Finally, we establish the desired 2T/

√
ε-

periodic solutions using some symmetry properties of (1).
Let W be the space defined in (34). We set Z := {z ∈ C([−T, T ],W ) |

z(−T, x) = z(T, x) a.e.} and Y = C1([−T, 0], R2)∩C1([0, T ], R2) with the norm

‖y‖ = sup
|t|≤T,t6=0

{|y1(t)|, |ẏ1(t)|}+ kϕ sup
|t|≤T,t6=0

{|y2(t)|, |ẏ2(t)|} ,

Unless otherwise specified, y(t) will denote a function in Y , endowed with this
norm. In Z, instead, we consider the norm

‖z‖ = ‖z(x, t)‖ = ‖ϕ‖2 sup
t∈[−T,T ]

‖z(·, t)‖2.

Next, let ρ > 0 be a fixed positive number, and take y(t) ∈ Y and z(x, t) ∈ Z
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in such a way that ‖y‖+ ‖z‖ ≤ ρ. For any fixed choice of such functions we set:

H1(x, t) = µh(x, t)

H2(t) = f([y1(t) + Γ1(t)]− kϕ[y2(t) + Γ2(t)] + [z(·, t) ∗ ϕ̂](0))

−f(Γ1(t)− kϕΓ2(t))− f ′(Γ1(t)− kϕΓ2(t))·
[y1(t)− kϕy2(t) + [z(·, t) ∗ ϕ̂](0)]

H3(t) = g([y1(t) + Γ1(t)] + kϕ[y2(t) + Γ2(t)] + [z(·, t) ∗ ϕ](1))

−g(Γ1(t) + kϕΓ2(t))− g′(Γ1(t) + kϕΓ2(t))·
[y1(t) + kϕy2(t) + [z(·, t) ∗ ϕ](1)]

Ĥ21(t) = f(Γ1(t)− kϕΓ2(t))

Ĥ22(t) = [f ′(Γ1(t)− kϕΓ2(t))− f ′(0)][y1(t)− kϕy2(t) + [z(·, t) ∗ ϕ̂](0)]

Ĥ31(t) = g(Γ1(t) + kϕΓ2(t))

Ĥ32(t) = [g′(Γ1(t) + kϕΓ2(t))− g′(0)][y1(t) + kϕy2(t) + [z(·, t) ∗ ϕ](1)]

Ĥ2(t) = Ĥ21(t) + Ĥ22(t), Ĥ3(t) = Ĥ31(t) + Ĥ32(t)

H̃21(t) = f ′(0)[y1(t)− kϕy2(t)] , H̃22(t) = f ′(0)[z(·, t) ∗ ϕ̂](0)

H̃31(t) = g′(0)[y1(t) + kϕy2(t)] , H̃32(t) = g′(0)[z(·, t) ∗ ϕ](1) .

(55)

It is not difficult to see that H1(x, t) ∈ L1([0, 1]×[−T, T ]), and, for any z(x, t) ∈ Z,
Hj , Ĥj , H̃ij ∈ L1([−T, T ]). In fact denote by Ω± a neighborhood of Γ1(t)±kϕΓ2(t)
respectively and set

Mf := sup{|f(x)|, |f ′(x)| | x ∈ Ω−},
Mg := sup{|g(x)|, |g′(x)| | x ∈ Ω+},

Γ =
∫ ∞

−∞

(
|Γ̇1(t)|+ kϕ|Γ̇2(t)|

)
dt

∆f (ρ) = sup
|y|+|z|≤ρ

|f ′(y1 + Γ1(t) + y2 − kϕΓ2(t) + z)− f ′(Γ1(t)− kϕΓ1(t))|

∆g(ρ) = sup
|y|+|z|≤ρ

|g′(y1 + Γ1(t) + y2 + kϕΓ2(t) + z)− f ′(Γ1(t) + kϕΓ1(t))|.

Then, noting that

|z(·, t) ∗ ϕ̂(0)| ≤
∫ 1

0

|z(x, t)ϕ(x)|dx ≤ ‖ϕ‖2‖z(·, t)‖2 ≤ ‖z(x, t)‖

and similarly:

|z(·, t) ∗ ϕ(1)| ≤ ‖z(x, t)‖,
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we obtain:
‖H1‖1 ≤ |µ| ‖h‖1 ≤ 2|µ|T ‖h‖∞, ‖H1‖∞ ≤ |µ| ‖h‖∞
‖H1,t‖1 ≤ |µ| ‖ht‖1 ≤ 2|µ|T ‖ht‖∞
‖H2‖1 ≤ 2T∆f (ρ)[‖y‖+ ‖z‖]
‖H3‖1 ≤ 2T∆g(ρ)[‖y‖+ ‖z‖]
‖Ĥ21‖∞ ≤ Mf , ‖Ĥ31‖∞ ≤ Mg∥∥∥∥∥dĤ21

dt

∥∥∥∥∥
1

≤ ΓMf ,

∥∥∥∥∥dĤ31

dt

∥∥∥∥∥
1

≤ ΓMg

‖Ĥ22‖1 ≤ 2T (Mf + |f ′(0)|)[‖y‖+ ‖z‖]
‖Ĥ32‖1 ≤ 2T (Mg + |g′(0)|)[‖y‖+ ‖z‖]
‖H̃21‖∞ ≤ |f ′(0)|‖y‖, ‖H̃31‖∞ ≤ |g′(0)|‖y‖,
‖H̃21‖1, ‖ ˙̃

H21‖1 ≤ 2T |f ′(0)|‖y‖, ‖H̃31‖1, ‖ ˙̃
H31‖1 ≤ 2T |g′(0)|‖y‖,

‖H̃22‖1 ≤ 2T |f ′(0)|‖z‖ ‖H̃32‖1 ≤ 2T |g′(0)|‖z‖ .

(56)

Then, for fixed (y1, y2) ∈ Y , z(x, t) ∈ Z let ẑ(x, t) be the unique solution, given
by Proposition 1, of equation (35) where we set H1 = H1, and Hi = Hi + Ĥi +
H̃i1 + H̃i2 for i = 2, 3. More precisely

ẑ(x, t) = Lε(H1,H2,H3)+Lε(0, Ĥ2, Ĥ3)+Lε(0, H̃21, H̃31)+Lε(0, H̃22, H̃32) . (57)

Let BZ×Y (ρ) be the ball of radius ρ in Z × Y with the norm ‖z‖+ ‖y‖. We set

F1(z, y, µ, T, ε) := Lε(H1,H2,H3) + Lε(0, Ĥ2, Ĥ3) ,

L1ε(y) := Lε(0, H̃21, H̃31) , L2ε(z) := Lε(0, H̃22, H̃32),

We consider F1(z, y, µ, T, ε) as a map from BZ×Y (ρ) × R × Rθ,β,ε → Z where
Rθ,β,ε = {(T, ε) ∈ R

2 | T ≥ 1, ε > 0, and T satisfies (32)}.
We have the following result.

Proposition 2. Let (T, ε) ∈ Rθ,β,ε and ∆(ρ) = max{∆f (ρ),∆g(ρ)}. Then there
exist positive constants k1 that depends on {‖h‖∞, ‖ht‖∞,M1,Mf , Mg, β, θ} and
k2, . . . , k5, that depend on {|f ′(0)|, |g′(0)|,M1,Mf ,Mg, β, θ} such that the following
holds:
i)

‖F1(z, y, µ, T, ε)‖ ≤ k1ε(1 + |µ|T ) + k2T
√

ε[∆(ρ) + k3](‖y‖+ ‖z‖), (58)

ii)
‖L1ε‖ ≤ k4Tε, ‖L2ε‖ ≤ k5T

√
ε, (59)

iii)
‖F1(z′, y′, µ, T, ε)−F1(z′′, y′′, µ, T, ε)‖

≤ k2T
√

ε[∆(ρ) + k3](‖y′ − y′′‖+ ‖z′ − z′′‖) (60)
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Proof. From Proposition 1, (56), and (T, ε) ∈ Rθ,β,ε we get

‖Lε(H1, 0, 0)‖ ≤ 2M1|µ|Tε[c1,β,θ ‖h‖∞ + c2,β,θ‖ht‖∞]

‖Lε(0, Ĥ21, Ĥ31)‖ ≤ M1(Mf + Mg)ε[c1,β,θ + c2,β,θΓ]

‖Lε(0, Ĥ22, Ĥ32)‖ ≤ 2Cβ,θM1T
√

ε(Mf + Mg + |f ′(0)|+ |g′(0)|)(‖y‖+ ‖z‖)
and

‖Lε(0,H2,H3)‖ ≤ 4Cβ,θM1T
√

ε∆(ρ)(‖y‖+ ‖z‖)
Thus (58) follows taking

k1 = M1 max
{
2[c1,β,θ ‖h‖∞ + c2,β,θ‖ht‖∞], (Mf + Mg)[c1,β,θ + c2,β,θΓ]

}
k2 = 4Cβ,θM1

k3 = 1
2 [Mf + Mg + |f ′(0)|+ |g′(0)|].

Similarly, (59) follows from Proposition 1, (56) and (T, ε) ∈ Rθ,β,ε, taking

k4 = M1(|f ′(0)|+ |g′(0)|)(c1,β,θ + 2c2,β,θ), k5 = 2Cβ,θM1[|f ′(0)|+ |g′(0)|] .
Finally we prove iii). Let H ′

1(x, t), H ′′
1 (x, t) etc. be the functions we have

defined in (55) with (z′, y′, µ) and (z′′, y′′, µ) instead of (z, y, µ). Then from

‖H ′
2 −H ′′

2 ‖1 ≤ 2T∆f (ρ)[‖y′ − y′′‖+ ‖z′ − z′′‖]
‖H ′

3 −H ′′
3 ‖1 ≤ 2T∆g(ρ)[‖y′ − y′′‖+ ‖z′ − z′′‖]

‖Ĥ ′
22 − Ĥ ′′

22‖1 ≤ 2T [Mf + |f ′(0)|][‖y′ − y′′‖+ ‖z′ − z′′‖]
‖Ĥ ′

32 − Ĥ ′′
32‖1 ≤ 2T [Mg + |g′(0)|][‖y′ − y′′‖+ ‖z′ − z′′‖]

and (40) we obtain

‖Lε(0,H ′
2 −H ′′

2 ,H ′
3 −H ′′

3 )‖ ≤ k2∆(ρ)T
√

ε[‖y′ − y′′‖+ ‖z′ − z′′‖]
‖Lε(0, Ĥ ′

22 − Ĥ ′′
22, Ĥ

′
32 − Ĥ ′′

32)‖ ≤ k2k3T
√

ε[‖y′ − y′′‖+ ‖z′ − z′′‖].
Inequality (60) now easily follows and the proof is complete.

Now we study the problem of existence of bounded solution to equation (20)
with the boundary conditions (44). To this end, it is better to split the problem
in two parts. We set

γ(t) = (Γ1(t), Γ̇1(t),Γ2(t), Γ̇2(t))

and, for any given y(t) ∈ Y , z(x, t) ∈ Z:

h1(t) = H(t)

 [z(·, t) ∗ ϕ̂](0)

[z(·, t) ∗ ϕ](1)


h2(t) = F (t, y(t), [z(·, t) ∗ ϕ̂](0), [z(·, t) ∗ ϕ](1), µ, ε)− h1(t)
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where F (t, y, z, µ, ε) is defined by (22), and H(t) is the (4× 2)−matrix

H(t) = −


0 0

f ′(Γ1(t)− kϕΓ2(t)) g′(Γ1(t) + kϕΓ2(t))
0 0

−√3f ′(Γ1(t)− kϕΓ2(t))
√

3g′(Γ1(t) + kϕΓ2(t))

 .

Then consider the boundary value problems
ẏ + A(t)y = h2(t)
y(T )− y(−T ) = b(T )
< γ̇(0), y(0+) >= 0
y(0+)− y(0−) =< ψ(0), y(0+)− y(0−) > ψ(0)

(61)

with b(T ) as in (44) and A(t) as in (17), and
ẏ + A(t)y = h1(t)
y(T )− y(−T ) = 0
< γ̇(0), y(0+) >= 0
y(0+)− y(0−) =< ψ(0), y(0+)− y(0−) > ψ(0)

(62)

Note that
lim

t→±∞A(t) = −A

where A has been defined in (15). Thus the hypotheses of Lemma 2 are satisfied
(see also H2)) and we can solve equations (61) and (62) for

ŷb(t) = F2(z(x, t), y(t), µ, T, ε) ∈ Y (63)

and
ŷ0(t) = Lz(x, t) ∈ Y (64)

respectively. We consider F2 as a map from BZ×Y (ρ) × R × [T0,∞) × (0,∞)
into Y , and L as a linear map from Z to Y . In the next Proposition we use
the following notation: if x ∈ C(I, Rn) where I is an interval, we denote by
‖x‖∞ = supx∈I

√∑n
j=1 |xj(t)|2.

We have the following result.

Proposition 3. Assume the conditions H1) and H2) are satisfied and let ∆(ρ) be
the function defined in Proposition 2, M1 the constant defined in (39) and c1,β,θ,
c2,β,θ those defined in (43). Then there exist constants k and Ĉ > 0 independent
of (z(x, t), y(t), µ, T, ε), such that the following properties hold:
i)

‖F2(z(x, t), y(t), µ, T, ε)‖ ≤ Ĉ
{

ke−δ̂T + 2[∆(ρ)(‖y‖+ ‖z‖) + |µ|‖h‖∞]
}

,

δ̂ being the exponent of the dichotomy of (18);



22 F. Battelli, M. Fečkan and M. Franca ZAMP

ii)
‖L‖ ≤ 2Ĉ(kf + kg)

where

kf = sup
t∈R

|f ′(Γ1(t)− kϕΓ2(t))| , kg = sup
t∈R

|g′(Γ1(t) + kϕΓ2(t))| .

iii)
‖L1εF2(z(x, t), y(t), µ, T, ε)‖ ≤
M1ε(|f ′(0)|+ |g′(0)|)[c1,β,θ + c2,β,θ

√
2T (

√
T + ε1/4)]

Ĉ
{

ke−δ̂T + 2
(
∆(ρ)[‖y‖+ ‖z‖] + |µ|‖h‖∞

)}
iv) for any pair (z′(t), y′(x, t)), (z′′(t), y′′(x, t)) ∈ BZ×Y (ρ) it results

‖F2(z′(x, t), y′(t), µ, T, ε)−F2(z′′(x, t), y′′(t), µ, T, ε)‖ ≤
2Ĉ∆(ρ)[‖y′ − y′′‖+ ‖z′ − z′′‖]

Proof. Let (z, y) ∈ BZ×Y (ρ); from (50) in Lemma 2 we obtain:

‖ŷb(t)‖ ≤ Ĉ[‖h2‖∞ + |b(T )|] ,
‖ŷ0(t)‖ ≤ Ĉ‖h1‖∞ .

(65)

Now, using the definition (44) of b(T ) we obtain

|b(T )| ≤ 2|γ(T )| = 2|Y (T )P+Y −1(0)γ(0)| ≤ 2k̂e−δ̂T |γ(0)| = 2k̂e−δ̂T |Γ(0)|
(we recall that k̂, δ̂ and P+ are the constant, the exponent and the projection of
the dichotomy of system ẏ = A(t)y where A(t) is the matrix defined in (17)) and
it is easy to see that:

‖h2(·)‖∞ ≤ 2 [∆(ρ)(‖y‖+ ‖z‖) + |µ|‖h‖∞]

‖h1‖∞ ≤ 2(kf + kg)‖z‖
(66)

Hence i) and ii) follow from (65), (66) with k = 2k̂|Γ(0)|.
Next, if µ ∈ R, (z′(x, t), y′(t)), (z′′(x, t), y′′(t)) ∈ BZ×Y (ρ), and ŷ′b(t), ŷ′′b (t) ∈

Y denote the corresponding solutions of (61), we see that ŷb(t) = ŷ′b(t) − ŷ′′b (t) is
a bounded solution of the boundary value problem

ẏ + A(t)y = h′2(t)− h′′2(t)
y(T )− y(−T ) = 0
< γ̇(0), y(0+) >= 0
y(0+)− y(0−) =< ψ(0), y(0+)− y(0−) > ψ(0)

(67)

the meaning of h′2(t) and h′′2(t) being obvious. Hence by a similar argument we
see that

‖ŷ′b(t)− ŷ′′b (t)‖ ≤ 2Ĉ {∆(ρ)[‖y′ − y′′‖+ ‖z′ − z′′‖]} (68)
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that gives iv). Finally we prove iii). We have

L1εF2(y(t), z(x, t), µ, T, ε) = Lε(0, H̄2, H̄3)

where
H̄2(t) = f ′(0)[y(b)

1 (t)− kϕy
(b)
2 (t)]

H̄3(t) = g′(0)[y(b)
1 (t) + kϕy

(b)
2 (t)]

where we set ŷb(t) = (y(b)
1 (t), ẏ(b)

1 (t), y(b)
2 (t), ẏ(b)

2 (t)). Now:

‖H̄2(t)‖∞ ≤ |f ′(0)|‖ŷb‖, ‖H̄3(t)‖∞ ≤ |g′(0)|‖ŷb‖
and

‖ ˙̄H2(t)‖2 ≤
√

2T |f ′(0)|‖ŷb‖, ‖ ˙̄H3(t)‖2 ≤
√

2T |g′(0)|‖ŷb‖.
As a consequence, from Proposition 1-b) we get

‖L1εF2(y(t), z(x, t), µ, T, ε)‖
≤ M1ε(|f ′(0)|+ |g′(0)|)[c1,β,θ + c2,β,θ

√
2T (

√
T + ε1/4)]‖ŷb‖

Thus, using Proposition 3-i) and ŷb = F2(z(x, t), y(t), µ, T, ε) we see that:

‖L1εF2‖ ≤ M1Ĉε(|f ′(0)|+ |g′(0)|)[c1,β,θ + c2,β,θ

√
2T (

√
T + ε1/4)]·{

ke−δ̂T + 2
[
∆(ρ)(‖y‖+ ‖z‖) + |µ|‖h‖∞

]}
which is iii). The proof is complete.

Now we need a fixed point Lemma, which has been essentially proved in [2,
Lemma 6].

Lemma 3. Let Z, Y be Banach spaces, BZ×Y (ρ) the closed ball in Z×Y centered
at (0, 0) and of radius ρ, O ⊂ R

m × (0, σ̄] a subset with (0, 0) ∈ O, and F :
BZ×Y (ρ)×O → Z × Y be a map defined as:

F (z, y, ν, σ) =
(

F1(z, y, ν, σ) + L1σy + L2σz
F2(z, y, ν, σ) + Lz

)
,

L1σ : Y → Z, L2σ : Z → Z and L : Z → Y being uniformly bounded linear maps
for σ > 0 small. Assume that a constant C and a continuous function ∆(ρ, ν, σ)
exist such that ∆(0, 0, 0) = 0, and

‖F1(z, y, ν, σ)‖ ≤ C(‖ν‖+ σ)σ + ∆(ρ, ν, σ)(‖z‖+ ‖y‖) ,

‖F2(z, y, ν, σ)‖ ≤ C‖ν‖+ ∆(ρ, ν, σ)(‖z‖+ ‖y‖) ,

‖L1σF2(z, y, ν, σ)‖ ≤ C(‖ν‖+ σ)σ + ∆(ρ, ν, σ)(‖z‖+ ‖y‖)
‖Fi(z2, y2, ν, σ)− Fi(z1, y1, ν, σ)‖ ≤ ∆(ρ, ν, σ)(‖z2 − z1‖+ ‖y2 − y1‖)

(69)

when ‖z‖+ ‖y‖ < ρ, ‖z1‖+ ‖y1‖ < ρ, and ‖z2‖+ ‖y2‖ < ρ.
If there are 0 < λ < 1 and σ̄0 > 0 such that

‖L1σL + L2σ‖ < λ
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for any 0 < σ ≤ σ̄0, then there exist ν0 > 0, σ0 > 0, ρ1 > 0 and ρ2 > 0 such
that for ‖ν‖ ≤ ν0, and 0 < σ ≤ σ0, (ν, σ) ∈ O, F has a unique fixed point
(z(ν, σ), y(ν, σ)) ∈ BZ(ρ1)×BY (ρ2). Moreover,

‖z(ν, σ)‖+ ‖y(ν, σ)‖ ≤ C1(‖ν‖+ σ) (70)

for some positive constant C1 independent of (ν, σ), and

‖z(ν, σ)‖/(‖ν‖+ σ) → 0 (71)

as (ν, σ) → (0, 0), σ > 0.

We emphasize the fact that in [2] the above Lemma has been proved with
m = 1 (i.e. ν = µ ∈ R). However, it is straightforward to see that the same proof
also works when ν ∈ R

m, or when ν belongs to a Banach space. Moreover, Lemma
3 can also be extended to the case, where L, L1,σ and L2,σ also depend on ν but
the assumptions of (69) hold uniformly with respect to ν.

Let β ∈ (1, 3/2) and θ > 0 be fixed constants satisfying (89). We set

S̃β,θ,ε =
{

χ ∈ (0, ε−3/4] | |χµ2
j − kπ| ≥ θ

jβ
∀(j, k) ∈ N× Z

}
.

We are now able to state and prove the main result of this paper.

Theorem 1. Let f(x) and g(x) be C1−functions for which H1) and H2) are
satisfied. Then let β ∈ (1, 3/2) and θ > 0 be fixed constants satisfying (89), N > 0
be a given constant and δ̂ be the exponent of the dichotomy of system (18) with
A(t) defined as in (17). Then there exist ε0 > 0, T̃0 > 0, T̃0 ≤ ε

−1/4
0 , µ0 > 0 and

a positive constant Ĉ1 > 0 such that for any (ε, µ) ∈ (0, ε0) × (−µ0, µ0), for any
T ∈ [T̃0, ε

−1/4] such that T√
ε
∈ S̃β,θ,ε and any C1, 2T−periodic function h(x, t)

such that h(x,−t) = h(x, t) with ‖h‖∞, ‖ht‖∞ ≤ N , equation (1) has a unique
weak 2T√

ε
−periodic solution u(x, t) such that

u(x,
√

εt) = y1(t) + Γ1(t) +
√

3(2x− 1)(y2(t) + Γ2(t)) + z(x, t)

with z(x, t) =
∑∞

j=1 zj(t)wj(x), and

‖z‖+ ‖y‖ ≤ Ĉ1(|µ|+ exp(−δ̂T ) +
√

ε) (72)

Moreover
sup

t∈[−T ;T ]

‖z(·, t)‖2 =
√

ao(|µ|+ exp(−δ̂T ) +
√

ε) (73)

where the norms ‖z‖ and ‖y‖ are defined at the beginning of this section, ‖ · ‖2
is the usual integral norm on L2([0, 1]), a is the diameter of the support of ϕ and
o(|µ|+ exp(−δ̂T ) +

√
ε) is independent of a.

Proof. We want to apply Lemma 3 to our situation, but we need to introduce an
extra parameter τ ∈ (0, 1] to control T . Hence we set σ =

√
ε, τ = exp(−δ̂T ),



Vol. 58 (2007) Periodic solutions of undamped beam equation 25

ν = (µ, τ), ‖ν‖ = ‖(µ, τ)‖ = |µ|+|τ |, and redefine the operators F i, Liε for i = 1, 2
and L making the dependence on τ explicit. We set (see (32))

S̃β,θ =
{

χ > 0 | |χµ2
j − kπ| ≥ θ

jβ
∀(j, k) ∈ N× Z

}
.

Then we put

O =
{

(ν, σ) ∈ R
2×(0, 1)

∣∣∣ |µ| < 1, exp(−δ̂σ−1/2) ≤ τ ≤ τ0, − ln τ

δ̂σ
∈ S̃β,θ

}
(74)

where τ0 = exp(−δ̂T0) and T0 is from Lemma 2, and we now suppose T0 ≥ 1. Note
that conditions Tε1/4 ≤ 1 and T ≥ T0 are equivalent to exp(−δ̂σ−1/2) ≤ τ ≤ τ0,
while condition − ln τ

δ̂σ
∈ S̃β,θ is equivalent to T/

√
ε ∈ S̃β,θ. Because of S̃β,θ,ε =

S̃β,θ ∩ (0, ε−3/4], then under the assumptions of Theorem 1, from (88) and (89) of
Appendix 2, we see that (0, 0, 0) ∈ O (see also Remark 2 below).

Next, as we have already observed, searching for a weak 2T√
ε
−periodic solution

of (1) is equivalent to the search for a solution of (4) such that u(x,−T ) = u(x, T ).
Writing u(x, t) = (y1(t)+Γ1(t))w−1(x)+(y2(t)+Γ2(t))w0(x)+z(x, t), with z(x, t)
as in (20)-(21), we see that u(x, t) is a 2T−periodic solution of (4) if and only if
(z(x, t), y(t)) ∈ Z × Y , where y(t) = (y1(t), y2(t)), is a fixed point of the system:{

z = F1(y, z, ν, T, ε) + L1ε(y) + L2ε(z)
y = F2(y, z, ν, T, ε) + Lz ,

(75)

that satisfies also
y(0+) = y(0−), ẏ(0+) = ẏ(0−) (76)

Indeed, the first equation of (75) comes from (21) and (57), while the second one
is derived from (20), (63) and (64). First we prove that (75) has a unique solution
in Z × Y whose y−component may have a possible jump at t = 0. Observe that,
from Holder’s inequality, we have

1 = ‖ϕ‖1 ≤ ‖ϕ‖2
[∫ a

0

ds

]1/2

≤ √
a‖ϕ‖2.

Hence
sup

t∈[−T ;T ]

‖z(·, t)‖2 = ‖z‖‖ϕ‖−1
2 ≤ √

a‖z‖. (77)

Owing to Propositions 2 and 3 we see that the assumptions of Lemma 3 are satisfied
with

C = max{k1, Ĉk, 2ĈN}
and

∆(ρ, ν, σ) = 2Ĉ∆(ρ) + k2

√
σ[∆(ρ) + k3]
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provided 2Ĉk4ε
3/4(kf + kg) + k5ε

1/4 = λ < 1. Thus according to Lemma 3 there
are ν0 >, σ0 > 0 such that for any µ, T and ε satisfying

|µ|+ exp(−δ̂T ) ≤ ν0,
√

ε ≤ σ0

(µ, exp(−δ̂T ), σ) ∈ O, where the set O is defined in (74) ,
(78)

we obtain a unique solution of the fixed point equation (75) such that (72) and
(73) hold, when (72) is derived from (70), and (73) from (71) and (77). Clearly
conditions of (78) are satisfied if

|µ| < µ0 := min
{ν0

2
, 1

}
, 0 < ε < ε0 := min

{
σ2

0 , T̃−4
0

}
T̃0 := max

{
T0,− ln(ν0/2)

δ̂

}
≤ T ≤ ε−1/4,

T√
ε
∈ S̃β,θ,ε .

(79)

Consequently, positive constants ε0, T̃0 and µ0 from the statement of Theorem 1
are established by (79).

We now show that y(t) satisfies (76). We set z̃(x, t) = z(x,−t) and ỹ(t) =
(y1(−t),−ẏ1(−t), y2(−t),−ẏ2(−t)), that is

ỹ(t) =


ỹ1(t)
˙̃y1(t)
ỹ2(t)
˙̃y2(t)

 = J


y1(−t)
ẏ1(−t)
y2(−t)
ẏ2(−t)

 = Jy(−t).

Then we have, using (24), (25) and ỹ1(t) = y1(−t), ỹ2(t) = y2(−t)

˙̃y(t) + A(t)ỹ(t) = −Jẏ(−t) + A(−t)Jy(−t) = −J [ẏ(−t) + A(−t)y(−t)]

= −JF (−t, y1(−t), y2(−t), [z(·,−t) ∗ ϕ̂](0), [z(·,−t) ∗ ϕ](1), µ, ε)

= F (t, ỹ1(t), ỹ2(t), [z̃(·, t) ∗ ϕ̂](0), [z̃(·, t) ∗ ϕ](1), µ, ε).

Similarly we see that (z̃(x, t), ỹ(t)) satisfies also the second (integral) equation,
that is (z̃(x, t), ỹ(t)) is another fixed point of equation (75) that satisfies (72),
(73). Hence

z(x, t) = z(x,−t), and y(t) = Jy(−t).

In particular:
y1(t) = y1(−t), y2(t) = y2(−t) (80)

Now, it is not difficult to verify that

ψ∗(t) = (−Γ̈1(t) Γ̇1(t) − Γ̈2(t) Γ̇2(t))

is a bounded solution of the adjoint system ẏ −A∗(t)y = 0. Hence we can take

ψ∗(0) = (−Γ̈1(0) 0 − Γ̈2(0) 0).

As a consequence:

< ψ∗(0), y(0+)− y(0−) >= −Γ̈1(0)[y1(0+)− y1(0−)]− Γ̈2(0)[y2(0+)− y2(0−)]
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and then, using (80) we get

< ψ∗(0), y(0+)− y(0−) >= − < ψ∗(0), y(0+)− y(0−) >

that is < ψ∗(0), y(0+) − y(0−) >= 0. Thus y(0+) = y(0−) (see (61)-(62)). This
concludes the proof of Theorem 1.

Remark 2. The period T satisfies conditions of Theorem 1 if T ∈ Sθ,ε where:

Sθ,ε :=
(√

εS5/4,θ,ε−3/4

) ∩ [
T0, ε

−1/4
]

where aB = {ab | b ∈ B} for any a ∈ R and B ⊂ R.
From (88) in Appendix A2 we get

lim inf
ε→0+

[m(Sθ,ε)ε1/4] ≥ 1− 10
π

θ .

So for 0 < θ < π/10 the set of those T ∈ [T0, ε
−1/4] satisfying the assumptions of

Theorem 1, has a positive measure. Hence, for any ε > 0 sufficiently small, there
is a T ∈ Sθ,ε ∩ [12

(
1− 10

π θ
)
ε−1/4, ε−1/4].

Remark 3. In particular, when h(x, t) = 0, Theorem 1 gives the existence of
several layers of free symmetric weak periodic vibrations of (1) for any small ε >
0. Note that in this case the parameter µ does not play any role, so it can be
chosen µ = 0. Accumulation of periodic orbits on homoclinic and heteroclinic
cycles to hyperbolic equilibria for reversible ordinary differential equations is also
studied in [16]. Here we deal with the partial differential equation (1) possessing
an infinite dimensional center part and a symmetric homoclinic solution in the
first two modes.

5. Appendix 1: Numerical approximations of the eigenvalues

By following [2] and [9], we have

cos µk cosh µk = 1 .

Then we get cos µk = 1
cosh µk

. Numerically we find µ1
.= 4.73004075.

Moreover, 0 < µ1 < µ2 < · · · and so coshµ1 < cosh µ2 < · · · . Since µk ∼
π(2k + 1)/2 and cos(π(2k + 1)/2) = 0, we get

| sin θk| · |µk − π(2k + 1)/2| = | cos µk − cos(π(2k + 1)/2)| = 1
cosh µk

≤ 2e−µk

for a θk ∈ (µk, π(2k + 1)/2). But we have

1 ≥ | sin µk| =
√

1− cos2 µk ≥
√

1− cos2 µ1
.= 0.999844212 ,

since
0 < cos µk =

1
cosh µk

≤ 1
cosh µ1

= cos µ1 .
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Figure 1. The graphs of functions y = cos x and y = sech x.

Next, we can easily see (cf. Fig. 1) that in fact (4k − 1)π/2 < µ2k−1, µ2k <
(4k + 1)π/2 and function cosx is positive on intervals (µk, π(2k + 1)/2) for any
k ∈ N. So function sinx is increasing on these intervals, and it is positive on
µ2k < (4k + 1)π/2 and negative on (4k − 1)π/2 < µ2k−1. From these arguments
we deduce

| sin θk| ≥ | sin µk| ≥ | sin µ1| .= 0.9998444212 .

This gives

|µk − π(2k + 1)/2| ≤ 2
| sin µ1|e

−µ1 .= 0.017654973 .

So we obtain

µk ≥ π(2k + 1)
2

− 0.017654973 ≥ πk .

Finally, we obtain

|µk − π(2k + 1)/2| ≤ 2
| sin µ1|e

−µk ≤ 2
| sin µ1|e

−πk ≤ c
π

4
e−πk (81)

for c = 2.546875863 < 2.6.

6. Appendix 2: Diophantine approximations of the eigenvalues

We observe that from (81) we have

µj > jπ > j. (82)
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Next, for χ > 0 we have∣∣∣∣π2

4
χ(2j + 1)2 − kπ

∣∣∣∣ + πχ(2j + 1)rj + χr2
j ≥ |χµ2

j − kπ| ≥∣∣∣∣π2

4
χ(2j + 1)2 − kπ

∣∣∣∣− πχ(2j + 1)rj − χr2
j .

(83)

Lemma A1. If 0 ≤ β ≤ 1 then for almost all χ > 0 and each n ∈ N there are
infinitely many j, k ∈ N such that

|χµ2
j − kπ| ≤ 1

njβ
. (84)

Proof. We know [14] that for almost all χ > 0 and each n ∈ N there are infinitely
many j, k ∈ N such that ∣∣∣∣π2

4
χ(2j + 1)2 − kπ

∣∣∣∣ ≤ 1
2njβ

. (85)

Then from (83) we get

|χµ2
j − kπ| ≤ 1

2njβ
+

π2

4
χ(2j + 1)ce−jπ + χc2 π2

16
e−2jπ ≤

( 1
2n

+
Kβχ

j

) 1
jβ

for

Kβ = sup
j∈N

π2

16

{
4(2j + 1)ce−jπj1+β + c2e−2jπj1+β

}
.

Hence for such j that
2χnKβ ≤ j (86)

we obtain (84). We note that there are infinitely many j, k ∈ N satisfying both
(85) and (86). The proof is finished.

Lemma A2. If β > 1, 0 < θ < π and T ∗ > 0 then the Lebesgue measure of the
set Sβ,θ,T∗ of all χ > 0 satisfying χ ≤ T ∗ and

|χµ2
j − kπ| ≥ θ

jβ
∀(j, k) ∈ N× Z (87)

has an estimate

T ∗ ≥ m(Sβ,θ,T∗) ≥ T ∗
(
1− 2θβ

π(β − 1)

)
− 4θ2(β + 1)

π(2β + 1)
.

Proof. If k ∈ Z is negative (87) is trivially satisfied since 0 < θ < π. Thus we
assume k ∈ Z, k ≥ 0. Next, if χ /∈ Sβ,θ,T∗ then there are (j0, k0) ∈ N× Z, k0 ≥ 0,
such that

|χµ2
j0 − k0π| < θ

jβ
0
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which implies
k0π

µ2
j0

− θ

jβ
0 µ2

j0

< χ <
k0π

µ2
j0

+
θ

jβ
0 µ2

j0

and

k0 <
θ

πjβ
0

+
T ∗µ2

j0

π
.

Hence, using also µj > j:

m([0, T ∗] \ Sβ,θ,T∗) ≤
∑
j∈N

2θ

jβµ2
j

( θ

jβπ
+

T ∗µ2
j

π

)
=

∑
j∈N

2θ2

πj2βµ2
j

+
∑
j∈N

2θT ∗

jβπ

≤ 2θ2

π

∑
j∈N

1
j2β+2

+
2θT ∗

π

∑
j∈N

1
jβ

≤ 2θ2

π

(
1 +

∫ ∞

1

1
x2β+2

dx
)

+
2θT ∗

π

(
1 +

∫ ∞

1

1
xβ

dx
)

=
4θ2(β + 1)
π(2β + 1)

+
2θT ∗β

π(β − 1)
.

The proof is finished.

From Lemma A2 we obtain

lim inf
T∗→+∞

m(Sβ,θ,T∗)
T ∗

≥ 1− 2θβ

π(β − 1)
. (88)

So for a given β > 1, we take θ ∈ (0, π) such that

0 < θ <
π(β − 1)

2β
. (89)

Finally, we note that Lemma A1 implies that, for 0 ≤ β ≤ 1 and almost all χ > 0,
there is no θ > 0 such that (87) holds. This is the reason why we include Lemma
A1 in this paper. Since according to its statement, we necessarily have to suppose
β > 1 in order to get Sβ,θ,T∗ 6= ∅. Moreover, we do not know in general the
structure of the set Sβ,θ,T∗ also if it is nonempty. On the other hand, for β = 0,
we can construct such a χ that (87) holds. We take χ = 2q

πp for p, q ∈ N with q

odd and (p, q) = 1. Then from (83) we obtain∣∣∣ 2q

πp
µ2

j − kπ
∣∣∣ ≥ π

∣∣∣ q

2p
(2j + 1)2 − k

∣∣∣− π
q

8p

(
4(2j + 1)ce−jπ + c2e−2jπ

)
≥ π

8p
(4− qΦ(j))

for
Φ(j) = 4(2j + 1)ce−jπ + c2e−2jπ .

Since 3Φ(j) ≤ 3.9985175 for any j ∈ N, we can take χ = 2q
πp for p ∈ N with q = 1, 3

and (p, q) = 1 for which (87) holds with β = 0 and θ = 0.000582137/p.
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Università di Ancona
Via Brecce Bianche 1
60131 Ancona
Italy

Michal Fečkan
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